
Dept. of Computer Science & Engg.
IIT Kharagpur, India

Attacks on RSA

Dipanwita Roy Chowdhury

RSA Security
➢ possible approaches to attacking RSA are:

⚫ brute force key search (infeasible given size of
numbers)

⚫ mathematical attacks (based on difficulty of
computing ø(n), by factoring modulus n)

⚫ Side channel attacks (on running of decryption)

⚫ chosen ciphertext attacks (given properties of
RSA)

Factoring Problem
➢ mathematical approach takes 3 forms:

⚫ factor n=p.q, hence compute ø(n) and then d

⚫ determine ø(n) directly and compute d

⚫ find d directly [e.d = 1 (mod ø(n))]

➢ currently believe all equivalent to factoring

⚫ have seen slow improvements over the years

• as of May-05 best is 200 decimal digits (663) bit with
LS

⚫ 1024 bit RSA is no more secure

⚫ currently assume 2048-4096 bit RSA is secure

• ensure p, q of similar size and matching other
constraints

Chosen Ciphertext Attacks
• RSA is vulnerable to a Chosen Ciphertext Attack

(CCA).

 - Adversary chooses a number of ciphertexts and is
then given the corresponding plaintexts, decrypted
with the target’s private key.

 - The adversary exploits properties of RSA and selects
blocks of data that, when processed using the target’s
private key, yield information needed for cryptanalysis.

 - Can counter simple attacks with random pad of
plaintext. More sophisticated variants need to modify
the plaintext using a procedure known as optimal
asymmetric encryption padding (OAEP).

Page 5

Textbook RSA is insecure

 Textbook RSA encryption:

 public key: (N,e) Encrypt: C = Me (mod N)

 private key: d Decrypt: Cd = M (mod N)

(M  ZN
*)

 Completely insecure cryptosystem:

 Does not satisfy basic definitions of security.

 Many attacks exist.

Page 6

A simple attack on textbook RSA

 Session-key K is 64 bits. View K  {0,…,264}
 Eavesdropper sees: C = Ke (mod N) .

 Suppose K = K1K2 where K1, K2 < 234 . (prob. 20%)

Then: C/K1
e = K2

e (mod N)

 Build table: C/1e, C/2e, C/3e, …, C/234e . time: 234

For K2 = 0,…, 234 test if K2
e is in table. time: 23434

 Attack time: 240 << 264

Sender Receiver

CLIENT HELLO

SERVER HELLO (e,N)

C=RSA(K)

Random
session-
key K

Page 7

Attack on RSA by Re-encryption

 Property of RSA encryption:

 For each M there exists a unique number k called the
iteration exponent or period of M such that

Ck+1 = C0, where Ck+1 = Ck
e (mod N) and C0= M

 Efficiently applied only for relatively small p, q and e

 Attack Principle:

 Attacker has to re-encrypt (as encryption exponent and
the modulus are public)

 Iterate the encryption step on each new cipher text, until
the message is recovered

Page 8

Practical RSA

 Resulting value is RSA encrypted

 Widely deployed in communications for portable
wireless systems

 Coppersmith “Short Pad Attack” that exploit random

padding to determine M

02 random pad FF msg

1024 bits

16 bits

Page 9

Attacks on RSA using Low-exponent
 Commonly chosen exponent e for practical implementation of

RSA:

 e = 21 + 1 = 3, e = 24 + 1 = 17, or e = 216 + 1 = 65537

 Eve sees k cipher texts M
e

(mod Ni)

 To uniquely decipher the message the following condition must
hold

M < Ni for i = 1, 2, …, k and so M
e

< N1. N2. … Nk.

If the Ni are relatively prime, Eve can compute M
e

(mod N1. N2. …
Nk), where e < k using Chinese Remainder Theorem. Then she has
a perfect integer power over the integers, namely M

e

She can calculate eth root and recover M. Alternately, Eve can
factor the Ni’s and compute M

To avoid this attack, a large encryption e must be selected

Page 10

Improving RSA’s performance

 To speed up RSA decryption use

small private key d. Cd = M (mod N)

 Wiener87: if d < N0.25 then RSA is insecure

 Wiener 90: method to find decryption key when a
small d is used

 Decryption key d can be found from (N,e).

 Small d should never be used

Page 11

Wiener’s attack

 Theorem:

Let N = pq with q < p < 2q. Let d < (1/3)(N) ¼ .

Given (n, e) such that ed ≡ 1 (mod (N)) then an
attacker can efficiently recover d.

