
VLSI System Design (CS60067)

1

Dipanwita Roy Chowdhury
Professor

Dept. of Computer Sc. & Engg.
IIT Kharagpur

Course Information

Instructor: Dipanwita Roy Chowhury
drc@cse.iitkgp.ac.in

Course TA : Tapadyoti Banerjee
tapadyoti@cse.iitkgp.ac.in

Books:

1. Weste and Eshraghian, Principles of CMOS VLSI Design: A Systems
Perspective, ADDISON WESLEY

2. Michael John Sevastian Smith, Application-Specific Integrated Circuits,
Pearson

Exams and Evaluation

VLSI Design 3

• Two tests, Mid sem and End sem.

• Two class tests / One class test + Quiz/ One class test +
Assignments.

• Mid sem – 30%, End sem – 50%,
class tests / class test + Quiz / class test + Assignments – 20%

Course Goals

• Learn to design and analyze state-of-the-art digital VLSI
chips using CMOS technology

• Employ hierarchical design methods
• Understand design issues at the layout, transistor, logic

and register-transfer levels
• Use integrated circuit cells as building blocks
• Use commercial design software in the lab

• Understand the complete design flow
• Not cover architecture, solid-state physics, analog design
• Superficial treatment of transistor functioning

Digital VLSI Design Process – the general
principle

VLSI Design 5

MOS Technology Trends
https://users.ece.utexas.edu~adnan>vlsi-07

Digital design process – the current trend

VLSI Design 7

• CAD tools are introduced in the process due to its
increased size and complexity.

• Designers want to standardize the design procedure,
starting from the design idea to get the design
implemented – the so called design flow.

• New CAD tools are based on Hardware description
language(HDL) to improve the process.

• HDLs provide formats for representing the outputs of
various design steps. An HDL based design
automation(DA) tool transforms for its HDL input into
an HDL which contains more hardware information.

Behavioral Design

Manufacturing

Hardware Description

Logic Design

Physical Design

Design Idea

Chip or Board

Flow Graph, Pseudo Code

Bus & Register Structure

Gate Wirelist, Netlist

Transistor List, Layout

Digital Design 8

Behavioral Representation

VLSI Design 9

• Behavioral representation describes how a particular
design should respond to a given set of inputs.

Behavior may be specified by
- boolean equations
- tables of input and output values
- algorithms written in standard high level
computer language

- algorithms written in special hardware description
language

Behavioral representation -- example

10

• A n-bit adder is constructed by cascading n 1-bit
adders.
A 1-bit adder has
- two operand inputs A and B
- a carry input C
- a carry output CO
- a sum output S

The boolean equations that implement this function
S = A.~B.~C + ~A.~B.C + ~A.~C.B + A.B.C
CO = A.B + A.C + B.C

An algorithmic level description of CO looks like

11

module carry (co, a, b, c);
output co;
input a, b, c;
assign

co = (a&b) | (a&c) | (b&c);
endmodule

• To specify the timing behavior of the gate
module carry (co, a, b, c);

output co;
input a, b, c;
wire # 10 co = (a&b) | (a&c) | (b&c);

endmodule

Boolean behavioral specification for CO

12

primitive carry (co, a, b, c);
output co;
input a, b, c;
table
// a b c co

• 1 1 ? : 1 ;
1 ? 1 : 1 ;
? 1 1 : 1 ;
0 0 ? : 0 ;
0 ? 0 : 0 ;
? 0 0 : 0 ;

endtable
endprimitive

Structural Representation

13

A structural representation specifies how components
are interconnected to perform a certain function or
achieve a designated behavior.
In general, the description is a list of modules and their
interconnects – often called netlist.
At the structural level the levels of abstraction are

- the module level
- the gate level
- the switch level
- the circuit level

In each level more detail is revealed about the
implementation.

add4

add add addadd

carry sum sumcarry sumcarry sumcarry

14

Structural representation – example

15

4-bit adder

module add4 (s, c4, ci, a, b);
input [3:0] a, b;
input ci;
output [3:0] s;
output c4;
wire [2:0] co;

add a0 (co[0], s[0], a[0], b[0], ci);
add a1 (co[1], s[1], a[1], b[1], co[0]);
add a2 (co[2], s[2], a[2], b[2], co[1]);
add a3 (c4, s[3], a[3], b[3], co[2]);

endmodule

module add (co, s, a, b, c);
input a, b, c;
output s, co;

sum s1 (s, a, b, c);
carry c1 (co, a, b, c);

endmodule

module carry (co, a, b, c);
input a, b, c;
output co;
wire x, y, z;

and g1 (x, a, b);
and g2 (y, a, c);
and g3 (z, b, c);
or g4 (co, x, y, z);

endmodule

16

Physical Representation

17

In an IC process , the lowest level of physical specification is the
photo-mask information required by the various processing steps
in the fabrication process.

