
BACKEND DESIGN

Circuit Partitioning

Partitioning

Decomposition of a complex system into smaller subsystems.

Each subsystem can be designed independently speeding up
the design process.

Decomposition scheme has to minimize the interconnections
among the subsystems.

Decomposition is carried out hierarchically until each
subsystem is of managable size.

system design

Module 1 InterfaceModule 2

2

Module n

3

Cut 1 = 4

Cut 2 = 4

Size 1 = 15

Size 2 = 16

Size 3 = 17

Cut 1 Cut 2

4

Partitioning at Different Levels

• Can be done at multiple levels:

–System level

–Board level

–Chip level

• Delay implications are different:

– Intrachip➔ X

– Intraboard➔ 10X

– Interboard ➔ 20X

5

Different Delays in a Chip

CC

A

B A
X

10X

10X

B

20X

6

Problem Formulation

• Partition a given netlist into smaller netlists such that:

1. Interconnection between partitions is minimized.

2. Delay due to partitioning is minimized.

3. Number of terminals is less than a predetermined

maximum value.

4. The area of each partition remains within specified

bounds.

5. The number of partitions also remains within specified

bounds.

7

Classification of

Partitioning Algorithms

Partitioning Algorithms

Group Migration Simulation Based Performance Driven

Kernighan-Lin

Fiduccia-Mattheyses

Goldberg-Burstein

Simulated Annealing

Simulated Evolution

8

Group Migration Algorithms

• Kernighan-Lin

– An iterative improvement algorithm for balanced two-way

partitioning.

• Goldberg-Burstein

– Uses properties of graphs to improve the performance of K-

L algorithm.

• Fiduccia-Mattheyses

– Considers multi-pin nets.

– Can generate partitions of unequal sizes.

– Uses efficient data structure to represent nodes.

Partitioning

Decomposition of a complex system into smaller subsystems.

Each subsystem can be designed independently speeding up
the design process.

Decomposition scheme has to minimize the interconnections
among the subsystems.

Decomposition is carried out hierarchically until each
subsystem is of managable size.

system design

Module 1 InterfaceModule 2 Module n

1

Circuit Partitioning

• Objective: Partition a circuit into parts such that every component is
within a prescribed range and the # of connections among the compo-
nents is minimized.

– More constraints are possible for some applications.

• Cutset? Cut size? Size of a component?

graph representation

1

2

3

4

5

6

7
8

1

2

3

4

5

6

7
8

1

2

3

4

5

6

7 8

1

2

3

4

5

6

7 8

Cut size = 4

Cut size = 2

2

Problem Definition: Partitioning

• k-way partitioning: Given a graph G(V,E), where each vertex v ∈ V
has a size s(v) and each edge e ∈ E has a weight w(e), the problem is
to divide the set V into k disjoint subsets V1, V2, . . ., Vk, such that an
objective function is optimized, subject to certain constraints.

• Bounded size constraint: The size of the i-th subset is bounded by Bi

(
∑

v∈Vi s(v) ≤ Bi).

– Is the partition balanced?

• Min-cut cost between two subsets: Minimize
∑
∀e=(u,v)∧p(u) 6=p(v)w(e),

where p(u) is the partition # of node u.

• The 2-way, balanced partitioning problem is NP-complete, even in its
simple form with identical vertex sizes and unit edge weights.

3

Kernighan-Lin Algorithm

• Kernighan and Lin, “An efficient heuristic procedure for partitioning
graphs,” The Bell System Technical Journal, vol. 49, no. 2, Feb. 1970.

• An iterative, 2-way, balanced partitioning (bi-sectioning) heuristic.

• Till the cut size keeps decreasing

– Vertex pairs which give the largest decrease or the smallest increase
in cut size are exchanged.

– These vertices are then locked (and thus are prohibited from partic-
ipating in any further exchanges).

– This process continues until all the vertices are locked.

4

Kernighan-Lin Algorithm: A Simple Example

• Each edge has a unit weight.
a

b

c

d

e

f

g

h

a

b

c

e

f

hg

d

a

b

e

hg

df

c

Step # Vertex pair Cost reduction Cut cost
0 - 0 5
1 {d, g} 3 2
2 {c, f} 1 1
3 {b, h} -2 3
4 {a, e} -2 5

• Questions: How to compute cost reduction? What pairs to be swapped?

– Consider the change of internal & external connections.

