CMOS VLSI Design Fabrication and Layout

CMOS Fabrication

- CMOS transistors are fabricated on silicon wafer
- ☐ Lithography process similar to printing press
- On each step, different materials are deposited or etched
- Easiest to understand by viewing both top and cross-section of wafer in a simplified manufacturing process

Inverter Cross-section

- ☐ Typically use p-type substrate for nMOS transistor
 - Requires n-well for body of pMOS transistors
 - Several alternatives: SOI, twin-tub, etc.

Well and Substrate Taps

- ☐ Substrate must be tied to GND and n-well to V_{DD}
- Metal to lightly-doped semiconductor forms poor connection called Shottky Diode
- ☐ Use heavily doped well and substrate contacts / taps

Inverter Mask Set

- ☐ Transistors and wires are defined by *masks*
- ☐ Cross-section taken along dashed line

Detailed Mask Views

- Six masks
 - n-well
 - Polysilicon
 - n+ diffusion
 - p+ diffusion
 - Contact
 - Metal

Fabrication Steps

- ☐ Start with blank wafer
- ☐ Build inverter from the bottom up
- First step will be to form the n-well
 - Cover wafer with protective layer of SiO₂ (oxide)
 - Remove layer where n-well should be built
 - Implant or diffuse n dopants into exposed wafer
 - Strip off SiO₂

p substrate

Oxidation

- ☐ Grow SiO₂ on top of Si wafer
 - 900 1200 C with H₂O or O₂ in oxidation furnace

p substrate

SiO₂

Photoresist

- ☐ Spin on photoresist
 - Photoresist is a light-sensitive organic polymer
 - Softens where exposed to light

p substrate

Photoresist

SiO₂

Lithography

- ☐ Expose photoresist through n-well mask
- ☐ Strip off exposed photoresist

Photoresist SiO₂

p substrate

Etch

- ☐ Etch oxide with hydrofluoric acid (HF)
 - Seeps through skin and eats bone; nasty stuff!!!
- Only attacks oxide where resist has been exposed

Photoresist SiO₂

Fabrication and Layout

CMOS VLSI Design

Strip Photoresist

- ☐ Strip off remaining photoresist
 - Use mixture of acids called piranah etch
- Necessary so resist doesn't melt in next step

p substrate

Fabrication and Layout

CMOS VLSI Design

n-well

- n-well is formed with diffusion or ion implantation
- Diffusion
 - Place wafer in furnace with arsenic gas
 - Heat until As atoms diffuse into exposed Si
- ☐ Ion Implanatation
 - Blast wafer with beam of As ions
 - Ions blocked by SiO₂, only enter exposed Si

SiO₂

Strip Oxide

- Strip off the remaining oxide using HF
- Back to bare wafer with n-well
- Subsequent steps involve similar series of steps

n well

Fabrication and Layout

CMOS VLSI Design

Polysilicon

- Deposit very thin layer of gate oxide
 - < 20 Å (6-7 atomic layers)</p>
- Chemical Vapor Deposition (CVD) of silicon layer
 - Place wafer in furnace with Silane gas (SiH₄)
 - Forms many small crystals called polysilicon
 - Heavily doped to be good conductor

Polysilicon Patterning

☐ Use same lithography process to pattern polysilicon

CMOS VLSI Design

Slide 16

Fabrication and Layout

Self-Aligned Process

- ☐ Use oxide and masking to expose where n+ dopants should be diffused or implanted
- N-diffusion forms nMOS source, drain, and n-well contact

N-diffusion

- □ Pattern oxide and form n+ regions
- ☐ Self-aligned process where gate blocks diffusion
- □ Polysilicon is better than metal for self-aligned gates because it doesn't melt during later processing

Fabrication and Layout

CMOS VLSI Design

N-diffusion

- Historically dopants were diffused
- Usually ion implantation today
- But regions are still called diffusion

N-diffusion

☐ Strip off oxide to complete patterning step

Fabrication and Layout

CMOS VLSI Design

P-Diffusion

□ Similar set of steps form p+ diffusion regions for pMOS source and drain and substrate contact

Fabrication and Layout

CMOS VLSI Design

Contacts

- Now we need to wire together the devices
- ☐ Cover chip with thick field oxide
- Etch oxide where contact cuts are needed

Fabrication and Layout

CMOS VLSI Design

☐ Sputter on aluminum over whole wafer

Fabrication and Layout

☐ Pattern to remove excess metal, leaving wires

CMOS VLSI Design

Metal

Layout

- ☐ Chips are specified with set of masks
- Minimum dimensions of masks determine transistor size (and hence speed, cost, and power)
- \Box Feature size f = distance between source and drain
 - Set by minimum width of polysilicon
- ☐ Feature size improves 30% every 3 years or so
- □ Normalize for feature size when describing design rules
- \square Express rules in terms of $\lambda = f/2$
 - E.g. λ = 0.3 μ m in 0.6 μ m process

Set of Design Rules for Layout

(with 2 metal layers in an m-layer process)

- \Box Metal and Diffusion have minimum width and spacing of 4λ
- **Ontacts** are $2\lambda \times 2\lambda$ surrounded by 1λ above and below
- \Box Polysilicon uses a width of 2λ
- Polysilicon overlaps diffusion by 2λ where transistor is to be formed and a spacing of 1λ where no transistor
- Polysilicon and contacts have spacing of 3λ from other Polysilicon and contacts
- N-well surrounds pMOS transistors by 6λ and avoids nMOS transistors by 6λ
 - λ = *channel length*/2, e.g. λ = 0.3 μ m in 0.6 μ m process

Simplified Design Rules

Conservative rules to get you started

Inverter Layout

- ☐ Transistor dimensions specified as Width / Length
 - Minimum size is $4\lambda / 2\lambda$, sometimes called 1 unit
 - For 0.6 μ m process, W=1.2 μ m, L=0.6 μ m

Summary

- MOS Transistors are stack of gate, oxide, silicon
- ☐ Can be viewed as electrically controlled switches
- Build logic gates out of switches
- Draw masks to specify layout of transistors
- Now you know everything necessary to start designing schematics and layout for a simple chip!