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Introduction
 A commonly used design for modern-day block ciphers 

is that of an iterated cipher:

 The cipher requires the specification of a round function
and a key schedule, and the encryption of a plaintext will 
proceed through Nr similar rounds.
 random key K: used to construct Nr round keys (also called 

subkeys), which are denoted K1,…,KNr.

 key schedule (K1,…,KNr): constructed from K using a fixed, public 
algorithm.

 round function g: takes two inputs: a round key (Kr) and a current 
state (wr-1). wr=g(wr-1,Kr) is the next state.

 plaintext x: the initial state w0.

 Ciphertext y: the state after all Nr rounds done.
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Introduction

 Encryption operations: Decryption operations:

Nr

NrNrNr

NrNrNr

wy

Kwgw

Kwgw

Kwgw

Kwgw

xw

















),(

),(

),(

),(

1

121

212

101

0



0

1110

2211

11

),(

),(

),(

wx

Kwgw

Kwgw

Kwgw

yw

NrNrNr

Nr



















Note: function g is injective 
(one-to-one)
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Substitution-Permutation Networks (SPN)

 Cryptosystem : SPN

 and Nr are positive integers

 is a permutation

 is a permutation. 

 , and consist of all 
possible key schedules that could be derived from an 
initial key K using the key scheduling algorithm.

 For a key schedule , we encrypt the 
plaintext x using .
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Substitution-Permutation Networks

 Algorithm : SPN
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ur : input to the S-boxes in round r.
vr : output of the S-boxes in round r.
wr : obtained from vr by applying πp .
ur+1 : constructed from wr by xor-ing

with the round key Kr+1 (called round 
key mixing).  
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Substitution-Permutation Networks
 Example :

 Suppose . 

 Let        be defined as follows, where the input and the output are 
written in hexadecimal:  e.g. input to Sbox: 0101  Output: 1111

Let       be defined as follows: output line 5 ids permuted to 2

See Figure for a pictorial representation of this particular SPN, where Sir

means i-th round, r-th S-box. 

4 Nrml
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Substitution-Permutation Networks

 Key schedule: suppose we begin with a 32-bit key 
. For , define Kr to consist 

of 16 consecutive bits of K, beginning with k4r-3.

 K= 0011 1010 1001 0100 1101 0110 0011 1111

 Round keys:

K1= 0011 1010 1001 0100

K2= 1010 1001 0100 1101

K3= 1001 0100 1101 0110

K4= 0100 1101 0110 0011

K5= 1101 0110 0011 1111

32

321 }1,0{),...,(  kkK 51  r
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Substitution-Permutation Networks

 Suppose the plaintext is x= 0010 0110 1011 0111.

 Then the encryption of x proceeds as follows:

w0= 0010 0110 1011 0111

K1= 0011 1010 1001 0100

u1= 0001 1100 0010 0011

v1= 0100 0101 1101 0001

w1= 0010 1110 0000 0111

K2= 1010 1001 0100 1101

u2= 1000 0111 0100 1010

v2= 0011 1000 0010 0110

w2= 0100 0001 1011 1000
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IIT Kharagpur, India



12

Substitution-Permutation Networks

K3= 1001 0100 1101 0110

u3= 1101 0101 0110 1110

v3= 1001 1111 1011 0000

w3= 1110 0100 0110 1110

K4= 0100 1101 0110 0011

u4= 1010 1001 0000 1101

v4= 0110 1010 1110 1001

K5= 1101 0110 0011 1111, and

y= 1011 1100 1101 0110

is the ciphertext.
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Linear Cryptanalysis

 We want to find a probability of linear relationship 
between a subset of plaintext bits and a subset of data 
bits preceding the last round. This relation behaves in a 
non-random fashion.

 known plaintext attack : The attacker has a lot of 
plaintext-ciphertext pairs.

 For each candidate subkey, we partially decrypt the 
cipher and check if the relation holds. If the relation 
holds then increment its corresponding counter. At the 
end, the candidate key that counts furthest from ½ is 
the most likely subkey.
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Linear Cryptanalysis

 The Piling-up Lemma
 Suppose X1, X2,… are independent random variables from {0,1}. And 

 The independence of Xi, Xj implies
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 Now consider    . 