At the module level, the physical layout for the 4-bit adder may be
defined by a rectangle or polygon that specifies the outer boundary
of all the geometry for the adder, set of submodules and collection
of ports.

Each port corresponds to an I/O connection in the structural
description.

The position, layer and width are also specified for each port.

ASIC Design Flow

Design Entry

Logic Synthesis

Floorplanning

Placement

Routing

Pre-layout
Simulation

Post-layout
Simulation

Circuit
Extraction

Logical
design
(front-end
CAD)

18

Physical
design
(back-end
CAD)

FPGA Design Flow

Detailed (RTL)
Design

Design
Ideas

(Specifications)

Device
Programming

Timing
Simulation

Synthesis &
Implementation

Functional
Simulation

Design Specification

• What are the main design considerations?
– Design feasibility?

• Performance
• power consumption
• cost

– Design spec?
• Written (Document)
• Executable (C/C++, Behavioral VHDL, SystemVerilog)

– Implementation platform
• FPGA/ASIC ?
• Which FPGA/CPLD vendor?
• Which device family?

– Development time?

RTL Specification

• Determine I/O signals
– Standard interface, protocol, custom interface

• Partition design into functional blocks
– Datapath, Control logic, Memory, etc.

• Determine block interfaces
• Specify each block separately at RTL

– MUXs, counters, adders, flip-flops etc.

Detailed Design

• Choose the design entry method
– Schematic

• Intuitive & easy to debug
• Not portable

– HDL (Hardware Description Language), e.g. Verilog, VHDL, SystemC
• Requires some experience, harder to debug
• Descriptive & portable
• Easy to modify

– Mixed HDL & schematic
• Interpret the specifications
• Manage the design hierarchy

– Design partitioning
• Chip partitioning
• Logic partitioning

– Use vendor-supplied IP libraries to reduce design time
– Create & manage user-created libraries

Functional Simulation

• Preparation for simulation
– Generate simulation patterns

• Waveform entry
• HDL testbench

– Generate simulation netlist
• Functional simulation

– To verify the functionality of your design only
• Simulation results

– Waveform display
– Text output
– Self-checking testbench

• Challenge
– Sufficient & efficient test patterns

HDL Synthesis

• Synthesis = Translation + Optimization
– Translate HDL design files into gate-level netlist
– Optimize according to your design constraints

• Area constraints
• Timing constraints
• Power constraints

• Main challenges
– Learn synthesizable coding style
– Use proper design partitioning for synthesis
– Specify reasonable design constraints
– Use HDL synthesis tools efficiently

Design Implementation

• Implementation flow
– Netlist merging, flattening, data base building
– Design rule checking
– Logic optimization
– Block mapping & placement
– Net routing
– Configuration bitstream generation (FPGA only)
– Scan flip-flop insertion (ASIC only)

• Implementation results
– Design error or warnings
– Device utilization (FPGA)
– Die size (ASIC)
– Timing reports

• Challenge
– How to reach high performance & high utilization

implementation?

Timing Simulation (optional)

• Post-layout simulation
• Includes component and wire delays, clock

skew, setup and hold times
• Same input vectors with functional simulation
• Not necessary if Static Timing Analysis shows

no problems

Device Programming (FPGA only)

• Choose the appropriate configuration scheme
– SRAM-based FPGA/CPLD devices

• Downloading the bitstream via a download cable
• Programming onto a non-volatile memory device & attaching it

on the circuit board
– OTP, EPROM, EEPROM or Flash-based FPGA/CPLD

devices
• Using hardware programmer

• Finish the board design
• Program the device
• Challenge

– Board design
– System considerations

Testing (ASIC only)

• Find defects in chips that return from the
foundry due to the manufacturing process

• Identify differences between
specification/verification/prototyping and
manufactured ASIC

Common pitfalls/important points
• Not detailed enough specifications

– Do not start design entry until all details are clear
– A poor design cannot be saved by good code and

synthesis/implementation constraints
– Sometimes though, it is better to let the tool do the

optimization (for example state machines)

• Always remember that you cannot prove a
complex design has no bugs

• For complex designs, verification (simulation)
and redesign is 80% of total design time!

