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RSA Security
➢ possible approaches to attacking RSA are:

⚫ brute force key search (infeasible given size of 
numbers)

⚫ mathematical attacks (based on difficulty of 
computing ø(n), by factoring modulus n)

⚫ Side channel attacks (on running of decryption)

⚫ chosen ciphertext attacks (given properties of 
RSA)



Factoring Problem
➢ mathematical approach takes 3 forms:

⚫ factor n=p.q, hence compute ø(n) and then d

⚫ determine ø(n) directly and compute d

⚫ find d directly [e.d = 1 (mod ø(n))]

➢ currently believe all equivalent to factoring

⚫ have seen slow improvements over the years 

• as of May-05 best is 200 decimal digits (663) bit with 
LS 

⚫ 1024 bit RSA is no more secure

⚫ currently assume 2048-4096 bit RSA is secure

• ensure p, q of similar size and matching other 
constraints



Chosen Ciphertext Attacks
• RSA is vulnerable to a Chosen Ciphertext Attack 

(CCA).

 - Adversary chooses a number of ciphertexts and is 
then given the corresponding plaintexts, decrypted 
with the target’s private key. 

 - The adversary exploits properties of RSA and selects 
blocks of data that, when processed using the target’s 
private key, yield information needed for cryptanalysis.

 - Can counter simple attacks with random pad of 
plaintext. More sophisticated variants need to modify 
the plaintext using a procedure known as optimal 
asymmetric encryption padding (OAEP).
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Textbook RSA is insecure

 Textbook RSA encryption:

 public key:   (N,e) Encrypt:   C = Me (mod N)

 private key:  d Decrypt:   Cd = M (mod N)

(M  ZN
* )

 Completely insecure cryptosystem:

 Does not satisfy basic definitions of security.

 Many attacks exist.
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A simple attack on textbook RSA

 Session-key  K is 64 bits.     View   K  {0,…,264}
 Eavesdropper sees:    C = Ke (mod N) .

 Suppose   K = K1K2 where   K1, K2 < 234 .   (prob. 20%)

Then:    C/K1
e = K2

e (mod N)

 Build table:   C/1e, C/2e, C/3e, …, C/234e .   time:  234

For  K2 = 0,…, 234 test if  K2
e is in table.   time: 23434

 Attack time:   240  << 264

Sender Receiver

CLIENT HELLO

SERVER HELLO (e,N)

C=RSA(K)

Random
session-
key K
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Attack on RSA by Re-encryption

 Property of RSA encryption:

 For each M there exists a unique number k called the 
iteration exponent or period of M such that 

Ck+1 = C0, where Ck+1 = Ck
e (mod N) and C0= M

 Efficiently applied only for relatively small p, q and e

 Attack Principle:

 Attacker has to re-encrypt (as encryption exponent and 
the modulus are public)

 Iterate the encryption step on each new cipher text, until 
the message is recovered
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Practical RSA 

 Resulting value is RSA encrypted

 Widely deployed in communications for portable 
wireless systems 

 Coppersmith “Short Pad Attack” that exploit random 

padding to determine M

02 random pad FF msg

1024 bits

16 bits
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Attacks on RSA using Low-exponent
 Commonly chosen exponent e for practical implementation of 

RSA:

 e = 21 + 1 = 3,   e = 24 + 1 = 17,   or e = 216 + 1 = 65537 

 Eve sees k cipher texts M
e

(mod Ni)

 To uniquely decipher the message the following condition must 
hold

M < Ni for i = 1, 2, …, k and so M
e

< N1. N2. … Nk.

If the Ni are relatively prime, Eve can compute M
e

(mod N1. N2. … 
Nk), where e < k using Chinese Remainder Theorem. Then she has 
a perfect integer power over the integers, namely M

e  

She can calculate eth root and recover M. Alternately, Eve can 
factor the Ni’s and compute M

To avoid this attack, a large encryption e must be selected
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Improving RSA’s performance

 To speed up RSA decryption use 

small private key  d. Cd = M  (mod N)

 Wiener87: if   d < N0.25 then RSA is insecure

 Wiener 90:  method to find decryption key when a 
small d is used

 Decryption key  d  can be found from  (N,e).

 Small   d   should never be used
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Wiener’s attack

 Theorem:

Let N = pq with q < p < 2q.  Let d  < (1/3 )(N ) ¼ . 

Given (n, e) such that ed ≡ 1  (mod (N) ) then an 
attacker   can efficiently recover d.
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Wiener’s attack
 Sketch: ed = 1  (mod (N) )

  kZ :     ed = k(N) + 1 



(N) = N-p-q+1     |N- (N)|  p+q  3N

d  N0.25/3    

Continued fraction expansion of  e/N  gives  k/d.

ed = 1 (mod k)    gcd(d,k)=1

e
(N) 

k
d 

- 
1
d(N) 

e
N 

k
d 

- 
1
2d2
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Prime Recognition and Factorization

 The key problems for the development of RSA 
cryptosystem are that of prime recognition and integer 
factorization.