5

Properties

• Two sets A and B such that |A| = n = |B| and A ∩B = ∅.
• External cost of a ∈ A: Ea =

∑
v∈B cav.

• Internal cost of a ∈ A: Ia =
∑

v∈A cav.
• D-value of a vertex a: Da = Ea − Ia (cost reduction for moving a).
• Cost reduction (gain) for swapping a and b: gab = Da +Db − 2cab.
• If a ∈ A and b ∈ B are interchanged, then the new D-values, D′, are given

by

D′x = Dx + 2cxa − 2cxb, ∀x ∈ A− {a}
D′y = Dy + 2cyb − 2cya, ∀y ∈ B − {b}.

a

b

Internal cost vs. External cost

a

x

b

x

b

a

A B

BA

cxb

cxa

cxa

cxb

updating D−values

A B

Gaina B: ab D − ca
Gain : ab D − cb A b

before
 swap

after
swap C

−cxa xa+c xa+2c

+cxb −cxb −2cxb

6

Kernighan-Lin Algorithm: A Weighted Example
 a b c d e f

a 0 1 2 3 2 4
b 1 0 1 4 2 1
c 2 1 0 3 2 1
d 3 4 3 0 4 3
e 2 2 2 4 0 2
f 4 1 1 3 2 0

a

b c

d

ef

a

b

c

d

e

f

1

2

3

2

4

Initial cut cost = (3+2+4)+(4+2+1)+(3+2+1) = 22

costs associated with a

• Iteration 1:
Ia = 1 + 2 = 3; Ea = 3 + 2 + 4 = 9; Da = Ea − Ia = 9− 3 = 6
Ib = 1 + 1 = 2; Eb = 4 + 2 + 1 = 7; Db = Eb − Ib = 7− 2 = 5
Ic = 2 + 1 = 3; Ec = 3 + 2 + 1 = 6; Dc = Ec − Ic = 6− 3 = 3
Id = 4 + 3 = 7; Ed = 3 + 4 + 3 = 10; Dd = Ed − Id = 10− 7 = 3
Ie = 4 + 2 = 6; Ee = 2 + 2 + 2 = 6; De = Ee − Ie = 6− 6 = 0
If = 3 + 2 = 5; Ef = 4 + 1 + 1 = 6; Df = Ef − If = 6− 5 = 1

7

Weighted Example (cont’d)

• Iteration 1:

Ia = 1 + 2 = 3; Ea = 3 + 2 + 4 = 9; Da = Ea − Ia = 9− 3 = 6
Ib = 1 + 1 = 2; Eb = 4 + 2 + 1 = 7; Db = Eb − Ib = 7− 2 = 5
Ic = 2 + 1 = 3; Ec = 3 + 2 + 1 = 6; Dc = Ec − Ic = 6− 3 = 3
Id = 4 + 3 = 7; Ed = 3 + 4 + 3 = 10; Dd = Ed − Id = 10− 7 = 3
Ie = 4 + 2 = 6; Ee = 2 + 2 + 2 = 6; De = Ee − Ie = 6− 6 = 0
If = 3 + 2 = 5; Ef = 4 + 1 + 1 = 6; Df = Ef − If = 6− 5 = 1

• gxy = Dx +Dy − 2cxy.

gad = Da +Dd − 2cad = 6 + 3− 2× 3 = 3

gae = 6 + 0− 2× 2 = 2

gaf = 6 + 1− 2× 4 = −1

gbd = 5 + 3− 2× 4 = 0

gbe = 5 + 0− 2× 2 = 1

gbf = 5 + 1− 2× 1 = 4 (maximum)

gcd = 3 + 3− 2× 3 = 0

gce = 3 + 0− 2× 2 = −1

gcf = 3 + 1− 2× 1 = 2

• Swap b and f ! (ĝ1 = 4)

8

Weighted Example (cont’d)

a

b

c

d

e

f c

f b

a d

e

• D′x = Dx + 2cxp − 2cxq, ∀x ∈ A− {p} (swap p and q, p ∈ A, q ∈ B)

D′a = Da + 2cab − 2caf = 6 + 2× 1− 2× 4 = 0
D′c = Dc + 2ccb − 2ccf = 3 + 2× 1− 2× 1 = 3
D′d = Dd + 2cdf − 2cdb = 3 + 2× 3− 2× 4 = 1
D′e = De + 2cef − 2ceb = 0 + 2× 2− 2× 2 = 0

• gxy = D′x +D′y − 2cxy.

