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Exams and Evaluation
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• Two tests, Mid sem and End sem.

• Two class tests / One class test + Quiz/ One class test + 
Assignments.

• Mid sem – 30%,  End sem – 50%,
class tests / class test + Quiz / class test + Assignments – 20%



Course Goals

• Learn to design and analyze state-of-the-art digital VLSI 
chips using CMOS technology

• Employ hierarchical design methods
• Understand design issues at the layout, transistor, logic 

and register-transfer levels
• Use integrated circuit cells as building blocks
• Use commercial design software in the lab

• Understand the complete design flow
• Not cover architecture, solid-state physics, analog design
• Superficial treatment of transistor functioning 



Digital VLSI Design Process – the general 
principle
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MOS Technology Trends
https://users.ece.utexas.edu~adnan>vlsi-07



Digital design process – the current trend
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• CAD tools are introduced in the process due to its
increased size and complexity.

• Designers want to standardize the design procedure, 
starting from the design idea to get the design 
implemented – the so called design flow.

• New CAD tools are based on Hardware description 
language(HDL) to improve the process.

• HDLs provide formats for representing the outputs of 
various design steps. An HDL based design 
automation(DA) tool transforms for its HDL input into 
an HDL which contains more hardware information.



Behavioral Design

Manufacturing

Hardware Description

Logic Design

Physical Design

Design Idea

Chip or Board

Flow Graph, Pseudo Code

Bus & Register Structure

Gate Wirelist, Netlist 

Transistor List, Layout

Digital Design 8



Behavioral Representation
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• Behavioral representation describes how a particular 
design should respond to a given set of inputs.

Behavior may be specified by
- boolean equations
- tables of input and output values
- algorithms written in standard high level 
computer language

- algorithms written in special hardware description
language



Behavioral representation -- example
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• A n-bit adder is constructed by cascading n 1-bit 
adders.
A 1-bit adder has
- two operand inputs A and B
- a carry input C
- a carry output CO
- a sum output S

The boolean equations that implement this function
S = A.~B.~C + ~A.~B.C + ~A.~C.B + A.B.C 
CO = A.B + A.C + B.C



An algorithmic level description of CO looks like
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module carry (co, a, b, c); 
output co;
input a, b, c;
assign

co = (a&b) | (a&c) | (b&c); 
endmodule

• To specify the timing behavior of the gate
module carry (co, a, b, c); 

output co;
input a, b, c;
wire # 10  co = (a&b) | (a&c) | (b&c);

endmodule



Boolean behavioral specification for CO
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primitive carry (co, a, b, c); 
output co;
input a, b, c;
table
// a  b c co

• 1 1 ? : 1 ;
1 ? 1 : 1 ;
? 1 1 : 1 ;
0 0 ? : 0 ;
0 ? 0 : 0 ;
? 0 0 : 0 ;

endtable
endprimitive



Structural Representation
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A structural representation specifies how components 
are interconnected to perform a certain function or 
achieve a designated behavior.
In general, the description is a list of modules and their 
interconnects – often called netlist.
At the structural level the levels of abstraction are

- the module level
- the gate level
- the switch level
- the circuit level

In each level more detail is revealed about the 
implementation.



add4

add add addadd

carry sum sumcarry sumcarry sumcarry
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Structural representation – example
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4-bit adder

module add4 (s, c4, ci, a, b); 
input [3:0] a, b;
input ci; 
output [3:0] s; 
output c4; 
wire [2:0] co;

add a0 (co[0], s[0], a[0], b[0], ci);
add a1 (co[1], s[1], a[1], b[1], co[0]);
add a2 (co[2], s[2], a[2], b[2], co[1]);
add a3 (c4, s[3], a[3], b[3], co[2]);

endmodule



module add (co, s, a, b, c);
input a, b, c; 
output s, co;

sum s1 (s, a, b, c);
carry c1 (co, a, b, c);

endmodule

module carry (co, a, b, c);
input a, b, c; 
output co; 
wire x, y, z;

and g1 (x, a, b);
and g2 (y, a, c);
and g3 (z, b, c);
or g4 (co, x, y, z); 

endmodule
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Physical Representation
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In an IC process , the lowest level of physical specification is the 
photo-mask information required by the various processing steps 
in the fabrication process.