 August 2002 first polynomial time algorithm has been 
discovered that allows to determine whether a given m bit 
integer is a prime. Algorithm works in time O(m12).

 Fast randomized algorithms for prime recognition has 
been known since 1977. One of the simplest one is due to 
Rabin.
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Integer Factorization

• No polynomial time classical algorithm is known.

• Simple, but not efficient factorization algorithms are 
known.

• Several sophisticated distributed factorization algorithms 
are known that allowed to factorize, using enormous 
computation power, surprisingly large integers.

• Progress in integer factorization, due to progress in 
algorithms and technology, has been recently enormous.

• Polynomial time quantum algorithms for integer 
factorization are known since 1994 (P. Shor).
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Pollard’s p-1 Factoring Algorithm

 Principle: 

n is the product of two large primes p and q.

The number (p-1) is uniquely expressible as the product of 
prime powers.

p-1 = p1
a1 . p2

a2 … ps
as , where p1 , p2 … . ps are the distinct 

primes dividing (p-1). 

Thus no two of p1
a1 . p2

a2 … ps
as are equal

We assume that p1
a1 < p2

a2 < … < ps
as and also assume that ps

as

is less than or equal to some small number B.

Then,  pi
ai is less than or equal to B, for 1 ≤ i ≤ s
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Pollard’s p-1 Factoring Algorithm
 Pick some integer t that is a multiple of all integers less than 

or equal to B, t = factorial(B). Or choose t to be the LCM of {1, 
2, 3 …. B}

 Choose the integer x randomly, with n-2 >  x  > 2

 Calculate y = xt by repeated squaring

 Let d be the gcd of (xt -1)  and n 

 We have that d divides n. we can guarantee that d > 1. This 
means that unless (xt -1) is a multiple of n, d is a proper factor 
of n.
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Pollard’s p-1 Factoring Algorithm

 Any two of the numbers p1
a1 . p2

a2 … ps
as are relatively prime 

and each is less than B.

 By choice, their product (p-1) divides t. so, t = v(p-1).

 Therefore, xt = xv(p-1)

 By Fermat’s Little Theorem, (x(p-1))v = 1 (mod p). 

Thus, xt = 1 (mod p). Therefore, p divides  (xt -1), and p 
divides n.

Now, d = gcd of ((xt -1), n ), it follows that p divides d.

This means that we have factored n.

Ref: Pollard 74, Lenstra 87 with Elliptic Curves.
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Pollard’s p-1 Factoring Algorithm

 Example:

Let n = 2117, B = 7

Then  choose t as LCM of { 1, 2, 3, 4, 5, 6, 7} = 420

Choose x = 2 (randomly)

Then 2420 (mod 2117) = 1451, thus, y = 1451

So, d= gcd(y-1, n) = gcd(1450, 2117) = 29.

It follows that n = 29.73
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Implementation attacks

 Attack the implementation of RSA.

 Timing attack:  (Kocher 97)
The time it takes to compute   Cd (mod N)
can expose   d.

 Power attack:  (Kocher 99)
The power consumption of a smartcard while 
it is computing  Cd (mod N)   can expose  d.

 Faults attack:  (BDL 97)
A computer error during   Cd (mod N)  
can expose   d.      



Timing Attacks
➢ developed by Paul Kocher in mid-1990’s

➢ exploit timing variations in operations
⚫ eg. multiplying by small vs large number 

⚫ or IF's varying which instructions executed

➢ infer operand size based on time taken 

➢ RSA exploits time taken in exponentiation

➢ countermeasures
⚫ use constant exponentiation time

⚫ add random delays

⚫ blind values used in calculations
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Key lengths

 Security of public key system should be comparable to 
security of block cipher.

NIST:

Cipher key-size Modulus size

 64 bits 512 bits.

80 bits 1024 bits

128 bits 3072 bits.

256 bits (AES) 15360 bits 

 High security   very large moduli.



Private-key versus public-key cryptography

• The prime advantage of public-key cryptography is increased 
security.

• Public key cryptography is not meant to replace secret-key 
cryptography, but rather to supplement it, to make it more secure.

• Example: RSA and DES are usually combined as follows

1. The message is encrypted with a random DES key

2. DES-key is encrypted with RSA

3. DES-encrypted message and RSA-encrypted DES-key are sent.

• In software (hardware) DES is generally about 100 (1000) times faster 
than RSA.

• If n users communicate with secrete-key cryptography, they need

n (n - 1) / 2 keys. In the case they use public key cryptography 2n keys are 
sufficient.


