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Outline
 Power and Energy
 Dynamic Power
 Static Power
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Power and Energy
 Power is drawn from a voltage source attached to 

the VDD pin(s) of a chip.

 Instantaneous Power:

 Energy:

 Average Power:
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Power in Circuit Elements
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Charging a Capacitor
 When the gate output rises

– Energy stored in capacitor is

– But energy drawn from the supply is

– Half the energy from VDD is dissipated in the pMOS 
transistor as heat, other half stored in capacitor

 When the gate output falls
– Energy in capacitor is dumped to GND
– Dissipated as heat in the nMOS transistor
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Switching Waveforms
 Example: VDD = 1.0 V, CL = 150 fF, f = 1 GHz
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Switching Power
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Activity Factor
 Suppose the system clock frequency = f
 Let fsw = f, where  = activity factor

– If the signal is a clock,  = 1
– If the signal switches once per cycle,  = ½

 Dynamic power:
2

switching DDP CV f
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Short Circuit Current
 When transistors switch, both nMOS and pMOS 

networks may be momentarily ON at once
 Leads to a blip of “short circuit” current.
 < 10% of dynamic power if rise/fall times are 

comparable for input and output
 We will generally ignore this component
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Power Dissipation Sources
 Ptotal = Pdynamic + Pstatic

 Dynamic power: Pdynamic = Pswitching + Pshortcircuit

– Switching load capacitances
– Short-circuit current

 Static power: Pstatic = (Isub + Igate + Ijunct + Icontention)VDD

– Subthreshold leakage
– Gate leakage
– Junction leakage
– Contention current
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Dynamic Power Example
 1 billion transistor chip

– 50M logic transistors
• Average width: 12 
• Activity factor = 0.1

– 950M memory transistors
• Average width: 4 
• Activity factor = 0.02

– 1.0 V 65 nm process
– C = 1 fF/m (gate) + 0.8 fF/m (diffusion)

 Estimate dynamic power consumption @ 1 GHz.  
Neglect wire capacitance and short-circuit current.
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Solution
    
    
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Dynamic Power Reduction

  
 Try to minimize:

– Activity factor
– Capacitance
– Supply voltage
– Frequency

2
switching DDP CV f
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Activity Factor Estimation
Activity factor of a node is the probability that it switches 
from 0 to 1.
Define Pi  to be the probability that node i is 1. 

– Pi = 1-Pi is the probability that node i is 0.

i = Pi * Pi ; the activity factor of node i, is the 
probability that the node is 0 on one cycle and 1 on the 
next 
Completely random data has P = 0.5 and  = 0.25
Data propagating through ANDs and ORs has lower 
activity factor

– Depends on design, but typically  ≈ 0.1



CMOS VLSI DesignCMOS VLSI Design 4th Ed.7: Power 15

Switching Probability
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Example
Determine the Activity Factors at each node:
A 4-input AND is built out of two levels of gates
Estimate the activity factor at each node if the inputs 
have P = 0.5

(a)
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Example
Determine the Activity Factors at each node:
A chain of gates
Estimate the activity factor at each node if the inputs 
have P = 0.5

(b)
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Example
Determine the Activity Factors at each node:
A chain of gates
Estimate the activity factor at each node if the inputs have P = 
0.5
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Clock Gating
 The best way to reduce the activity is to turn off the 

clock to registers in unused blocks
– Saves clock activity ( = 1)
– Eliminates all switching activity in the block
– Requires determining if block will be used
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Capacitance
 Gate capacitance

Device-Switching capacitance is reduced by 
–Fewer stages of logic
–Small gate sizes

 Wire capacitance
–Good floorplanning to keep communicating blocks 
close to each other
–Drive long wires with inverters or buffers rather 
than complex gates
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Gate Sizing under a Delay Constraint

Consider a model to compute the energy of a circuit. If a 
unit inverter has gate capacitance 3C, then a gate with 
logical effort g, parasitic delay p, and drive x has gx 
times as much gate capacitance and px times as much 
diffusion capacitance. The energy of the entire circuit:
Energy = 3CV2

DD ∑ i€nodes αi (Cwire/3c + pixi + ∑ j€fanout(i) gjxj)

       = ∑ i€nodes αi (ci + pixi + ∑ j€fanout(i) gjxj)

            = ∑ i€nodes αi xi di)
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Voltage / Frequency
 Run each block at the lowest possible voltage and 

frequency that meets performance requirements
 Voltage Domains

– Provide separate supplies to different blocks
– Level converters required when crossing 

from low to high VDD domains

 Dynamic Voltage Scaling
– Adjust VDD and f according to 

workload
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Static Power
 Static power is consumed even when chip is not 

switching.
– Leakage draws power from nominally OFF 

devices
– Leakage power was of concern primarily during 

sleep mode and it was negligible compared to 
dynamic power. 

– In nanometer processes with low threshold 
voltages and thin gate oxides, leakage can 
account for as much as a third of total active 
power.
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Static Power Sources

Static power arises from
– Subthreshold leakage
– Gate leakage
– Junction leakage
– Contention current

Static power: Pstatic = (Isub + Igate + Ijunct + Icontention)VDD
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Leakage Sources
 Subthreshold conduction

– Transistors can’t abruptly turn ON or OFF
– Dominant source in contemporary transistors

 Gate leakage
– Tunneling through ultrathin gate dielectric

 Junction leakage
– Reverse-biased PN junction diode current
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Leakage
 What about current in cutoff?

