
1/13/2016

1

Assignment Statement

• Used to assign values to variables, using the
assignment operator (=).

• General syntax:
variable_name = expression;

• Examples:
velocity = 20;

b = 15; temp = 12 5;

Spring Semester 2016 Programming and Data Structure 89

b = 15; temp = 12.5;

A = A + 10;

v = u + f * t;

s = u * t + 0.5 * f * t * t;

Contd.

• A value can also be assigned to a variable at
the time the variable is declared.

int speed = 30;

char flag = ‘y’;

• Several variables can be assigned the same
value using multiple assignment operators.

a = b = c = 5;

Spring Semester 2016 Programming and Data Structure 90

flag1 = flag2 = ‘y’;

speed = flow = 0.0;

1/13/2016

2

Operators in Expressions

Operators

Arithmetic
Operators

Relational
Operators

Logical
Operators

Spring Semester 2016 Programming and Data Structure 91

Arithmetic Operators

• Addition :: +

• Subtraction :: –

• Division :: /

• Multiplication :: *

• Modulus :: %

Spring Semester 2016 Programming and Data Structure 92

1/13/2016

3

Examples

distance = rate * time ;

netIncome = income - tax ;netIncome = income - tax ;

speed = distance / time ;

area = PI * radius * radius;

y = a * x * x + b*x + c;

quotient = dividend / divisor;

Spring Semester 2016 Programming and Data Structure 93

remain = dividend % divisor;

Contd.

• Suppose x and y are two integer variables,
whose values are 13 and 5 respectively.

x + y 18

x – y 8

x * y 65

x / y 2

Spring Semester 2016 Programming and Data Structure 94

x / y 2

x % y 3

1/13/2016

4

Operator Precedence

• In decreasing order of priority

1. Parentheses :: ()

2. Unary minus :: –5

3. Multiplication, Division, and Modulus

4. Addition and Subtraction

• For operators of the same priority, evaluation is
from left to right as they appear.

Spring Semester 2016 Programming and Data Structure 95

• Parenthesis may be used to change the
precedence of operator evaluation.

Examples: Arithmetic expressions

a + b * c – d / e a + (b * c) – (d / e)

a * – b + d % e – f a * (– b) + (d % e) – fa b d % e f a (b) (d % e) f

a – b + c + d (((a – b) + c) + d)

x * y * z ((x * y) * z)

a + b + c * d * e (a + b) + ((c * d) * e)

Spring Semester 2016 Programming and Data Structure 96

1/13/2016

5

Integer Arithmetic

• When the operands in an arithmetic expression
are integers, the expression is called integer
e pression and the operation is called integerexpression, and the operation is called integer
arithmetic.

• Integer arithmetic always yields integer values.

• Examples:
(12 + 3) / 6 gives the value 2

(2 / 3) * 3 gives the value 0

Spring Semester 2016 Programming and Data Structure 97

(/) g

(12 * 3) / 7 + 3 * 2 gives the value 11

Real Arithmetic

• Arithmetic operations involving only real or
floating-point operands.

• Since floating-point values are rounded to the
number of significant digits permissible, the final
value is an approximation of the final result.

1.0 / 3.0 * 3.0 will have the value 0.99999 and
not 1.0

• The modulus operator cannot be used with real

Spring Semester 2016 Programming and Data Structure 98

• The modulus operator cannot be used with real
operands.

1/13/2016

6

Mixed-mode Arithmetic

• When one of the operands is integer and the
other is real, the expression is called a mixed-
mode arithmetic e pressionmode arithmetic expression.

• If either operand is of the real type, then only real
arithmetic is performed, and the result is a real
number.

25 / 10 gives the value 2

25 / 10.0 gives the value 2.5

Spring Semester 2016 Programming and Data Structure 99

• Some more issues will be considered later.

Type Casting

• Temporarily convert the type of a variable before
being used in an expression.

– Expressed by specifying the desired type in
parenthesis before the variable/expression.

• Examples:

int a = 10, b = 4, c; float x, y;

x = (float) a / b; /* x will be 2.5 */

y = (float) (a / b); /* y will be 2 0 */

Spring Semester 2016 Programming and Data Structure 100

y = (float) (a / b); /* y will be 2.0 */

c = (int) x * 4; /* c will be 8 */

a = (int) (x * 4); /* a will be 10 */

1/13/2016

7

Relational Operators

• Used to compare two quantities.

< is less than

> is greater than

<= is less than or equal to

>= is greater than or equal to

== is equal to

!= is not equal to

Spring Semester 2016 Programming and Data Structure 101

• The result of comparison is “true” or “false”.
– The value 0 is considered as “false”, and any non-zero

value as “true”.

Examples

10 > 20 is false

25 < 35.5 is true

12 > (7 + 5) is false12 > (7 + 5) is false

• When arithmetic expressions are used on either
side of a relational operator, the arithmetic
expressions will be evaluated first and then the
results compared.

Spring Semester 2016 Programming and Data Structure 102

a + b > c – d is the same as (a+b) > (c+d)

1/13/2016

8

Examples

• Sample code segment in C:

if (x > y)

printf (“%d is larger\n”, x);

else

printf (“%d is larger\n”, y);

Spring Semester 2016 Programming and Data Structure 103

if (1) /* will be always true */

…………

Logical Operators

• There are two logical operators in C (also
called logical connectives).

&& Logical AND

| | Logical OR

• What they do?

– They act upon operands that are themselves
logical expressions.

Spring Semester 2016 Programming and Data Structure 104

– The individual logical expressions get
combined into more complex conditions that
are true or false.

1/13/2016

9

– Logical AND
• Result is true if both the operands are true.

– Logical OR
• Result is true if at least one of the operands are true.

X Y X && Y X | | Y

FALSE FALSE FALSE FALSE

FALSE TRUE FALSE TRUE

Spring Semester 2016 Programming and Data Structure 105

TRUE FALSE FALSE TRUE

TRUE TRUE TRUE TRUE

• Examples:

if ((i > 2) && (i < 10))

printf (“\n i lies between 3 and 9”);

if ((flag == ’A’) || (flag == ’a’)

printf (“\n Either lower or uppercase A”);

Spring Semester 2016 Programming and Data Structure 106

1/13/2016

10

Input / Output

• printf
– Performs output to the standard output device

(typically defined to be the screen).

– It requires a format string in which we can
specify:

• The text to be printed out.

• Specifications on how to print the values.

printf ("The number is %d \n" num) ;

Spring Semester 2016 Programming and Data Structure 107

printf (The number is %d.\n , num) ;

• The format specification %d causes the value listed
after the format string to be embedded in the output
as a decimal number in place of %d.

• Output will appear as: The number is 125.

• scanf
– Performs input from the standard input device,

which is the keyboard by default.

– It requires a format string and a list of variables
into which the value received from the input
device will be stored.

– It is required to put an ampersand (&) before the
names of the variables

Spring Semester 2016 Programming and Data Structure 108

names of the variables.
scanf ("%d", &size) ;

scanf ("%c", &nextchar) ;

scanf ("%f", &length) ;

scanf (“%d %d”, &a, &b);