gad = D′a +D′d − 2cad = 0 + 1− 2× 3 = −5
gae = D′a +D′e − 2cae = 0 + 0− 2× 2 = −4
gcd = D′c +D′d − 2ccd = 3 + 1− 2× 3 = −2
gce = D′c +D′e − 2cce = 3 + 0− 2× 2 = −1 (maximum)

• Swap c and e! (ĝ2 = −1)

9

Weighted Example (cont’d)

c

f b

a d

e c

f b

e

ce

• D′′x = D′x + 2cxp − 2cxq, ∀x ∈ A− {p}

D′′a = D′a + 2cac − 2cae = 0 + 2× 2− 2× 2 = 0
D′′d = D′d + 2cde − 2cdc = 1 + 2× 4− 2× 3 = 3

• gxy = D′′x +D′′y − 2cxy.

gad = D′′a +D′′d − 2cad = 0 + 3− 2× 3 = −3(ĝ3 = −3)

• Note that this step is redundant (
∑n

i=1 ĝi = 0).

10

a d

• Summary: ĝ1 = gbf = 4, ĝ2 = gce = −1, ĝ3 = gad = −3.

• Largest partial sum max
∑k

i=1 ĝi = 4 (k = 1) ⇒ Swap b and f .

Weighted Example (cont’d)

 a b c d e f

a 0 1 2 3 2 4
b 1 0 1 4 2 1
c 2 1 0 3 2 1
d 3 4 3 0 4 3
e 2 2 2 4 0 2
f 4 1 1 3 2 0 c

f b

d

e

a
4

1

1

3

2

Initial cut cost = (1+3+2)+(1+3+2)+(1+3+2) = 18 (22−4)

• Iteration 2: Repeat what we did at Iteration 1 (Initial cost= 22−4 = 18).

• Summary: ĝ1 = gce = −1, ĝ2 = gab = −3, ĝ3 = gfd = 4.

• Largest partial sum = max
∑k

i=1 ĝi = 0 (k = 3) ⇒ Stop!

11

Algorithm: Kernighan-Lin(G)
Input: G = (V,E), |V | = 2n.
Output: Balanced bi-partition A and B with ‘‘small’’ cut cost.

1 begin
2 Bipartition G into A and B such that |VA| = |VB|, VA ∩ VB = ∅,

and VA ∪ VB = V .
3 repeat
4 Compute Dv, ∀v ∈ V .
5 for i = 1 to n do
6 Find a pair of unlocked vertices vai ∈ VA and vbi ∈ VB whose

exchange makes the largest decrease or smallest increase in
cut cost;

7 Mark vai and vbi as locked, store the gain ĝi, and compute
the new Dv, for all unlocked v ∈ V ;

8 Find k, such that Gk =
∑k

i=1 ĝi is maximized;
9 if Gk > 0 then
10 Move va1, . . . , vak from VA to VB and vb1, . . . , vbk from VB to VA;
11 Unlock v, ∀v ∈ V .
12 until Gk ≤ 0;
13 end

12

Time Complexity

• Line 4: Initial computation of D: O(n2)

• Line 5: The for-loop: O(n)

• The body of the loop: O(n2).

– Lines 6–7: Step i takes (n− i+ 1)2 time.

• Lines 4–11: Each pass of the repeat loop: O(n3).

• Suppose the repeat loop terminates after r passes.

• The total running time: O(rn3).

13

Extensions of K-L Algorithm

• Unequal sized subsets (assume n1 < n2)

1. Partition: |A| = n1 and |B| = n2.
2. Add n2 − n1 dummy vertices to set A. Dummy vertices have no

connections to the original graph.
3. Apply the Kernighan-Lin algorithm.
4. Remove all dummy vertices.

• Unequal sized “vertices”

1. Assume that the smallest “vertex” has unit size.
2. Replace each vertex of size s with s vertices which are fully connected

with edges of infinite weight.
3. Apply the Kernighan-Lin algorithm.

• k-way partition

1. Partition the graph into k equal-sized sets.
2. Apply the Kernighan-Lin algorithm for each pair of subsets.
3. Time complexity? Can be reduced by recursive bi-partition.

14

A “Better” Implementation of K-L Algorithm

• Sort the D-values in a non-increasing order:
Da1 ≥ Da2 ≥ . . . ≥ Dan

Db1
≥ Db2

≥ . . . ≥ Dbn

• Start with a1, compute ga1,bi, ∀bi
Start with a2, compute ga2,bi, ∀bi

...
whenever Dai +Dbj ≤ Maximum gain found so far (Quit!).