Testing Basics

Defect: A difference between intended design and actual h/w

Error: A wrong output produced through a defect

Fault: A defect in a higher abstraction level

Controllability and observability

• Controllability: The difficulty of setting a
specific signal to 0 or 1

• Observability: The difficulty of reading a
specific signal

• Electron beam testing is too expensive
• Must set signal through primary inputs and

observe through primary outputs

Design For Testability (DFT)

Boundary scan

• In boundary scan, all flip-flops enter a test
mode where they are controllable and
observable

• After functional verification, normal flip-flops
are replaced by scan flip-flops

• Only D flip-flops must be used
• Clocks must not be generated internally

Built-In Self-Test (BIST)

Design Methodology

VLSI Design 35

VLSI Design Styles

VLSI Design 36

• Programmable Logic Devices
• Standard Cell Based Design
• Full Custom Design

Programmable Logic Devices

37

Programmable Logic Device Families

Source: Dataquest Logic

Standard
Logic ASIC

Programmable
Logic Devices
(PLDs)

Gate
Arrays

Cell-Based
ICs

Full Custom
ICs

CPLDs
SPLDs
(PALs) FPGAs

Acronyms
SPLD = Simple Prog. Logic Device
PAL = Prog. Array of Logic
CPLD = Complex PLD
FPGA = Field Prog. Gate Array

38

Common Resources
Configurable Logic Blocks (CLB)

– Memory Look-Up Table
– AND-OR planes
– Simple gates

Input / Output Blocks (IOB)
– Bidirectional, latches, inverters,

pullup/pulldowns
Interconnect or Routing

– Local, internal feedback, and global

What is FPGA?

VLSI Design 39

• Field Programmable Gate Arrays.
• Array of logic cells connected via routing

channels.
• Special I/O cells.
• Logic cells are mainly lookup tables (LUT)

with associated registers.
• Interconnection on SRAM basis or antifuse

elements.

Basic Characteristics

Digital
Design

40

• Performance
• Density and capacity
• Ease of use
• In-system programmability and in-circuit

reprogrammability

Technology and Architecture Tradeoffs

• Antifuse elements
• High density
• Non volatile
• Not reprogrammable

Digital
Design

41

CPLDs and FPGAs

Architecture PAL/22V10-like
More Combinational

Gate array-like
More Registers + RAM

Density Low-to-medium
0.5-10K logic gates

Medium-to-high
1K to 500K system gates

Performance Predictable timing
Up to 200 MHz today

Application dependent
Up to 135MHz today

CPLD
Complex Programmable Logic Device

FPGA
Field-Programmable Gate Array

Digital
Design

42

Xilinx FPGA Routing

• 1) Fast Direct Interconnect - CLB to CLB
• 2) General Purpose Interconnect - Uses switch matrix

CLB

CLB

CLB

CLB

Switch
Matrix

Switch
Matrix

Digital
Design

43

Digital Design 39

Design Flow

XC4000XC4000 XC4000

3

Design Entry in schematic, ABEL, VHDL,
and/or Verilog. Vendors include Synopsys,
Aldec (Xilinx Foundation), Mentor,
Cadence, Viewlogic, and 35 others.

Implementation includes Placement &
Routing and bitstream generation using
Xilinx’s M1 Technology. Also, analyze timing,

Download directly to the Xilinx
hardware device(s) with

unlimited reconfigurations* !!

1

2
view layout, and more.

M1 Technology

Altera FPGA Family

Digital
Design

45

• Altera Flex10K/10KE
– LEs (Logic elements) have 4-input LUTS (look-up tables)

+1 FF.
– Fast Carry Chain between LE’s, cascade chain for logic

operations.
– Large blocks of SRAM available as well.

• Altera Max7000/Max7000A
– EEPROM based, very fast (Tpd = 7.5 ns).
– Basically a PLD architecture with programmable

interconnects.

Standard Cell Based Design

Digital
Design

46

Introduction

Digital
Design

47

• One of the most prevalent custom design
styles.
– Also called semi-custom design style.
– Requires development of a full custom mask set.