At the module level, the physical layout for the 4-bit adder may be 
defined by a rectangle or polygon that specifies the outer boundary 
of all the geometry for the adder, set of submodules and collection 
of ports.

Each port corresponds to an I/O connection in the structural 
description.

The position, layer and width are also specified for each port.



ASIC Design Flow

Design Entry

Logic Synthesis

Floorplanning

Placement

Routing

Pre-layout 
Simulation

Post-layout 
Simulation

Circuit 
Extraction

Logical 
design 
(front-end 
CAD)

18

Physical 
design 
(back-end 
CAD)



FPGA Design Flow

Detailed (RTL) 
Design

Design 
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(Specifications)

Device
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Timing
Simulation

Synthesis &
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Functional 
Simulation



Design Specification

• What are the main design considerations?
– Design feasibility?

• Performance
• power consumption
• cost

– Design spec?
• Written (Document)
• Executable (C/C++, Behavioral VHDL, SystemVerilog)

– Implementation platform
• FPGA/ASIC ?
• Which FPGA/CPLD vendor?
• Which device family?

– Development time?



RTL Specification

• Determine I/O signals
– Standard interface, protocol, custom interface

• Partition design into functional blocks
– Datapath, Control logic, Memory, etc.

• Determine block interfaces
• Specify each block separately at RTL

– MUXs, counters, adders, flip-flops etc.



Detailed Design

• Choose the design entry method
– Schematic

• Intuitive & easy to debug
• Not portable

– HDL (Hardware Description Language), e.g. Verilog, VHDL, SystemC
• Requires some experience, harder to debug
• Descriptive & portable
• Easy to modify

– Mixed HDL & schematic
• Interpret the specifications
• Manage the design hierarchy

– Design partitioning
• Chip partitioning
• Logic partitioning

– Use vendor-supplied IP libraries to reduce design time
– Create & manage user-created libraries



Functional Simulation

• Preparation for simulation
– Generate simulation patterns

• Waveform entry
• HDL testbench

– Generate simulation netlist
• Functional simulation

– To verify the functionality of your design only
• Simulation results

– Waveform display
– Text output
– Self-checking testbench

• Challenge
– Sufficient & efficient test patterns



HDL Synthesis

• Synthesis = Translation + Optimization
– Translate HDL design files into gate-level netlist
– Optimize according to your design constraints

• Area constraints
• Timing constraints
• Power constraints

• Main challenges
– Learn synthesizable coding style
– Use proper design partitioning for synthesis
– Specify reasonable design constraints
– Use HDL synthesis tools efficiently



Design Implementation

• Implementation flow
– Netlist merging, flattening, data base building
– Design rule checking
– Logic optimization
– Block mapping & placement
– Net routing
– Configuration bitstream generation (FPGA only)
– Scan flip-flop insertion (ASIC only)

• Implementation results
– Design error or warnings
– Device utilization (FPGA)
– Die size (ASIC)
– Timing reports

• Challenge
– How to reach high performance & high utilization 

implementation?



Timing Simulation (optional)

• Post-layout simulation
• Includes component and wire delays, clock 

skew, setup and hold times
• Same input vectors with functional simulation
• Not necessary if Static Timing Analysis shows 

no problems



Device Programming (FPGA only)

• Choose the appropriate configuration scheme
– SRAM-based FPGA/CPLD devices

• Downloading the bitstream via a download cable
• Programming onto a non-volatile memory device & attaching it 

on the circuit board
– OTP, EPROM, EEPROM or Flash-based FPGA/CPLD

devices
• Using hardware programmer

• Finish the board design
• Program the device
• Challenge

– Board design
– System considerations



Testing (ASIC only)

• Find defects in chips that return from the 
foundry due to the manufacturing process

• Identify differences between 
specification/verification/prototyping and 
manufactured ASIC



Common pitfalls/important points
• Not detailed enough specifications

– Do not start design entry until all details are clear
– A poor design cannot be saved by good code and 

synthesis/implementation constraints
– Sometimes though, it is better to let the tool do the 

optimization (for example state machines)

• Always remember that you cannot prove a 
complex design has no bugs

• For complex designs, verification (simulation) 
and redesign is 80% of total design time!