 The bias of Xi is defined to be the quantity

 And we have 
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 Let denote the bias of .

 Piling-up lemma: Let denote the bias of the 
random variable . 

Then 

Corollary: Let denote the bias of the random 
variable . 

Suppose that for some j. Then .
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 Linear Approximations of S-boxes

 Consider an S-box .

 Let the input m-tuple be X=(x1,…,xm). And the output n-tuple be 
Y=(y1,…,yn).

 We can see that

 Now we can compute the bias of the form
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 Example : We use the S-box as Example.
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 Consider . The probability that 
can be determined by counting the number of rows in which 

,                      and then dividing by 16.

 It is seen that 

Hence, the bias is 0.

 If we instead analyze , we find that the bias 
is –3/8.
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 We can record the bias of all 28=256 possible random 
variables.

 We represent the relevant random variable in the form

where .

 We treat (a1,a2,a3,a4) and (b1,b2,b3,b4) as hexadecimal 
digit (they are called input sum and output sum, 
respectively)
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 Let NL(a,b) denote the number of binary eight-tuples 
(x1,x2,x3,x4,y1,y2,y3,y4) s.t 

and

The bias is computed as .

 The table of all NL is called the linear approximation 
table .
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Figure: Linear approximation table
values of NL(a,b)-8
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 Linear Attack on an SPN
 Linear cryptanalysis requires a set of linear approximations of 

S-boxes that can be used to derive a linear approximation of the 
entire SPN (excluding the last round).

 Figure illustrates the structure of the approximation we will 
use.

 Arrows are the random variables involved in the approximations 
and the labeled S-boxes (active S-boxes) are used in the 
approximations. 
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Figure: A linear 
approximation of an SPN
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 The approximation incorporates four active S-boxes:
 In S12, has bias ¼

 In S22, has bias -¼

 In S32, has bias -¼

 In S34, has bias -¼

 have biases that are high in absolute value. 
Further, we will see their XOR will lead to 
cancellations of “intermediate” random variables.

1

6

1

8

1

7

1

51 VUUUT 
2

8

2

6

2

62 VVUT 
3

8

3

6

3

63 VVUT 
3

16

3

14

3

144 VVUT 

4321 ,,, TTTT

Dept. of Computer Science & Engg.
IIT Kharagpur, India

Linear Cryptanalysis



26

 Using Piling-up lemma, has bias equal to 
23(1/4)(-1/4)3=-1/32.
 Note: we assume the four r.v are independent.

 Then can be expressed in terms of plaintext bits, 
bits of u4 (input to the last round) and key bits as follows:
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 XOR the right side and we get

 Then replace               by            and key bits:

 Now substitute them into 3.1:
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 The expression above only involves plaintext bits, bits of 
u4 and key bits.

 Suppose the key bits are fixed. Then 

has the (fixed) value 0 or 1.

 It follows that 

has bias -1/32 or 1/32 where the sign depends on the key 
bits (=0 or =1).
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 The fact that (3.3) has bias bounded away from 0 allows 
us to carry out linear attack.

 Suppose that we have T plaintext-ciphertext pairs 
(denoted by    ), all use the same unknown key, K. The 
attack will allow us to obtain the eight key bits,

 There are 28=256 possibilities for the eight key bits. We 
refer to a binary 8-tuple as a candidate subkey.
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 For each and for each candidate subkey, we 
compute a partial decryption of y and obtain the 
resulting value for    .

 Then we compute the value

 We maintain an array of counters indexed by the 256 
possible candidate subkeys, and increment the counter 
corresponding to a particular subkey when (3.4) has the 
value 0.

 In the end, we expect most counters will have a value 
close to T/2, but the correct candidate subkey will close 
to T/2±T/32.

),( yx

4

)4(

4

)2( ,uu

(3.4)                            4

16

4

14

4

8

4

6875 uuuuxxx 

Linear Cryptanalysis



31

 The attack is presented as Algorithm.
 L1 and L2 are hexadecimal value.

 is the inverse of the S-box. 