• Basic idea:
– All of the commonly used logic cells are developed,

characterized, and stored in a standard cell library.
– A typical library may contain a few hundred cells

including inverters, NAND gates, NOR gates,
complex AOI, OAI gates, D-latches, and flip-flops.

Contd.

Digital
Design

48

– Each gate type can have multiple implementations
to provide adequate driving capability for different
fanouts.

• For instance, the inverter can have
– standard size transistors,
– double size transistors, and
– quadruple size transistors

• The chip designer can choose the proper size to
achieve high circuit speed and layout density.

Characteristic of the Cells

Digital
Design

49

• Each cell is designed with a fixed height.
– To enable automated placement of the cells, and
– Routing of inter-cell connections.
– A number of cells can be abutted side-by-side to form rows.

• The power and ground rails typically run parallel to
the upper and lower boundaries of the cell.
– Neighboring cells share a common power and ground bus.
– nMOS transistors are located closer to the ground rail while

the pMOS transistors are placed closer to the power rail.

• The input and output pins are located on the upper and
lower boundaries of the cell.

Layout of a Typical Standard Cell

Digital
Design

50

Floorplan for Standard Cell Design

Digital
Design

51

• Inside the I/O frame which is reserved for I/O
cells, the chip area contains rows or columns of
standard cells.
– Between cell rows are channels for dedicated inter-

cell routing.
– Over-the-cell routing is also possible.

• The physical design and layout of logic cells
ensure that
– When placed into rows, their heights match.
– Neighboring cells can be abutted side-by-side, which

provides natural connections for power and ground
lines in each row.

Contd.

Digital
Design

52

Contd.

Digital
Design

53

• After chip logic design is done using standard
cells in the library:
– The most challenging task is to place individual cells

into rows.
– Interconnect them in a way that meets stringent

design goals in
• circuit speed,
• chip area, and
• power consumption.

– Many advanced CAD tools for place-and-route have
been developed and used to achieve the above goals.

Full Custom Design

Digital
Design

54

Introduction

Digital
Design

55

• The standard-cells based design is often called
semi custom design.
– The cells are pre-designed for general use and the

same cells are utilized in many different chip
designs.

• In the full custom design, the entire mask
design is done anew without use of any library.
– The development cost of such a design style is

prohibitively high.
– The concept of design reuse is becoming popular in

order to reduce design cycle time and cost.

Contd.

Digital
Design

56

• The most rigorous full custom design can be
the design of a memory cell.
– Static or dynamic.
– Since the same layout design is replicated, there

would not be any alternative to high density
memory chip design.

• For logic chip design, a good compromise can
be achieved by using a combination of different
design styles on the same chip.
– Standard cells, data-path cells and PLAs.

Contd.

Digital
Design

57

• In real full-custom layout in which the
geometry, orientation and placement of every
transistor is done individually by the designer,
– Design productivity is usually very low.

• Typically 10 to 20 transistors per day, per designer.

• In digital CMOS VLSI, full-custom design is
rarely used due to the high labor cost.
– Exceptions to this include the design of high-volume

products such as memory chips, high-performance
microprocessors and FPGA masters.

• Next slide shows the full layout of the Intel 486
μP chip.
– Good example of a hybrid full-custom design.

Digital
Design

58

System on a Chip

Source: ARM

Comparison Among Various Design Styles

60

Design Style
FPGA Gate array Standard

cell
Full

custom
Cell size Fixed Fixed Fixed

height
Variable

Cell type Program
mable

Fixed Variable Variable

Cell placement Fixed Fixed In row Variable

Interconnections Program
mable

Variable Variable Variable

Design time Very fast Fast Medium Slow

A Real Life Design Example
(The 1st Digital Chip designed and

fabricated in Adv. VLSI Lab, IIT KGP)

Digital
Design

61

Standard Cell Based

Design of a Programmable Cellular
Automata (CA) Sequence Generator

+ + +

CELL CELL CELL

A Cellular Automaton
Digital
Design

62

D-Flip
Flops

Combinational
Block

Behavioral Description

Digital
Design

63

• Data Width : 32 bits
• Programmable Cellular Automata for rule 90

and 150
• Definition : Rule is the binary representation of

the truth table of the boolean function
represented by the CA.