Testing Basics

Defect: A difference between intended design and actual h/w 

Error: A wrong output produced through a defect

Fault: A defect in a higher abstraction level



Controllability and observability

• Controllability: The difficulty of setting a 
specific signal to 0 or 1

• Observability: The difficulty of reading a 
specific signal

• Electron beam testing is too expensive
• Must set signal through primary inputs and 

observe through primary outputs



Design For Testability (DFT)



Boundary scan

• In boundary scan, all flip-flops enter a test 
mode where they are controllable and 
observable

• After functional verification, normal flip-flops 
are replaced by scan flip-flops

• Only D flip-flops must be used
• Clocks must not be generated internally



Built-In Self-Test (BIST)



Design Methodology
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VLSI Design Styles
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• Programmable Logic Devices
• Standard Cell Based Design
• Full Custom Design



Programmable Logic Devices
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Programmable Logic Device Families

Source: Dataquest Logic

Standard 
Logic ASIC

Programmable
Logic Devices
(PLDs)

Gate 
Arrays

Cell-Based
ICs

Full Custom 
ICs

CPLDs
SPLDs
(PALs) FPGAs

Acronyms
SPLD = Simple Prog. Logic Device 
PAL = Prog. Array of Logic
CPLD = Complex PLD
FPGA = Field Prog. Gate Array
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Common Resources
Configurable Logic Blocks (CLB)

– Memory Look-Up Table
– AND-OR planes
– Simple gates

Input / Output Blocks (IOB)
– Bidirectional, latches, inverters, 

pullup/pulldowns
Interconnect or Routing

– Local, internal feedback, and global



What is FPGA?
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• Field Programmable Gate Arrays.
• Array of logic cells connected via routing 

channels.
• Special I/O cells.
• Logic cells are mainly lookup tables (LUT) 

with associated registers.
• Interconnection on SRAM basis or antifuse 

elements.



Basic Characteristics

Digital
Design
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• Performance
• Density and capacity
• Ease of use
• In-system programmability and in-circuit 

reprogrammability



Technology and Architecture Tradeoffs

• Antifuse elements
• High density
• Non volatile
• Not reprogrammable

Digital
Design
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CPLDs and FPGAs

Architecture PAL/22V10-like
More Combinational

Gate array-like
More Registers + RAM

Density Low-to-medium 
0.5-10K logic gates

Medium-to-high
1K to 500K system gates

Performance Predictable timing 
Up to 200 MHz today

Application dependent 
Up to 135MHz today

CPLD
Complex Programmable Logic Device

FPGA
Field-Programmable Gate Array

Digital
Design
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Xilinx FPGA Routing

• 1) Fast Direct Interconnect - CLB to CLB
• 2) General Purpose Interconnect - Uses switch matrix

CLB

CLB

CLB

CLB

Switch
Matrix

Switch
Matrix

Digital
Design
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Digital Design 39

Design Flow

XC4000XC4000 XC4000

3

Design Entry in schematic, ABEL, VHDL, 
and/or Verilog. Vendors include Synopsys, 
Aldec (Xilinx Foundation), Mentor, 
Cadence, Viewlogic, and 35 others.

Implementation includes Placement & 
Routing and bitstream generation using 
Xilinx’s M1 Technology. Also, analyze timing,

Download directly to the Xilinx 
hardware device(s) with 

unlimited reconfigurations* !!

1

2
view layout, and more.

M1 Technology



Altera FPGA Family
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• Altera Flex10K/10KE
– LEs (Logic elements) have 4-input LUTS (look-up tables)

+1 FF.
– Fast Carry Chain between LE’s, cascade chain for logic 

operations.
– Large blocks of SRAM available as well.

• Altera Max7000/Max7000A
– EEPROM based, very fast (Tpd = 7.5 ns).
– Basically a PLD architecture with programmable

interconnects.



Standard Cell Based Design

Digital
Design
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Introduction

Digital
Design
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• One of the most prevalent custom design 
styles.
– Also called semi-custom design style.
– Requires development of a full custom mask set.

• Basic idea:
– All of the commonly used logic cells are developed, 

characterized, and stored in a standard cell library.
– A typical library may contain a few hundred cells 

including inverters, NAND gates, NOR gates, 
complex AOI, OAI gates, D-latches, and flip-flops.