 The output, maxkey, contains the most likely subkey.

 In general, it is suggested that a linear attack based on a 
linear approximation having bias     will be successful if 
the number of plaintext-ciphertext pairs is 
approximately for some “small” constant c.
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Differential Cryptanalysis

 The main difference from linear attack is that 
differential attack involves comparing the XOR of two 
inputs to the XOR of the corresponding outputs.

 Differential attack is a chosen-plaintext attack.

 We consider inputs x and x* having a specified XOR 
value denoted by .

 We decrypt y and y* using all possible key and 
determine if their XOR has a certain value. Whenever it 
does, increment the corresponding counter. At the end, 
we expect the largest one is the most likely subkey.

*' xxx 
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 Definition:
 Let be an S-box. Consider an 

(ordered) pair of bitstrings of length m, say (x,x*). We 
say that the input XOR of the S-box is and 
the output XOR is .

For any,  define the set to consist of 
all the ordered pairs (x,x*) having input XOR equal to 
x’.

nm

S }1,0{}1,0{: 
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 It is easy to see that any set          contains 2m pairs, and 
that

 For each pair in         , we can compute the output XOR 
of the S-box. Then we can tabulate the distribution of 
output XORs. There are 2m output XORs which are 
distributed among 2n possible values.
 A non-uniform output distribution will be the basis for a 

successful attack.
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 Example:
 We use the same S-box as before. Suppose we consider input XOR 

x’=1011. Then 

 We compute the following table, where 
)}0100,1111(),...,1010,0001(),1011,0000{()1011( 
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x x* y y* y’

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100
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1110

1111
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0110

1100

0101

1001

0000

0111
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0011
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1111

0010
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0010
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1111

0010

1101
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0111

0010

0010

1101

0010

1111

0101

0000 0 1000 0

0001 0 1001 0

0010 8 1010 0

0011 0 1011 0

0100 0 1100 0

0101 2 1101 2

0110 0 1110 0

0111 2 1111 2

Number of output

Distribution table for x’=1011
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 In Example, only 5 of the 16 possible output XORs occur. It 
has a very non-uniform distribution.

 We can compute all possible input XORs as Example.

 Define 

 ND(x’,y’) counts the number of pairs with input XOR equal to x’
and output XOR equal to y’. (Figure)

|}'*)()(:)'(*),{(|)','( yxxxxxyxN SSD  
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Figure: Difference distribution table: values of ND(x’,y’)

Example 
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 An input XOR is computed as

 Therefore, the input XOR does not depend on the subkey bits used 
in round r; it is equal to the (permuted) output XOR of round r-1.

 Let a’ denote the input XOR and let b’ denote the output 
XOR. (a’,b’) is called a differential.
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 propagation ratio Rp(a’,b’):

 Rp(a’,b’) can be interpreted as a conditional probability:

 We combine differentials in consecutive rounds to form 
a differential trail. A particular differential trail is 
shown in Figure.
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Figure: A differential trail for 
a SPN
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 The differential attack arising from Figure uses the 
following propagation ratios of differentials:
 In      

 In      

 In      

 In      

 We therefore obtain a propagation ratio for a 
differential trail of the first three rounds of the SPN:
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 In other words,

with probability 27/1024. However,

Hence, it follows that

with probability 27/1024.

0000  0101  0101  0000)'(0000  0000  1011  0000' 3  vx
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0110  0000  0110  0000)'(0000  0000  1011  0000' 4  ux
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 Algorithm presents the attack algorithm.

 The input and output are similar to linear attack, except 
that      is a set (x,x*,y,y*), where x’ is fixed.

 Algorithm makes use of a certain filtering operation. 
Tuples (x,x*,y,y*) for which the differential holds are 
often called right pairs, and allow us to determine the 
key bits. 

A right pair has the form

Hence we consider those and .
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 A differential attack based on a differential trail having 
propagation ratio equal to      will often be successful if the 
number of tuples (x,x*,y,y*), which we denote by T, is 
approximately        , for a “small” constant c.
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