Finite Fields

Introduction

- Finite fields have become increasingly important in cryptography.
- A number of cryptographic algorithms rely heavily on properties of finite fields, such as the AES, Elliptic Curve, IDEA, & various Public Key algorithms.
- Groups, rings, and fields are the fundamental elements of abstract algebra

Group

- A Group {G, .}a set of elements with a binary operation .
- Obeys the following axioms:
 - Closure: If a and b belong to G then a.b is also in G
 - associative law: (a.b).c = a.(b.c)
 - has identity e: e.a = a.e = a
 - has inverses a⁻¹: a.a⁻¹ = e
- if commutative a.b = b.a
 - then forms an abelian group

Cyclic Group

- define exponentiation as repeated application of operator
 - example: $a^3 = a.a.a$
- and let identity be: e=a⁰
- a group is cyclic if every element is a power of some fixed element
 - ie b = a^k for some a and every b in group
- a is said to be a generator of the group

Ring

- a set of elements with two operations (addition and multiplication) which form:
- an abelian group with addition operation
- and multiplication:
 - has closure
 - is associative
 - distributive over addition: a(b+c) = ab + ac
- if multiplication operation is commutative, it forms a commutative ring
- if multiplication operation has an identity and no zero divisors, it forms an integral domain

Field

- a set of elements with two operations which form **Integral Domain:**
 - Ring
 - Multiplicative identity
 - No zero divisors

Field:

• Multiplicative inverse:

there exists
$$a^{-1}$$
 in F, $(a)a^{-1} = (a^{-1})a = 1$

Divisors

- say a non-zero number b divides a if for some m have a=mb (a,b,m all integers)
- that is b divides into a with no remainder
- denote this b | a
- and say that b is a divisor of a
- eg. all of 1,2,3,4,6,8,12,24 divide 24

Modular Arithmetic

- Modulo operator "a mod n" is remainder when a is divided by n
- Congruent modulo n:
 - if $(a \mod n) = (b \mod n)$ then $a \equiv b \mod n$
 - when divided by *n*, a & b have same remainder
 - e.g. 13 mod 7 = 6; 41 mod 7 = $6 \rightarrow 13 \equiv 41 \mod 7$

b is called a residue of a mod n

- since with integers can always write: a = qn + b
- usually chose smallest positive remainder as residue
 - ie. o <= b <= n-1
- process is known as modulo reduction
 - eg. -12 mod 7 = -5 mod 7 = 2 mod 7 = 9 mod 7

Modular Arithmetic Operations

 Exhibits following three properties addition, subtraction & multiplication

- $(a+b) \mod n = [(a \mod n) + (b \mod n)] \mod n$
- $(a-b) \mod n = [(a \mod n) (b \mod n)] \mod n$
- $(axb) \mod n = [(a \mod n) \times (b \mod n)] \mod n$

Modular Arithmetic

- can do modular arithmetic with any group of integers: Z_n = {0, 1, ..., n-1}
- > form a commutative ring for addition
- > with a multiplicative identity
- note some peculiarities
 - if (a+b) = (a+c) mod nthen b = c mod n
 - but if (a.b) = (a.c) mod n
 then b = c mod n only if a is relatively prime to n

Modulo 8 Addition Example

+	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7	0
2	2	3	4	5	6	7	0	1
3	3	4	5	6	7	0	1	2
4	4	5	6	7	0	1	2	3
5	5	6	7	0	1	2	3	4
6	6	7	0	1	2	3	4	5
7	7	0	1	2	3	4	5	6

Modulo 8 Multiplication Example

X	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	5	7
	0							
	0							
4	0	4	0	4	0	4	0	4
5	0	5	2	7	4	1	0	3
6	0	6	4	2	0	6	4	2
7	0	7	6	5	4	3	2	1

Additive and Multiplicative Inverses Modulo 8

w	- w	W-1
0	0	-
1	7	1
2	6	-
3	5	3
4	4	-
5	3	5
6	2	-
7	1	7

Greatest Common Divisor (GCD)

- a common problem in number theory
- GCD (a,b) of a and b is the largest number that divides evenly into both a and b
 - eg GCD(60,24) = 12
- often want no common factors (except 1) and hence numbers are relatively prime
 - eg GCD(8,15) = 1
 - hence 8 & 15 are relatively prime