• 3-neighbourhood CA
• Rule 90 : left^ right
• Rule 150 : left ^ self ^ right

Programmable CA

left self right

+

Rule

Vector

Digital
Design

64

Pin Diagram

• 32 bit input (Port ‘a’
: The rule vector)

• 32 bit output (Port
‘b’ : The state output
of CA)

• 2 bit control : control
and control1

• Clock port : clk

Digital
Design

65

Verilog Code (HDL Entry)

Digital
Design

66

module newca32(a,control,control1,b, clk);
input [31:0] a;
wire [31:0] a;
input control,clk,control1;
output [31:0] b;
reg [31:0] b;
reg [31:0] c,d,e;
integer i;

always @(posedge clk)
if(control && control1) c=a;
always @(a)

d=a;

Verilog (Contd.)

Digital
Design

67

always @(d)
e[0]= (d[0]&c[0])^d[1];

always @(d)
for(i=1;i<31;i=i+1)

e[i]=d[i-1]^(d[i]&c[i])^d[i+1];
always @(d)

e[31]=d[30]^(d[31]&c[31]);
always @(posedge clk)

begin
if(~control && ~control1)
begin

d=e;
b=e;

end
end

endmodule

Synthesized Netlist
(Using Synopsys Design Compiler)

25 September 2019 Digital Design 68

Zoomed In Picture of the Netlist

Standard Cells

Digital
Design

69

Design Steps

Synthesis
(Synopsis)

Formal
Verification

Control Block

Netlist
Layout

(Synopsys)
Static Timing Analysis

(Cadence)
APR

(Cadence)
Extraction

(Verplex)

RTL model
Verilog

Need for transistors

Cannot make logic gates with voltage/current
source, RLC components

Consider steady state behavior of L and C

Need a “switch”: something where a (small)
signal can control the flow of another signal

Sli
de
72

A Brief History of MOS

Some of the events which led to the microprocessor

Photographs from “State of the Art: A photographic
history of the integrated circuit,” Augarten, Ticknor &
Fields, 1983.
They can also be viewed on the Smithsonian web site,
http://smithsonianchips.si.edu/

https://users.ece.utexas.edu~adnan>vlsi-07

Lilienfeld patents

1930: “Method and apparatus
for controlling electric
currents”, U.S. Patent
1,745,175

1933: “Device for controlling
electric current”, U. S. Patent
1,900,018

Bell Labs

1940: Ohl develops the PN Junction
1945: Shockley's laboratory established
1947: Bardeen and Brattain create point contact

transistor (U.S. Patent 2,524,035)
Diagram from patent application

Bell Labs

1951: Shockley develops a junction transistor
manufacturable in quantity (U.S. Patent 2,623,105)

Diagram from patent application

1950s – Silicon Valley

1950s: Shockley in Silicon Valley

1955: Noyce joins Shockley Laboratories

1954: The first transistor radio

1957: Noyce leaves Shockley Labs to form Fairchild with Jean Hoerni and
Gordon Moore

1958: Hoerni invents technique for diffusing impurities into Si to build
planar transistors using a SiO2 insulator

1959: Noyce develops first true IC using planar transistors, back-to-back PN
junctions for isolation, diode-isolated Si resistors and SiO2 insulation with
evaporated metal wiring on top

The Integrated Circuit

1959: Jack Kilby, working at TI, dreams up the
idea of a monolithic “integrated circuit”

Components connected by hand‐soldered wires and isolated by
“shaping”, PN‐diodes used as resistors (U.S. Patent 3,138,743)

Diagram from patent application

Integrated Circuits

1961: TI and Fairchild introduce the first
logic ICs ($50 in quantity)

1962: RCA develops the first MOS transistor
RCA 16-transistor MOSFET ICFairchild bipolar RTL Flip-Flop

Computer-Aided Design

1967: Fairchild develops the “Micromosaic” IC using
CAD

Final Al layer of interconnect could be customized for different applications

1968: Noyce, Moore leave Fairchild, start Intel

RAMs

1970: Fairchild introduces 256-bit Static RAMs
1970: Intel starts selling1K-bit Dynamic RAMs

Fairchild 4100 256-bit SRAM Intel 1103 1K-bit DRAM

The Microprocessor

1971: Intel introduces the 4004
General purpose programmable computer instead of custom chip for Japanese
calculator company