Contd.

Digital
Design
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– Each gate type can have multiple implementations 
to provide adequate driving capability for different 
fanouts.

• For instance, the inverter can have
– standard size transistors,
– double size transistors, and
– quadruple size transistors

• The chip designer can choose the proper size to 
achieve high circuit speed and layout density.



Characteristic of the Cells

Digital
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• Each cell is designed with a fixed height.
– To enable automated placement of the cells, and
– Routing of inter-cell connections.
– A number of cells can be abutted side-by-side to form rows.

• The power and ground rails typically run parallel to 
the upper and lower boundaries of the cell.
– Neighboring cells share a common power and ground bus.
– nMOS transistors are located closer to the ground rail while 

the pMOS transistors are placed closer to the power rail.

• The input and output pins are located on the upper and 
lower boundaries of the cell.



Layout of a Typical Standard Cell

Digital
Design
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Floorplan for Standard Cell Design

Digital
Design
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• Inside the I/O frame which is reserved for I/O 
cells, the chip area contains rows or columns of 
standard cells.
– Between cell rows are channels for dedicated inter-

cell routing.
– Over-the-cell routing is also possible.

• The physical design and layout of logic cells 
ensure that
– When placed into rows, their heights match.
– Neighboring cells can be abutted side-by-side, which 

provides natural connections for power and ground 
lines in each row.



Contd.

Digital
Design
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Contd.

Digital
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• After chip logic design is done using standard 
cells in the library:
– The most challenging task is to place individual cells 

into rows.
– Interconnect them in a way that meets stringent

design goals in
• circuit speed,
• chip area, and
• power consumption.

– Many advanced CAD tools for place-and-route have 
been developed and used to achieve the above goals.



Full Custom Design

Digital
Design
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Introduction

Digital
Design
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• The standard-cells based design is often called 
semi custom design.
– The cells are pre-designed for general use and the 

same cells are utilized in many different chip 
designs.

• In the full custom design, the entire mask 
design is done anew without use of any library.
– The development cost of such a design style is 

prohibitively high.
– The concept of design reuse is becoming popular in 

order to reduce design cycle time and cost.



Contd.
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• The most rigorous full custom design can be 
the design of a memory cell.
– Static or dynamic.
– Since the same layout design is replicated, there 

would not be any alternative to high density 
memory chip design.

• For logic chip design, a good compromise can 
be achieved by using a combination of different 
design styles on the same chip.
– Standard cells, data-path cells and PLAs.



Contd.

Digital
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• In real full-custom layout in which the
geometry, orientation and placement of every 
transistor is done individually by the designer,
– Design productivity is usually very low.

• Typically 10 to 20 transistors per day, per designer.

• In digital CMOS VLSI, full-custom design is 
rarely used due to the high labor cost.
– Exceptions to this include the design of high-volume 

products such as memory chips, high-performance 
microprocessors and FPGA masters.

• Next slide shows the full layout of the Intel 486
μP chip.
– Good example of a hybrid full-custom design.



Digital
Design
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System on a Chip

Source: ARM



Comparison Among Various Design Styles
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Design Style
FPGA Gate array Standard 

cell
Full 

custom
Cell size Fixed Fixed Fixed 

height
Variable

Cell type Program 
mable

Fixed Variable Variable

Cell placement Fixed Fixed In row Variable

Interconnections Program 
mable

Variable Variable Variable

Design time Very fast Fast Medium Slow



A Real Life Design Example 
(The 1st Digital Chip designed and

fabricated in Adv. VLSI Lab, IIT KGP)

Digital
Design

61

Standard Cell Based



Design of a Programmable Cellular 
Automata (CA) Sequence Generator

+ + +

CELL CELL CELL

A Cellular Automaton
Digital
Design
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D-Flip 
Flops

Combinational
Block



Behavioral Description
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• Data Width : 32 bits
• Programmable Cellular Automata for rule 90 

and 150
• Definition : Rule is the binary representation of 

the truth table of the boolean function 
represented by the CA.