Euclidean Algorithm

- an efficient way to find the GCD(a,b)
- uses theorem that:
 - GCD(a,b) = GCD(b, a mod b)
- Euclidean Algorithm to compute GCD(a,b) is:

```
EUCLID(a,b)
1. A = a; B = b
2. if B = 0 return A = gcd(a, b)
3. R = A mod B
4. A = B
5. B = R
6. goto 2
```

Example GCD(1970,1066)

```
1970 = 1 \times 1066 + 904
                               gcd(1066, 904)
1066 = 1 \times 904 + 162
                               gcd(904, 162)
904 = 5 \times 162 + 94
                               gcd(162, 94)
162 = 1 \times 94 + 68
                               gcd(94, 68)
94 = 1 \times 68 + 26
                               gcd(68, 26)
68 = 2 \times 26 + 16
                               gcd(26, 16)
26 = 1 \times 16 + 10
                               gcd(16, 10)
16 = 1 \times 10 + 6
                               gcd(10, 6)
10 = 1 \times 6 + 4
                         gcd(6, 4)
6 = 1 \times 4 + 2
                               gcd(4, 2)
4 = 2 \times 2 + 0
                               gcd(2, 0)
```

Galois Fields

- finite fields play a key role in cryptography
- can show number of elements in a finite field must be a power of a prime pⁿ
- known as Galois fields
- denoted GF(pⁿ)
- in particular often use the fields:
 - **GF(p)**
 - $GF(2^n)$

Galois Fields GF(p)

- ➤ GF(p) is the set of integers {0,1, ..., p-1} with arithmetic operations modulo prime p
- these form a finite field
 - since have multiplicative inverses
- hence arithmetic is "well-behaved" and can do addition, subtraction, multiplication, and division without leaving the field GF(p)

GF(7) Multiplication Example

×	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5		1	6	4	2
6	0	6	5	4	3	2	1

Finding Inverses

EXTENDED EUCLID(m, b)

- 1. (A1, A2, A3)=(1, 0, m);(B1, B2, B3)=(0, 1, b)
- **2.** if B3 = 0

return A3 = gcd(m, b); no inverse

3. if B3 = 1

return B3 = gcd(m, b); B2 = $b^{-1} \mod m$

- 4. Q = A3 div B3
- 5. (T1, T2, T3)=(A1 QB1, A2 QB2, A3 QB3)
- 6. (A1, A2, A3)=(B1, B2, B3)
- 7. (B1, B2, B3)=(T1, T2, T3)
- 8. goto 2

Inverse of 550 in GF(1759)

Q	A1	A2	A3	B 1	B2	B3
- 	1	0	1759	0	1	550
3	0	1	550	1	-3	109
5	1	-3	109	-5	16	5
21	- 5	16	5	106	-339	4
1	106	-339	4	-111	355	1

Polynomial Arithmetic

can compute using polynomials

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0 = \sum a_i x^i$$

- nb. not interested in any specific value of x
- which is known as the indeterminate
- several alternatives available
 - ordinary polynomial arithmetic
 - poly arithmetic with coefficients mod p
 - poly arithmetic with coefficients mod p and polynomials mod m(x)

Ordinary Polynomial Arithmetic

- > add or subtract corresponding coefficients
- multiply all terms by each other
- > eg let $f(x) = x^3 + x^2 + 2$ and $g(x) = x^2 - x + 1$ $f(x) + g(x) = x^3 + 2x^2 - x + 3$ $f(x) - g(x) = x^3 + x + 1$ $f(x) \times g(x) = x^5 + 3x^2 - 2x + 2$

Polynomial Arithmetic with Modulo Coefficients

- when computing value of each coefficient do calculation modulo some value
 - forms a polynomial ring
- could be modulo any prime
- but we are most interested in mod 2
 - ie all coefficients are o or 1
 - eg. let $f(x) = x^3 + x^2$ and $g(x) = x^2 + x + 1$ $f(x) + g(x) = x^3 + x + 1$ $f(x) \times g(x) = x^5 + x^2$

Polynomial Division

- can write any polynomial in the form:
 - f(x) = q(x) g(x) + r(x)
 - can interpret r(x) as being a remainder
 - $r(x) = f(x) \mod g(x)$
- if have no remainder say g(x) divides f(x)
- if g(x) has no divisors other than itself & 1 say it is irreducible (or prime) polynomial
- arithmetic modulo an irreducible polynomial forms a field

