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Programming in C
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Sample C program #1

#include <stdio.h>
main()main()

{
printf (“\n Our first look at a C program \n”);

}
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Sample C program #2

/* Compute the sum of two integers */

#include <stdio.h>
main()

{
int   a, b, c;
a = 10;
b = 20;
c = a + b;
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printf (“\n The sum of %d and %d is %d\n”, 
a,b,c);

}

Sample C program #3

#include <stdio.h>

/* FIND THE LARGEST OF THREE NUMBERS */

main()
{

int   a, b, c;
scanf (“%d %d %d”, &a, &b, &c);
if  ((a>b) && (a>c))    /* Composite condition check */

printf (“\n Largest is %d”, a);
else
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if  (b>c)           /* Simple condition check */
printf (“\n Largest is %d”, b);

else
printf (“\n Largest is %d”, c);

}
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Sample C program #4

#include <stdio.h>
#define    PI    3.1415926

/* Compute the area of a circle */
main()()

{
float   radius, area;
float   myfunc (float radius);

scanf (“%f”, &radius);
area = myfunc (radius);
printf (“\n Area is %f \n”, area);

}
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float   myfunc (float r)
{

float   a;
a = PI * r * r;
return (a);      /* return result */

}

Introduction to C

• C is a general-purpose, structured programming 
language.

– Resembles other high-level structured programming 
languages, such as Pascal and Fortran-77.

– Also contains additional features which allow it to be used 
at a lower level.

• C can be used for applications programming as well 
as for systems programming.
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• There are only 32 keywords and its strength lies in 
its built-in functions.

• C is highly portable, since it relegated much 
computer-dependent features to its library functions.



1/13/2016

4

History of C

• Originally developed in the 1970’s by Dennis 
Ritchie at AT&T Bell Laboratories.

– Outgrowth of two earlier languages BCPL and B.

• Popularity became widespread by the mid 1980’s, 
with the availability of compilers for various 
platforms.

• Standardization has been carried out to make the 
various C implementations compatible
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various C implementations compatible.

– American National Standards Institute (ANSI)

– GNU

Structure of a C program

• Every C program consists of one or more 
functions.
– One of the functions must be called main.

– The program will always begin by executing the 
main function.

• Each function must contain:
– A function heading, which consists of the 

function name followed by an optional list of
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function name, followed by an optional list of 
arguments enclosed in parentheses.

– A list of argument declarations.

– A compound statement, which comprises the 
remainder of the function.
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Contd.

• Each compound statement is enclosed 
within a pair of braces:  ‘{‘ and ‘}’
– The braces may contain combinations of 

elementary statements and other compound 
statements.

• Comments may appear anywhere in a 
program, enclosed within delimiters ‘/*’ 
and ‘*/’
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and ‘*/’.
– Example:  

a = b + c;    /* ADD TWO NUMBERS */

Example of a Function

/* Compute the sum of two integers */

#include <stdio.h>
main()

{
int   a, b, c;

a = 10;
b = 20;
c = a + b;
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;
printf (“\n The sum of %d and %d is %d\n”,

a,b,c);
}
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Desirable Programming Style

• Clarity
– The program should be clearly written.

It h ld b t f ll th l i– It should be easy to follow the program logic.

• Meaningful variable names
– Make variable/constant names meaningful to enhance 

program clarity.
• ‘area’ instead of ‘a’

• ‘radius’ instead of ‘r’
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• Program documentation
– Insert comments in the program to make it easy to 

understand.

– Never use too many comments.

Contd.

• Program indentation
– Use proper indentation.

St t f th h ld b i di t l i ibl– Structure of the program should be immediately visible.
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Indentation Example #1 :: Good Style

#include <stdio.h>
#define PI 3 1415926

float   myfunc (float r)
{#define    PI    3.1415926

/* Compute the area of a circle */

main()
{

float   radius, area;
float   myfunc (float radius);

{
float   a;
a = PI * r * r;
return (a);      /* return result */

}
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scanf (“%f”, &radius);
area = myfunc (radius);
printf (“\n Area is %f \n”, area);

}

Indentation Example #1 :: Bad Style

#include <stdio.h>
#define PI 3 1415926

float   myfunc (float r)
{#define    PI    3.1415926

/* Compute the area of a circle */
main()
{
float   radius, area;
float   myfunc (float radius);
scanf (“%f”, &radius);
area = myfunc (radius);

{
float   a;
a = PI * r * r;
return (a);      /* return result */
}
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printf (“\n Area is %f \n”, area);
}
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Indentation Example #2 :: Good Style

#include <stdio.h>

/* FIND THE LARGEST OF THREE NUMBERS */

main()
{

int   a, b, c;
scanf (“%d %d %d”, &a, &b, &c);
if  ((a>b) && (a>c))                          /* Composite condition check */

printf (“\n Largest is %d”, a);
else

Spring Semester 2016 Programming and Data Structure 69

if  (b>c)                                         /* Simple condition check */
printf (“\n Largest is %d”, b);

else
printf (“\n Largest is %d”, c);

}

Indentation Example #2 :: Bad Style

#include <stdio.h>

/* FIND THE LARGEST OF THREE NUMBERS */

main()
{
int   a, b, c;
scanf (“%d %d %d”, &a, &b, &c);
if  ((a>b) && (a>c))   /* Composite condition check */
printf (“\n Largest is %d”, a);
else
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if  (b>c)     /* Simple condition check */
printf (“\n Largest is %d”, b);
else
printf (“\n Largest is %d”, c);
}
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The C Character Set

• The C language alphabet:
– Uppercase letters ‘A’ to ‘Z’

– Lowercase letters ‘a’ to ‘z’

– Digits ‘0’ to ‘9’

– Certain special characters:

!       #       %       ^       &       *       (       )  

-        +        =       ~       [        ]       \
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_ [ ]

|       ;        :       ‘         “        {        }       ,      

.        <       >      /         ?       blank

Identifiers and Keywords

• Identifiers
– Names given to various program elements 

(variables, constants, functions, etc.)