• Partition A = {a, b, c}: Da = 6; Db = 5; Dc = 3;
Partition B = {d, e, f}: Dd = 3; Df = 1; De = 0;
Compute g’s
gad = 3 → gaf = −1 → gae = 2
gbd = 0 → gbf = 4 → gbe = 1
gcd = 0 → No need to compute gcf (Quit!)
since Dc +Df ≤ gbf = 4.

• Note that the overall time complexity remains O(rn3).

15

Drawbacks of the Kernighan-Lin Heuristic

• The K-L heuristic handles only unit vertex weights.

– Vertex weights might represent block sizes, different from blocks to
blocks.

– Reducing a vertex with weight w(v) into a clique with w(v) vertices
and edges with a high cost increases the size of the graph substan-
tially.

• The K-L heuristic handles only exact bisections.

– Need dummy vertices to handle the unbalanced problem.

• The K-L heuristic cannot handle hypergraphs.

– Need to handle multi-terminal nets directly.

• The time complexity of a pass is high, O(n3).

16

Coping with Hypergraph

• A hypergraph H = (N,L) consists of a set N of vertices and a set L of
hyperedges, where each hyperedge corresponds to a subset Ni of distinct
vertices with |Ni| ≥ 2.

a

b

c

d

e

f

hyperedge

• Schweikert and Kernighan, “A proper model for the partitioning of elec-
trical circuits,” 9th Design Automation Workshop, 1972.

• For multi-terminal nets, net cut is a more accurate measurement for cut
cost (i.e., deal with hyperedges).

– {A,B,E}, {C,D, F} is a good partition.

– Should not assign the same weight for all edges.

17

A B C D

E F

net 1

net 2 net 3 net 4 net 5

A B C D

E F

cost = 1
cost = 4?

Net-Cut Model

• Let n(i) = # of cells associated with Net i.

• Edge weight wxy = 2
n(i)

for an edge connecting cells x and y.

A B C D

E F

net 1

net 2 net 3 net 4 net 5

A B C D

E F
1 1 1 1

1/2

1/2

cost = 2

cost = 2

• Easy modification of the K-L heuristic.

18

x y

A B

D : gain in moving x to Bx

yD : gain in moving y to A

g = D + D − Correction(x, y)xy x y

Network Flow Based Partitioning
• Min-cut balanced partitioning: Yang and Wong, ICCAD-94.

– Based on max-flow min-cut theorem.

P1

P2 P3

• Gate replication for partitioning: Yang and Wong, ICCAD-95.

• Performance-driven multiple-chip partitioning: Yang and Wong, FPGA’94,
ED&TC-95.

• Multi-way partitioning with area and pin constraints: Liu and Wong,
ISPD-97.

• Multi-resource partitioning: Liu, Zhu, and Wong, FPGA-98.

• Partitioning for time-multiplexed FPGAs: Liu and Wong, ICCAD-98.

19

Flow Networks

• A flow network G = (V,E) is a directed graph in which

each edge (u, v) ∈ E has a capacity c(u, v) > 0.

• There is exactly one node with no incoming (outgoing) edges,

called the source s (sink t).

• A flow f : V × V → R satisfies

– Capacity constraint: f(u, v) ≤ c(u, v), ∀u, v ∈ V .

– Skew symmetry: f(u, v) = −f(v, u), ∀u, v ∈ V .

– Flow conservation:
∑
v∈V f(u, v) = 0, ∀u ∈ V − {s, t}.

• The value of a flow f : |f | =
∑
v∈V f(s, v) =

∑
v∈V f(v, t)

20

• Maximum-flow problem: Given a flow network G with

source s and sink t, find a flow of maximum value from s

to t.

s

v1

v

v

v4

t

12/12

16/16 2

3

7/7

4/4

19/20

0/9
0/44/10

7/13

11/14

flow/capacity

X

max flow |f| = 16 + 7 = 23

X

Max-Flow Min-Cut

• A cut (X, X̄) of flow network G = (V,E) is a partition of V
into X and X̄ = V −X such that s ∈ X and t ∈ X̄.

– Capacity of a cut: cap(X, X̄) =
∑
u∈X,v∈X̄ c(u, v). (Count

only forward edges!)

• Max-flow min-cut theorem Ford & Fulkerson, 1956.