• 3-neighbourhood CA
• Rule 90 : left^ right
• Rule 150 : left ^ self ^ right



Programmable CA

left self right

+

Rule 

Vector

Digital
Design
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Pin Diagram

• 32 bit input (Port ‘a’
: The rule vector)

• 32 bit output (Port 
‘b’ : The state output 
of CA)

• 2 bit control : control 
and control1

• Clock port : clk

Digital
Design
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Verilog Code (HDL Entry)
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module newca32(a,control,control1,b, clk); 
input [31:0] a;
wire [31:0] a;
input control,clk,control1; 
output [31:0] b;
reg [31:0] b;
reg [31:0] c,d,e; 
integer i;

always @(posedge clk) 
if(control && control1) c=a; 
always @(a)

d=a;



Verilog (Contd.)
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always @(d)
e[0]= (d[0]&c[0])^d[1];

always @(d)
for(i=1;i<31;i=i+1)

e[i]=d[i-1]^(d[i]&c[i])^d[i+1]; 
always @(d)

e[31]=d[30]^(d[31]&c[31]);
always @(posedge clk ) 

begin
if(~control && ~control1) 
begin

d=e;
b=e; 

end 
end

endmodule



Synthesized Netlist
(Using Synopsys Design Compiler)
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Zoomed In Picture of the Netlist

Standard Cells

Digital
Design
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Design Steps

Synthesis
(Synopsis)

Formal
Verification

Control Block

Netlist
Layout

(Synopsys)
Static Timing Analysis

(Cadence)
APR

(Cadence)
Extraction

(Verplex)

RTL model
Verilog



Need for transistors

Cannot make logic gates with voltage/current 
source, RLC components

Consider steady state behavior of L and C

Need a “switch”: something where a (small) 
signal can control the flow of another signal



Sli
de 
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A Brief History of MOS

Some of the events which led to the microprocessor

Photographs from “State of the Art: A photographic 
history of the integrated circuit,” Augarten, Ticknor & 
Fields, 1983.
They can also be viewed on the Smithsonian web site, 
http://smithsonianchips.si.edu/

https://users.ece.utexas.edu~adnan>vlsi-07



Lilienfeld patents

1930: “Method and apparatus 
for controlling electric 
currents”, U.S. Patent 
1,745,175

1933: “Device for controlling 
electric current”, U. S. Patent 
1,900,018



Bell Labs

1940: Ohl develops the PN Junction
1945: Shockley's laboratory established
1947: Bardeen and Brattain create point contact 

transistor (U.S. Patent 2,524,035)
Diagram from patent application



Bell Labs

1951: Shockley develops a junction transistor 
manufacturable in quantity (U.S. Patent 2,623,105)

Diagram from patent application



1950s – Silicon Valley

1950s: Shockley in Silicon Valley

1955: Noyce joins Shockley Laboratories

1954: The first transistor radio

1957: Noyce leaves Shockley Labs to form Fairchild with Jean Hoerni and 
Gordon Moore

1958: Hoerni invents technique for diffusing impurities into Si to build 
planar transistors using a SiO2 insulator

1959: Noyce develops first true IC using planar transistors, back-to-back PN 
junctions for isolation, diode-isolated Si resistors and SiO2 insulation with 
evaporated metal wiring on top



The Integrated Circuit

1959: Jack Kilby, working at TI, dreams up the 
idea of a monolithic “integrated circuit”

Components connected by hand‐soldered wires and isolated by 
“shaping”, PN‐diodes used as resistors (U.S. Patent 3,138,743)

Diagram from patent application



Integrated Circuits

1961: TI and Fairchild introduce the first 
logic ICs ($50 in quantity)

1962: RCA develops the first MOS transistor
RCA 16-transistor MOSFET ICFairchild bipolar RTL Flip-Flop



Computer-Aided Design

1967: Fairchild develops the “Micromosaic” IC using 
CAD

Final Al layer of interconnect could be customized for different applications

1968: Noyce, Moore leave Fairchild, start Intel



RAMs

1970: Fairchild introduces 256-bit Static RAMs
1970: Intel starts selling1K-bit Dynamic RAMs

Fairchild 4100 256-bit SRAM Intel 1103 1K-bit DRAM



The Microprocessor

1971: Intel introduces the 4004
General purpose programmable computer instead of custom chip for Japanese 
calculator company


