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RSA Security
➢ possible approaches to attacking RSA are:

⚫ brute force key search (infeasible given size of 
numbers)

⚫ mathematical attacks (based on difficulty of 
computing ø(n), by factoring modulus n)

⚫ Side channel attacks (on running of decryption)

⚫ chosen ciphertext attacks (given properties of 
RSA)



Factoring Problem
➢ mathematical approach takes 3 forms:

⚫ factor n=p.q, hence compute ø(n) and then d

⚫ determine ø(n) directly and compute d

⚫ find d directly [e.d = 1 (mod ø(n))]

➢ currently believe all equivalent to factoring

⚫ have seen slow improvements over the years 

• as of May-05 best is 200 decimal digits (663) bit with 
LS 

⚫ 1024 bit RSA is no more secure

⚫ currently assume 2048-4096 bit RSA is secure

• ensure p, q of similar size and matching other 
constraints



Chosen Ciphertext Attacks
• RSA is vulnerable to a Chosen Ciphertext Attack 

(CCA).

 - Adversary chooses a number of ciphertexts and is 
then given the corresponding plaintexts, decrypted 
with the target’s private key. 

 - The adversary exploits properties of RSA and selects 
blocks of data that, when processed using the target’s 
private key, yield information needed for cryptanalysis.

 - Can counter simple attacks with random pad of 
plaintext. More sophisticated variants need to modify 
the plaintext using a procedure known as optimal 
asymmetric encryption padding (OAEP).
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Textbook RSA is insecure

 Textbook RSA encryption:

 public key:   (N,e) Encrypt:   C = Me (mod N)

 private key:  d Decrypt:   Cd = M (mod N)

(M  ZN
* )

 Completely insecure cryptosystem:

 Does not satisfy basic definitions of security.

 Many attacks exist.
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A simple attack on textbook RSA

 Session-key  K is 64 bits.     View   K  {0,…,264}
 Eavesdropper sees:    C = Ke (mod N) .

 Suppose   K = K1K2 where   K1, K2 < 234 .   (prob. 20%)

Then:    C/K1
e = K2

e (mod N)

 Build table:   C/1e, C/2e, C/3e, …, C/234e .   time:  234

For  K2 = 0,…, 234 test if  K2
e is in table.   time: 23434

 Attack time:   240  << 264

Sender Receiver

CLIENT HELLO

SERVER HELLO (e,N)

C=RSA(K)

Random
session-
key K
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Attack on RSA by Re-encryption

 Property of RSA encryption:

 For each M there exists a unique number k called the 
iteration exponent or period of M such that 

Ck+1 = C0, where Ck+1 = Ck
e (mod N) and C0= M

 Efficiently applied only for relatively small p, q and e

 Attack Principle:

 Attacker has to re-encrypt (as encryption exponent and 
the modulus are public)

 Iterate the encryption step on each new cipher text, until 
the message is recovered
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Practical RSA 

 Resulting value is RSA encrypted

 Widely deployed in communications for portable 
wireless systems 

 Coppersmith “Short Pad Attack” that exploit random 

padding to determine M

02 random pad FF msg

1024 bits

16 bits
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Attacks on RSA using Low-exponent
 Commonly chosen exponent e for practical implementation of 

RSA:

 e = 21 + 1 = 3,   e = 24 + 1 = 17,   or e = 216 + 1 = 65537 

 Eve sees k cipher texts M
e

(mod Ni)

 To uniquely decipher the message the following condition must 
hold

M < Ni for i = 1, 2, …, k and so M
e

< N1. N2. … Nk.

If the Ni are relatively prime, Eve can compute M
e

(mod N1. N2. … 
Nk), where e < k using Chinese Remainder Theorem. Then she has 
a perfect integer power over the integers, namely M

e  

She can calculate eth root and recover M. Alternately, Eve can 
factor the Ni’s and compute M

To avoid this attack, a large encryption e must be selected
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Improving RSA’s performance

 To speed up RSA decryption use 

small private key  d. Cd = M  (mod N)

 Wiener87: if   d < N0.25 then RSA is insecure

 Wiener 90:  method to find decryption key when a 
small d is used

 Decryption key  d  can be found from  (N,e).

 Small   d   should never be used
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Wiener’s attack

 Theorem:

Let N = pq with q < p < 2q.  Let d  < (1/3 )(N ) ¼ . 

Given (n, e) such that ed ≡ 1  (mod (N) ) then an 
attacker   can efficiently recover d.
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Wiener’s attack
 Sketch: ed = 1  (mod (N) )

  kZ :     ed = k(N) + 1 



(N) = N-p-q+1     |N- (N)|  p+q  3N

d  N0.25/3    

Continued fraction expansion of  e/N  gives  k/d.

ed = 1 (mod k)    gcd(d,k)=1

e
(N) 

k
d 

- 
1
d(N) 

e
N 

k
d 

- 
1
2d2
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Prime Recognition and Factorization

 The key problems for the development of RSA 
cryptosystem are that of prime recognition and integer 
factorization.

