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Shannon’s Information Theory Paper

 “Mathematical Theory of Communication”, 
published in 1948

 Main claim: 

 All sources of data have a rate

 All channels have a capacity

 If the capacity is greater than the rate, transmission 
with no errors is possible

 Introduced concept of entropy of a random 
variable/process



Definition of a Cryptosystem: 

• A cryptosystem can be viewed as a distribution of 

plaintexts P, a set of ciphertexts C, a distribution of 

possible keys (K) and an encoding transformation, with 

its inverse (D).



Definition of Cryptosystem Modern 
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Shannon’s 1948 Paper
 Published one year after his monumental “information 

theory” paper

 “transformed cryptography from art to science”



Main Contributions
 Notions of theoretical security and practical 

security

 Observation that the secret is all in the key, not in 
the algorithm

 Product ciphers and mixing transformations –
inspiration for DES, AES and …………

 Proof that Vernam’s cipher (one-time pad) was 
theoretically secure



Theoretical and Practical Security



Theoretical and Practical Security

 Theoretically secure cryptosystems cannot be 
broken – even by an all-powerful adversary

 Practically secure cryptosystems “require a 
large amount of work to solve”

 Bad news:
 The only theoretically secure cryptosystem is the 

one-time pad
 The only practically secure cryptosystem is… the 

one-time pad



Shannon’s theory

 1949, “Communication theory of Secrecy 
Systems” in Bell Systems Tech. Journal.

 Two issues:

 What is the concept of perfect secrecy? Does there 
any cryptosystem provide perfect secrecy?

 It is possible when a key is used for only one 
encryption

 How to evaluate a cryptosystem when many 
plaintexts are encrypted using the same key?



Shannon’s 1949 Paper

 Approaches to evaluate the security of 
Cryptosystem

 Computational Security

 Provable Security

 Unconditional Security



Computational Security 

 Concerns the computational effort required to 
break a cryptosystem
Definition
A Cryptosystem is said to be computationally 
Secure if the best algorithm for breaking it 
requires atleast N  operations where N is some 
specified, very large number.
Problem - No known cryptosystem can be proved 
to be secure.
- Specific attack like Exhaustive Key Search     



Provable Security
Definition

A Cryptosystem is said to be provably Secure 
if the security of the system can be reduced to 
some well-studied problem that is considered 
to be difficult

Example “A given cryptosystem is secure if a 
given integer n cannot be factored”  

- relative not an absolute proof



Unconditional Security

Definition

A cryptosystem is said to be unconditionally secure 
if it cannot be broken, even with infinite 
computational resources.

- it cannot be studied from the point of view of 
computational complexity as we allow 
computation time is infinite

- can be studied  with Probability Theory



One-Time Pad
 Unconditional security !!!

 Described by Gilbert Vernam in 1917

 Use a random key that was truly as long as the 
message, no repetitions

nKCP )( 2 ),,( 1 nxxx  ),,( 1 nKKK 

2  mod  ),,()( 11 nnK KxKxxe  

2  mod  ),,()( 11 nnK KyKyyd  

For ciphertext ),,( 1 nyyy 



Example: one-time pad
 Given ciphertext with Vigenère Cipher: 

ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS

Decrypt by hacker 1:

CT: ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS

Key: pxlmvmsydofuyrvzwc tnlebnecvgdupahfzzlmnyih

PT:  mr mustard with the candlestick in the hall

Decrypt by hacker 2:

CT: ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS

Key:pftgpmiydgaxgoufhklllmhsqdqogtewbqfgyovuhwt

PT:miss scarlet with the knife in the library

Which one?



Problem with one-time pad
 Truly random key with arbitrary length?

 Distribution and protection of long keys

 The key has the same length as the plaintext!

 One-time pad was thought to be unbreakable, but 
there was no mathematical proof until Shannon 
developed the concept of perfect secrecy 30 years later.



Perfect secrecy 
 When we discuss the security of a cryptosystem, we 

should specify the type of attack that is being 
considered

 Ciphertext-only attack

 Unconditional security assumes infinite 
computational time

 Theory of computational complexity ×

 Probability theory ˇ



Perfect secrecy 
 Definition: A cryptosystem has perfect secrecy if 

Pr[x|y] = Pr[x] for all xP, yC

 Idea: Oscar can obtain no information about the 
plaintext by observing the ciphertext

Alice Bob

Oscar

x y





Discrete random variable
 Def: A discrete random variable, say X, consists of a 

finite set X and a probability distribution defined 
on X.