Page 12

Wiener’s attack
 Sketch: ed = 1 (mod (N))

  kZ : ed = k(N) + 1



(N) = N-p-q+1  |N- (N)|  p+q  3N

d  N0.25/3 

Continued fraction expansion of e/N gives k/d.

ed = 1 (mod k)  gcd(d,k)=1

e
(N)

k
d

- 
1
d(N)

e
N

k
d

- 
1
2d2

Page 13

Prime Recognition and Factorization

 The key problems for the development of RSA
cryptosystem are that of prime recognition and integer
factorization.

 August 2002 first polynomial time algorithm has been
discovered that allows to determine whether a given m bit
integer is a prime. Algorithm works in time O(m12).

 Fast randomized algorithms for prime recognition has
been known since 1977. One of the simplest one is due to
Rabin.

Page 14

Integer Factorization

• No polynomial time classical algorithm is known.

• Simple, but not efficient factorization algorithms are
known.

• Several sophisticated distributed factorization algorithms
are known that allowed to factorize, using enormous
computation power, surprisingly large integers.

• Progress in integer factorization, due to progress in
algorithms and technology, has been recently enormous.

• Polynomial time quantum algorithms for integer
factorization are known since 1994 (P. Shor).

15

Pollard’s p-1 Factoring Algorithm

 Principle:

n is the product of two large primes p and q.

The number (p-1) is uniquely expressible as the product of
prime powers.

p-1 = p1
a1 . p2

a2 … ps
as , where p1 , p2 … . ps are the distinct

primes dividing (p-1).

Thus no two of p1
a1 . p2

a2 … ps
as are equal

We assume that p1
a1 < p2

a2 < … < ps
as and also assume that ps

as

is less than or equal to some small number B.

Then, pi
ai is less than or equal to B, for 1 ≤ i ≤ s

16

Pollard’s p-1 Factoring Algorithm
 Pick some integer t that is a multiple of all integers less than

or equal to B, t = factorial(B). Or choose t to be the LCM of {1,
2, 3 …. B}

 Choose the integer x randomly, with n-2 > x > 2

 Calculate y = xt by repeated squaring

 Let d be the gcd of (xt -1) and n

 We have that d divides n. we can guarantee that d > 1. This
means that unless (xt -1) is a multiple of n, d is a proper factor
of n.

17

Pollard’s p-1 Factoring Algorithm

 Any two of the numbers p1
a1 . p2

a2 … ps
as are relatively prime

and each is less than B.

 By choice, their product (p-1) divides t. so, t = v(p-1).

 Therefore, xt = xv(p-1)

 By Fermat’s Little Theorem, (x(p-1))v = 1 (mod p).

Thus, xt = 1 (mod p). Therefore, p divides (xt -1), and p
divides n.

Now, d = gcd of ((xt -1), n), it follows that p divides d.

This means that we have factored n.

Ref: Pollard 74, Lenstra 87 with Elliptic Curves.

18

Pollard’s p-1 Factoring Algorithm

 Example:

Let n = 2117, B = 7

Then choose t as LCM of { 1, 2, 3, 4, 5, 6, 7} = 420

Choose x = 2 (randomly)

Then 2420 (mod 2117) = 1451, thus, y = 1451

So, d= gcd(y-1, n) = gcd(1450, 2117) = 29.

It follows that n = 29.73

Page 19

Implementation attacks

 Attack the implementation of RSA.

 Timing attack: (Kocher 97)
The time it takes to compute Cd (mod N)
can expose d.

 Power attack: (Kocher 99)
The power consumption of a smartcard while
it is computing Cd (mod N) can expose d.

 Faults attack: (BDL 97)
A computer error during Cd (mod N)
can expose d.

Timing Attacks
➢ developed by Paul Kocher in mid-1990’s

➢ exploit timing variations in operations
⚫ eg. multiplying by small vs large number

⚫ or IF's varying which instructions executed

➢ infer operand size based on time taken

➢ RSA exploits time taken in exponentiation

➢ countermeasures
⚫ use constant exponentiation time

⚫ add random delays

⚫ blind values used in calculations

Page 21

Key lengths

 Security of public key system should be comparable to
security of block cipher.

NIST:

Cipher key-size Modulus size

 64 bits 512 bits.

80 bits 1024 bits

128 bits 3072 bits.

256 bits (AES) 15360 bits

 High security  very large moduli.

Private-key versus public-key cryptography

• The prime advantage of public-key cryptography is increased
security.

• Public key cryptography is not meant to replace secret-key
cryptography, but rather to supplement it, to make it more secure.

• Example: RSA and DES are usually combined as follows

1. The message is encrypted with a random DES key

2. DES-key is encrypted with RSA

3. DES-encrypted message and RSA-encrypted DES-key are sent.

• In software (hardware) DES is generally about 100 (1000) times faster
than RSA.

• If n users communicate with secrete-key cryptography, they need

n (n - 1) / 2 keys. In the case they use public key cryptography 2n keys are
sufficient.