 August 2002 first polynomial time algorithm has been 
discovered that allows to determine whether a given m bit 
integer is a prime. Algorithm works in time O(m12).

 Fast randomized algorithms for prime recognition has 
been known since 1977. One of the simplest one is due to 
Rabin.
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Integer Factorization

• No polynomial time classical algorithm is known.

• Simple, but not efficient factorization algorithms are 
known.

• Several sophisticated distributed factorization algorithms 
are known that allowed to factorize, using enormous 
computation power, surprisingly large integers.

• Progress in integer factorization, due to progress in 
algorithms and technology, has been recently enormous.

• Polynomial time quantum algorithms for integer 
factorization are known since 1994 (P. Shor).
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Pollard’s p-1 Factoring Algorithm

 Principle: 

n is the product of two large primes p and q.

The number (p-1) is uniquely expressible as the product of 
prime powers.

p-1 = p1
a1 . p2

a2 … ps
as , where p1 , p2 … . ps are the distinct 

primes dividing (p-1). 

Thus no two of p1
a1 . p2

a2 … ps
as are equal

We assume that p1
a1 < p2

a2 < … < ps
as and also assume that ps

as

is less than or equal to some small number B.

Then,  pi
ai is less than or equal to B, for 1 ≤ i ≤ s
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Pollard’s p-1 Factoring Algorithm
 Pick some integer t that is a multiple of all integers less than 

or equal to B, t = factorial(B). Or choose t to be the LCM of {1, 
2, 3 …. B}

 Choose the integer x randomly, with n-2 >  x  > 2

 Calculate y = xt by repeated squaring

 Let d be the gcd of (xt -1)  and n 

 We have that d divides n. we can guarantee that d > 1. This 
means that unless (xt -1) is a multiple of n, d is a proper factor 
of n.
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Pollard’s p-1 Factoring Algorithm

 Any two of the numbers p1
a1 . p2

a2 … ps
as are relatively prime 

and each is less than B.

 By choice, their product (p-1) divides t. so, t = v(p-1).

 Therefore, xt = xv(p-1)

 By Fermat’s Little Theorem, (x(p-1))v = 1 (mod p). 

Thus, xt = 1 (mod p). Therefore, p divides  (xt -1), and p 
divides n.

Now, d = gcd of ((xt -1), n ), it follows that p divides d.

This means that we have factored n.

Ref: Pollard 74, Lenstra 87 with Elliptic Curves.
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Pollard’s p-1 Factoring Algorithm

 Example:

Let n = 2117, B = 7

Then  choose t as LCM of { 1, 2, 3, 4, 5, 6, 7} = 420

Choose x = 2 (randomly)

Then 2420 (mod 2117) = 1451, thus, y = 1451

So, d= gcd(y-1, n) = gcd(1450, 2117) = 29.

It follows that n = 29.73
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Implementation attacks

 Attack the implementation of RSA.

 Timing attack:  (Kocher 97)
The time it takes to compute   Cd (mod N)
can expose   d.

 Power attack:  (Kocher 99)
The power consumption of a smartcard while 
it is computing  Cd (mod N)   can expose  d.

 Faults attack:  (BDL 97)
A computer error during   Cd (mod N)  
can expose   d.      



Timing Attacks
➢ developed by Paul Kocher in mid-1990’s

➢ exploit timing variations in operations
⚫ eg. multiplying by small vs large number 

⚫ or IF's varying which instructions executed

➢ infer operand size based on time taken 

➢ RSA exploits time taken in exponentiation

➢ countermeasures
⚫ use constant exponentiation time

⚫ add random delays

⚫ blind values used in calculations
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Key lengths

 Security of public key system should be comparable to 
security of block cipher.

NIST:

Cipher key-size Modulus size

 64 bits 512 bits.

80 bits 1024 bits

128 bits 3072 bits.

256 bits (AES) 15360 bits 

 High security   very large moduli.



Private-key versus public-key cryptography

• The prime advantage of public-key cryptography is increased 
security.

• Public key cryptography is not meant to replace secret-key 
cryptography, but rather to supplement it, to make it more secure.

• Example: RSA and DES are usually combined as follows

1. The message is encrypted with a random DES key

2. DES-key is encrypted with RSA

3. DES-encrypted message and RSA-encrypted DES-key are sent.

• In software (hardware) DES is generally about 100 (1000) times faster 
than RSA.

• If n users communicate with secrete-key cryptography, they need

n (n - 1) / 2 keys. In the case they use public key cryptography 2n keys are 
sufficient.