Polynomial GCD

- can find greatest common divisor for polys
 - c(x) = GCD(a(x), b(x)) if c(x) is the poly of greatest degree which divides both a(x), b(x)
- can adapt Euclid's Algorithm to find it:

```
EUCLID[a(x), b(x)]
```

- 1. A(x) = a(x); B(x) = b(x)
- 2. if B(x) = o return A(x) = gcd[a(x), b(x)]
- 3. $R(x) = A(x) \mod B(x)$
- **4.** A(x) " B(x)
- **5.** B(x) " R(x)
- 6. goto 2

Modular Polynomial Arithmetic

- > can compute in field GF(2ⁿ)
 - polynomials with coefficients modulo 2
 - whose degree is less than n
 - hence must reduce modulo an irreducible poly of degree n (for multiplication only)
- > form a finite field
- > can always find an inverse
 - can extend Euclid's Inverse algorithm to find

Example GF(2³)

Table 4.6 Polynomial Arithmetic Modulo $(x^3 + x + 1)$

		000	001	010	011	100	101	110	111
	+	0	1	X	x + 1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
000	0	0	1	X	x+1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
001	1	1	0	x + 1	х	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^2 + x$
010	X	x	x + 1	0	1	$x^2 + x$	$x^2 + x + 1$	x^2	$x^2 + 1$
011	x + 1	x+1	x	1	0	$x^2 + x + 1$	$x^2 + x$	$x^2 + 1$	x^2
100	x^2	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$	0	1	х	x+1
101	$x^2 + 1$	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^{2} + x$	1	0	x + 1	X
110	$x^{2} + x$	$x^2 + x$	$x^2 + x + 1$	x^2	$x^2 + 1$	х	x + 1	0	1
111	$x^2 + x + 1$	$x^2 + x + 1$	$x^{2} + x$	$x^2 + 1$	x^2	x+1	x	1	0

(a) Addition

		000	001	010	011	100	101	110	111
	×	0	1	X	x + 1	x^2	$x^2 + 1$	$x^{2} + x$	$x^2 + x + 1$
000	0	0	0	0	0	0	0	0	0
001	1	0	1	X	x + 1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
010	X	0	x	x^2	$x^{2} + x$	x + 1	1	$x^2 + x + 1$	$x^2 + 1$
011	x + 1	0	x + 1	$x^2 + x$	$x^2 + 1$	$x^2 + x + 1$	x^2	1	X
100	x^2	0	x^2	x + 1	$x^2 + x + 1$	$x^2 + x$	x	$x^2 + 1$	1
101	$x^2 + 1$	0	$x^2 + 1$	1	x^2	x	$x^2 + x + 1$	x + 1	$x^2 + x$
110	$x^{2} + x$	0	$x^{2} + x$	$x^2 + x + 1$	1	$x^2 + 1$	x + 1	х	x^2
111	$x^2 + x + 1$	0	$x^2 + x + 1$	$x^2 + 1$	X	1	$x^{2} + x$	χ^2	x+1

Computational Considerations

- since coefficients are 0 or 1, can represent any such polynomial as a bit string
- addition becomes XOR of these bit strings
- multiplication is shift & XOR
 - long-hand multiplication
- modulo reduction done by repeatedly substituting highest power with remainder of irreducible poly (also shift & XOR)

Computational Example

- in $GF(2^3)$ have (x^2+1) is $101_2 \& (x^2+x+1)$ is 111_2
- so addition is
 - $(x^2+1) + (x^2+x+1) = x$
 - 101 XOR 111 = 010₂
- and multiplication is
 - $(x+1).(x^2+1) = x.(x^2+1) + 1.(x^2+1)$ = $x^3+x+x^2+1 = x^3+x^2+x+1$
 - 011.101 = 1111₂
- polynomial modulo reduction (get q(x) & r(x)) is
 - $(x^3+x^2+x+1) \mod (x^3+x+1) = 1.(x^3+x+1) + (x^2) = x^2$
 - 1111 mod 1011 = 1111 XOR 1011 = 0100₂

Using a Generator

- equivalent definition of a finite field
- a generator g is an element whose powers generate all non-zero elements
 - in F have 0, g⁰, g¹, ..., g^{q-2}
- can create generator from root of the irreducible polynomial
- then implement multiplication by adding exponents of generator