 The probability that the random variable X takes 
on the value x is denoted Pr[X=x] or Pr[x]

 0≤Pr[x] for all xX, 1]Pr[ 
Xx

x



Discrete random variable 

 Ex. Consider a coin toss to be a random variable 
defined on {head, tails} , the associated 
probabilities Pr[head]=Pr[tail]=1/2

 Ex. Throw a pair of dice. It is modeled by Z={(1,1), 
(1,2), …, (2,1), (2,2), …, (6,6)}

where Pr[(i,j)]=1/36 for all i, j.

sum=4 corresponds to {(1,3), (2,2), (3,1)} with 
probability 3/36



Joint and conditional probability

 X and Y are random variables defined on finite sets X
and Y, respectively.

 Def: the joint probability Pr[x, y] is the probability 
that X=x and Y=y

 Def: the conditional probability Pr[x|y] is the 
probability that X=x given Y=y

Pr[x, y] =Pr[x|y]Pr[y]= Pr[y|x]Pr[x]



Bayes’ theorem

 If Pr[y] > 0, then

 Ex. Let X denote the sum of two dice.

Y is a random variable on {D, N},  Y=D if the two 
dice are the same. (double)
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Definitions
 Assume a cryptosystem (P,C,K,E,D) is specified, 

and a key is used for one encryption

 Plaintext is denoted by random variable x

 Key is denoted by random variable K

 Ciphertext is denoted by random variable y

Plaintext Ciphertext

x y

K



Perfect secrecy
 Definition: A cryptosystem has perfect secrecy if 

Pr[x|y] = Pr[x] for all xP, yC

 Idea: Oscar can obtain no information about the 
plaintext by observing the ciphertext

Alice Bob

Oscar

x y



Relations among x, K, y

 Ciphertext is a function of x and K

 y is the ciphertext, given that x is the plaintext
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Relations among x, K, y
 x is the plaintext, given that y is the ciphertext 
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Ex. Shift cipher has perfect secrecy 

 Shift cipher: P=C=K=Z26 , encryption is defined as

 Ciphertext: 
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Ex. Shift cipher has perfect secrecy 

 Pr[y|x]

 Apply Bayes’ theorem
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Perfect secrecy when |K|=|C|=|P|

 (P,C,K,E,D) is a cryptosystem where 
|K|=|C|=|P|. 

 The cryptosystem provides perfect secrecy iff

 every keys is used with equal probability 1/|K|

 For every xP, yC, there is a unique key K such 
that 

Ex. One-time pad in Z2

yxeK )(





Product Cryptosystems

 Different cryptosystems can be combined to create 
a new cryptosystem.

 Given two cryptosystems with the same message 
space, consider a probabilistic combination of the 
two systems: with probability p use system A, 
otherwise use system B.



Product Cryptosystems

 Another way to use two cryptosystems is to 
encrypt and decrypt messages consecutively. We 
call this a product cipher.

 He believes that a combination of an initial 
transposition (Permutation) with alternating 
substitutions and linear operations may do the 
trick.

 Both DES and AES use Shannon’s ideas of 
Product System and of type Substitution 
Permutation Network (SPN).



Conventional Encryption Principles

 Basic ingredients of the scheme:

a) Plaintext (P)
 Message to be encrypted

b) Secret Key (K)
 Shared among the two parties

c) Ciphertext (C)
 Message after encryption

d) Encryption algorithm
 Uses P and K

e) Decryption algorithm
 Uses C and K



Types of algorithms
 Private Key : The encryption key and decryption key 

are easily derivable from each other 
 Block Cipher    : Fixed blocks of data

 Stream Cipher  : Block Size = 1

 Public Key : Infeasible to determine the decryption 
key, d from the encryption key, e.



 Security of the scheme

 Depends on the secrecy of the key

 Does not depend on the secrecy of the algorithm

 Assumptions that we make:

 Algorithms for encryption/decryption are known 
to the public

 Keys used are kept secret



Simplified Model of Encryption/Decryption

Encryption

Algorithm

Decryption 

Algorithm
Plaintext

P

Plaintext

P
Ciphertext C

Shared Key K Shared Key K



Example

Let P = {a,b} with Pr[a] = ¼, Pr[b] = ¾.

Let K = {k1, k2, k3} with Pr[k1] = ½, Pr[k2] = Pr[k3] = ¼.

Let C= {1, 2, 3, 4} and encryption function is

ek1(a) = 1, ek1(b) = 2, 

ek2(a) = 2,  ek2(b) = 3, 

ek3(a) = 3,  ek3(b) = 4, 

Pr[1] = 1/8, Pr[2] 7/16, Pr[3] =1/4, Pr[4] = 3/16

Pr[a/1] = 1, Pr[a/2] = 1/7,  Pr[a/3] = 1/4, Pr[a/4] = 0, 

Pr[b/1] = 0, Pr[b/2] = 6/7,  Pr[b/3] = 3/4, Pr[b/4] = 1, 