– May consist of letters, digits and the 
underscore (‘_’) character, with no space 
between.

– First character must be a letter.

– An identifier can be arbitrary long
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An identifier can be arbitrary long.
• Some C compilers recognize only the first few 

characters of the name (16 or 31).

– Case sensitive
• ‘area’, ‘AREA’ and ‘Area’ are all different.
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Contd.

• Keywords
– Reserved words that have standard, predefined 

meanings in C.

– Cannot be used as identifiers.

– OK within comments.

– Standard C keywords:

auto       break     case         char     const         continue  default     do
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double   else        enum      extern   float           for            goto         if

int          long       register   return   short          signed     sizeof       static

struct     switch   typedef   union    unsigned   void         volatile    while

Valid and Invalid Identifiers

• Valid identifiers

X

• Invalid identifiers

10abc

abc

simple_interest

a123

LIST

stud_name

Empl_1

E l 2

my-name

“hello”

simple interest

(area)

%rate

double

f
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Empl_2

avg_empl_salary

for
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Data Types in C

int ::  integer quantity
Typically occupies 4 bytes (32 bits) in memory.

char ::  single character
Typically occupies 1 bye (8 bits) in memory.

float ::  floating-point number (a number with a                    

decimal point)
Typically occupies 4 bytes (32 bits) in memory.
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double ::  double-precision floating-point number
Typically occupies 8 bytes (64 bits) in memory.

75

Contd.

• Some of the basic data types can be augmented 
by using certain data type qualifiers:

h t– short
– long
– signed
– unsigned

• Examples:
h i fl
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short int  flag;
long int  result;
unsigned int  count, age;
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Some Examples of Data Types

• int
0,  25, –156,  12345, –99820

• char
‘a’,    ‘A’,    ‘*’,    ‘/’,    ‘ ’

• float
23.54, –0.00345,  25.0

2 5E12 1 234e 5

E or e means “10 to 
the power of”
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2.5E12,  1.234e–5

Constants

Constants

Numeric
Constants

Character
Constants
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stringsingle
character

floating-
point

integer
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Integer Constants

• Consists of a sequence of digits, with 
possibly a plus or a minus sign before it.

– Embedded spaces, commas and non-digit 
characters are not permitted between digits.

• Maximum and minimum values (for 32-bit 
representations)

Maximum :: 2147483647 (231 1)
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Maximum ::      2147483647    (231 – 1)    

Minimum  ::   – 2147483648    (– 231) 

<For 2’s complement representation>

Floating-point Constants

• Can contain fractional parts.

• Very large or very small numbers can beVery large or very small numbers can be 
represented.

23000000 can be represented as 2.3e7

• Two different notations:

1. Decimal notation
25 0 0 0034 84 2 234
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25.0,  0.0034,  .84,  -2.234

2. Exponential (scientific) notation
3.45e23,  0.123e-12,  123E2 e means “10 to 

the power of”



1/13/2016

14

Single Character Constants

• Contains a single character enclosed 
within a pair of single quote marks.
– Examples ::  ‘2’, ‘+’, ‘Z’

• Some special backslash characters
‘\n’ new line

‘\t’ horizontal tab

‘\’’ single quote
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g q

‘\”’ double quote

‘\\’ backslash

‘\0’ null

String Constants

• Sequence of characters enclosed in 
double quotes.
– The characters may be letters, numbers, 

special characters and blank spaces.

• Examples:
“nice”,  “Good Morning”,  “3+6”,  “3”, “C”

• Differences from character constants:
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Differences from character constants:
– ‘C’ and “C” are not equivalent.

– ‘C’ has an equivalent integer value while “C” 
does not.
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Variables

• It is a data name that can be used to store a 
data value.

• Unlike constants, a variable may take 
different values in memory during execution.

• Variable names follow the same naming 
convention for identifiers.

E l t d 2 t
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Examples ::  temp, speed, name2, current,

my_salary

Example

int    a, b, c;
char x;char   x;

a = 3;
b = 50;
c = a – b;
x = ‘d’;

b = 20;
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a = a + 1;
x = ‘G’;
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Declaration of Variables

• There are two purposes:
– It tells the compiler what the variable name is.
– It specifies what type of data the variable will 

hold.

• General syntax:
data-type  variable-list;

• Examples:
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int   velocity, distance;
int   a, b, c, d;
float  temp;
char  flag, option;

A First Look at Pointers

• A variable is assigned a specific memory 
location.
– For example a variable speed is assigned memory– For example, a variable speed is assigned memory 

location 1350.

– Also assume that the memory location contains the 
data value 100.

– When we use the name speed in an expression, it 
refers to the value 100 stored in the memory 
location
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location.
distance = speed * time;

• Thus every variable has an address in memory, 
and its contents.
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• In C terminology, in an expression
speed refers to the contents of the memory 
location.

&speed refers to the address of the memory 
location.

• Examples:
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printf (“%f %f %f”, speed, time, distance);

scanf (“%f %f”, &speed, &time);

An Example

#include <stdio.h>
main()()

{
float  speed, time, distance;

scanf (“%f %f”, &speed, &time);
distance = speed * time;
printf (“\n The distance traversed is: \n”, 

distance);
}
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