– Current doesn’t

 go to 0 in cutoff
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Subthreshold Leakage
 Subthreshold leakage exponential with Vgs

 n is process dependent
– typically 1.3-1.7

 Rewrite relative to Ioff on log scale

 S ≈ 100 mV/decade @ room temperature
 DIBL – Drain Induced Barrier Lowering, GIDL - Gate-Induced Drain Leakage

0

0e 1 e
gs t ds sb ds

T T

V V V k V V

nv v
ds dsI I

    
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 
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Drain Induced Barrier Lowering

 Vds creates an electric field that affects the threshold 
voltage  Vt = Vt0 – ηVds, η is DIBL coefficient, typical 
value is 0.1.

 DIBL causes Ids to increase with Vds in saturation.
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Gate-Induced Drain Leakage
 Occurs at overlap between gate and drain

– Most pronounced when drain is at VDD, gate is at 
a negative voltage

– Thwarts efforts to reduce subthreshold leakage 
using a negative gate voltage
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Subthreshold Leakage
 For Vds > 50 mV

 Ioff = leakage at Vgs = 0, Vds = VDD

 

10
gs ds DD sbV V V k V

S
sub offI I

  



Typical values in 65 nm
Ioff = 100 nA/m @ Vt = 0.3 V
Ioff = 10 nA/m   @ Vt = 0.4 V
Ioff = 1 nA/m     @ Vt = 0.5 V
  = 0.1
k  = 0.1
S  = 100 mV/decade
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Leakage Control
 Leakage and delay trade off

– Aim for low leakage in sleep and low delay in 
active mode

 To reduce leakage:
– Increase Vt: multiple Vt

• Use low Vt only in critical circuits
– Increase Vs: stack effect

• Input vector control in sleep
– Decrease Vb

• Reverse body bias in sleep
• Or forward body bias in active mode
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Stack Effect
 Series OFF transistors have less leakage

– Vx > 0, so N2 has negative Vgs

– Leakage through 2-stack reduces ~10x

– Leakage through 3-stack reduces further
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Junction Leakage
 Reverse-biased p-n junctions have some leakage

– Ordinary diode leakage
– Band-to-band tunneling (BTBT)
– Gate-induced drain leakage (GIDL)

n well

n+n+ n+p+p+p+

p substrate
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Diode Leakage
 Reverse-biased p-n junctions have some leakage

 At any significant negative diode voltage, ID = -Is

 Is depends on doping levels

– And area and perimeter of diffusion regions
– Typically < 1 fA/m2 (negligible)
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Band-to-Band Tunneling
 Tunneling across heavily doped p-n junctions

– Especially sidewall between drain & channel

when halo doping is used to increase Vt

 Increases junction leakage to significant levels

– Xj: sidewall junction depth

– Eg: bandgap voltage

– A, B: tech constants
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Junction Leakage
 From reverse-biased p-n junctions

– Between diffusion and substrate or well
 Ordinary diode leakage is negligible
 Band-to-band tunneling (BTBT) can be significant

– Especially in high-Vt transistors where other 
leakage is small

– Worst at Vdb = VDD

 Gate-induced drain leakage (GIDL) exacerbates

– Worst for Vgd = -VDD (or more negative)
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Gate Leakage
 Carriers tunnel thorough very thin gate oxides
 Exponentially sensitive to tox and VDD

– A and B are tech constants
– Greater for electrons

• So nMOS gates leak more
 Negligible for older processes (tox > 20 Å)

 Critically important at 65 nm and below (tox ≈ 10.5 Å)

From [Song01]
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Gate Leakage
 Extremely strong function of tox and Vgs

– Negligible for older processes
– Approaches subthreshold leakage at 65 nm and 

below in some processes
 An order of magnitude less for pMOS than nMOS
 Control leakage in the process using tox > 10.5 Å

– High-k gate dielectrics help

– Some processes provide multiple tox

• e.g. thicker oxide for 3.3 V I/O transistors
 Control leakage in circuits by limiting VDD
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NAND3 Leakage Example
 100 nm process

Ign = 6.3 nA Igp = 0

Ioffn = 5.63 nA Ioffp = 9.3 nA

Data from [Lee03]
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Contention Current
 Static CMOS Circuits have no contention current
 However, pseudo nMOS gates experience 

contention between the nMOS pulldown and the 
always-on pMOS pull-ups, when the output is 0.

 Current mode logic and many analog circuits also 
draw static current

 Such circuits should be turned off in sleep mode by 
disabling the pull-ups or current source.
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Static Power Estimation
 Static power estimation is done by estimating the 

total width of transistors that are leaking , multiplying 
by the leakage current per width and multiplying by 
the fraction of transistors that are in their leaky state 
(usually one-half) 

 Add the contention current if applicable
 The static power is the supply voltage times the 

static current
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Static Power Example
 Revisit power estimation for 1 billion transistor chip
 Estimate static power consumption

– Subthreshold leakage

• Normal Vt: 100 nA/m

• High Vt: 10 nA/m

• High Vt used in all memories and in 95% of 
logic gates

– Gate leakage 5 nA/m
– Junction leakage negligible
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Solution

    

        

 
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t

t t

t t

6 6
normal-V

6 6 6
high-V

normal-V high-V

normal-V high-V

50 10 12 0.025 m / 0.05 0.75 10  m

50 10 12 0.95 950 10 4 0.025 m / 109.25 10  m

100 nA/ m+ 10 nA/ m / 2 584 mA

5 nA/ m / 2

sub

gate

W

W

I W W

I W W

   

    

 



   

       
     
     
  

275 mA

P 584 mA 275 mA 1.0 V 859 mWstatic   
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Power Gating
 Turn OFF power to blocks when they are idle to 

save leakage
– Use virtual VDD (VDDV)
– Gate outputs to prevent 

invalid logic levels to next block

 Voltage drop across sleep transistor degrades 
performance during normal operation
– Size the transistor wide enough to minimize 

impact
 Switching wide sleep transistor costs dynamic power

– Only justified when circuit sleeps long enough
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