– f is a max-flow ⇐⇒ |f | = cap(X, X̄) for some min-cut
(X, X̄).

s

v1

v

v

v4

t

12/12

16/16 2

3

7/7

4/4

19/20

0/9
0/44/10

7/13

11/14

flow/capacity

X X

max flow |f| = 16 + 7 = 23
cap(X, X) = 12 + 7 + 4 = 23

21

Network Flow Algorithms

• An augmenting path p is a simple path from s to t with the
following properties:

– For every edge (u, v) ∈ E on p in the forward direction (a
forward edge), we have f(u, v) < c(u, v).

– For every edge (u, v) ∈ E on p in the reverse direction (a
backward edge), we have f(u, v) > 0.

• f is a max-flow ⇐⇒ no more augmenting path.

t

s

v1

v

v

v4

t

16

12
20

13

10 4

14

9 7

4

s

v1

v

v

v4

t

13

10 4

14

9 7

4

12/12
2

3

2

3

s

v1

v

v

v4

t

13

4
9

4

12/12

16/16 2

3

s

v1

v

v

v4

4
9

4

12/12

16/16 2

3

7/7 s

v1

v

v

v4

t4
9

12/12

16/16 2

3

7/7

4/4

s

v1

v

v

v4

t

12/12

16/16 2

3

7/7

4/4

12/16 12/20 16/20

4/7
4/10

4/14

19/20

0/9
0/44/10

7/13

11/14

19/20

11/14

4/10

7/13

19/20

7/14

3/13

4/10 tt

t

22

• First algorithm by Ford & Fulkerson in 1959: O(|E||f |); First

polynomial-time algorithm by Edmonds & Karp in 1969:

O(|E|2|V |); Goldberg & Tarjan in 1985: O(|E||V | lg(|V |2/|E|)),

etc.

Network Flow Based Partitioning

• Why was the technique not wisely used in partitioning?

– Works on graphs, not hypergraphs.

– Results in unbalanced partitions; repeated min-cut for bal-

ance: |V | max-flows, time-consuming!

• Yang & Wong, ICCAD-94.

– Exact net modeling by flow network.

– Optimal algorithm for min-net-cut bipartition (unbalanced).

– Efficient implementation for repeated min-net-cut: same

asymptotic time as one max-flow computation.

23

Min-Net-Cut Bipartition

• Net modeling by flow network:

v

v2

v1

v

v2

v1

1n n2 OO

OO

OO

OO

OO

OO 1

X X
X’ X’

• A min-net-cut (X, X̄) in N ⇐⇒ A min-capacity-cut (X ′, X̄ ′)
in N ′.

• Size of flow network: |V ′| ≤ 3|V |, |E′| ≤ 2|E|+ 3|V |.

• Time complexity: O(min-net-cut-size) ×|E| = O(|V ||E|).

24

OO

OO

OO

OO

OO

OO

X X
X’ X’

r

g

s
t r

b

d

c

1 2
1

b b

g

s

1 2
1

c c

1 2
1

d d

t

N N’

OO

OO
OO

OO

OO

OO

OO

OO

OO

Repeated Min-Cut for Balanced Bipartition

(FBB)

• Allow component weights to deviate from (1−ε)W/2 to (1+
ε)W/2.

a

b

s

i

t

j k

l

e
f

g

h

(X1, X1)

b

i

t

j k

l

e
f

g

h

s

2

(X2, X2)

b

i
t

j k

e
f

s

2
4

(X3, X3)

a

b

s

i

t

j k

l

e
f

g

h

(X3, X3)

An un−saturated net A saturated net A node to be collapsed to s or t

25

Incremental Flow

• Repeatedly compute max-flow: very time-consuming.

• No need to compute max-flow from scratch in each iteration.

• Retain the flow function computed in the previous iteration.

• Find additional flow in each iteration. Still correct.

• FBB time complexity: O(|V ||E|), same as one max-flow.

– At most 2|V | augmenting path computations.

∗ At each augmenting path computation, either an aug-

menting path is found, or a new cut is found, and at

least 1 node is collapsed to s or t.

∗ At most |f | ≤ |V | augmenting paths found, since bridg-

ing edges have unit capacity.

26

– An augmenting path computation: O(|E|) time.
b

i

t

j k

l

e
f

g

h

s

2

(X2, X2)

b

i
t

j k

e
f

s

2
4

(X3, X3)

