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RSA Security

possible approaches to attacking RSA are:

brute force key search (infeasible given size of
numbers)

mathematical attacks (based on difficulty of
computing a(n), by factoring modulus n)

Side channel attacks (on running of decryption)

chosen ciphertext attacks (given properties of
RSA)
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Factoring Problem
mathematical approach takes 3 forms:

factor n=p.q, hence compute o(n) and then d
determine @(n) directly and compute d

find d directly [e.d = 1 (mod @(n))]

currently believe all equivalent to factoring
have seen slow improvements over the years

as of May-o5 best is 200 decimal digits (663) bit with
LS

1024 bit RSA is no more secure
currently assume 2048-4096 bit RSA is secure

ensure p, q of similar size and matching other
constraints
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‘Chosen Ciphertext Attacks

RSA is vulnerable to a Chosen Ciphertext Attack
(CCA).

- Adversary chooses a number of ciphertexts and is
then given the corresponding plaintexts, decrypted
with the target’s private key.

- The adversary exploits properties of RSA and selects
blocks of data that, when processed using the target’s
private key, yield information needed for cryptanalysis.
- Can counter simple attacks with random pad of
plaintext. More sophisticated variants need to modify
the plaintext using a procedure known as optimal
asymmetric encryption padding (OAEP).
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Textbook RSA is insecure

Textbook RSA encryption:
e public key: (N,e) Encrypt: C=M" (mod N)
o private key: d Decrypt: C*=M (mod N)
MeZy)

Completely insecure cryptosystem:
e Does not satisty basic definitions of security.

e Many attacks exist.
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Random
session-

. SERVER HETLILO (e, N)
key K

C=RSA (K)

Session-key K is 64 bits. View K € {o,...,2%4}
Eavesdropper sees: C =K® (mod N) .

Suppose K=K_-K, where K, K, <23 . (prob.=20%)
Then: C/KSf=K,* (mod N)
Build table: C/1¢, C/2¢, C/3¢, ..., C/234¢ . time: 234

For K, = o,..., 234 testif K isintable. time: 23434

Attack time: =~24° << 204
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Attack on RSA by Re-encryption

Property of RSA encryption:

e For each M there exists a unique number k called the
iteration exponent or period of M such that

Ci., = C, where C,,, = C,° (mod N) and C,= M
e Efficiently applied only for relatively small p, qand e

Attack Principle:

e Attacker has to re-encrypt (as encryption exponent and
the modulus are public)

e [terate the encryption step on each new cipher text, until
the message is recovered
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%tical RS

16 bits

02 random pad FF msg

Sy g
-
1024 bits

* Resulting value is RSA encrypted

* Widely deployed in communications for portable
wireless systems

» Coppersmith “Short Pad Attack” that exploit random
padding to determine M
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Attacks on RSA using Low-exponent
Commonly chosen exponent e for practical implementation of
RSA:

ee=21+1=3, e=2%4+1=17, ore=21+1=65537
e Eve sees k cipher texts M® (mod Ni)

e To uniquely decipher the message the following condition must

hold
M < Nifori=1, 2, ..., kand so M® < N1. N2. ... Nk.

If the Ni are relatlvely prime, Eve can compute M (mod Ni1. N2. .
Nk), where e < k using Chinese Remainder Theorem. Then she has
a perfect integer power over the integers, namely M*

She can calculate eth root and recover M. Alternately, Eve can
factor the Ni’s and compute M

To avoid this attack, a large encryption e must be selected

Page 9



Improving RSA’s performance

To speed up RSA decryption use

small private key d. C'=M (mod N)
* Wiener87: if d <N°2 then RSA is insecure
e Wiener go: method to find decryption key when a
small d is used

e Decryption key d can be found from (N,e).

e Small d should never be used
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Wiener’s attack

Theorem:
Let N =pgwithqg<p<2q. Letd <(1/3)(N) *.

Given (n, e) such that e-d =1 (mod ¢(N) ) then an
attacker can efficiently recover d.
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iener’s attack

Sketch: e-d =1 (mod @(N) )
= dkeZ: ed=ko(N)+1

1

0y

e i k

= [y

¢(N) =N-p-g+1 = |N-o(N)| <p+q<3N

e k

Neeeade

1

d<N°*/3 = ——T

Continued fraction expansion of e/N gives k/d.

e:d=1(mod k) = gcd(d,k)=1
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Prime Recognition and Factorization

The key problems for the development of RSA
cryptosystem are that of prime recognition and integer
factorization.

August 2002 first polynomial time algorithm has been
discovered that allows to determine whether a given m bit
integer is a prime. Algorithm works in time O(m*).

Fast randomized algorithms for prime recognition has

been known since 1977. One of the simplest one is due to
Rabin.
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Integer Factorization

No polynomial time classical algorithm is known.

Simple, but not efficient factorization algorithms are
known.

- Several sophisticated distributed factorization algorithms
are known that allowed to factorize, using enormous
computation power, surprisingly large integers.

- Progress in integer factorization, due to progress in
algorithms and technology, has been recently enormous.

-+ Polynomial time quantum algorithms for integer
factorization are known since 1994 (P. Shor).
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—Pollard’s p-1 Factoring Algorithm

Principle:
n is the product of two large primes p and q.

The number (p-1) is uniquely expressible as the product of
prime powers.

p-1=p*.p,* ..p>* ,wherep, p, .p, arethedistinct
primes dividing (p-1).
Thus no two of p*. p,* ... p,® are equal

We assume that p,*'< p,?* < ... < p,»® and also assume that p 2®
is less than or equal to some small number B

Then, p islessthanorequaltoB,fori<i<s

1
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" Pollard’s p-1 Factoring Algorithm

Pick some integer t that is a multiple of all integers less than
or equal to B, t = factorial(B). Or choose t to be the LCM of {1,
2,3 ... B}

Choose the integer x randomly, with n-2 > x > 2
Calculate y = xt by repeated squaring
Let d be the gcd of (xt -1) and n

We have that d divides n. we can guarantee that d > 1. This
means that unless (xt -1) is a multiple of n, d is a proper factor
of n.
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" Pollard’s p-1 Factoring Algorithm

Any two of the numbers p@'. p,2* ... p;2® are relatively prime
and each is less than B.

By choice, their product (p-1) divides t. so, t = v(p-1).
Therefore, xt = x¥(P-)
By Fermat’s Little Theorem, (x(P)Y = 1 (mod p).

Thus, x' = 1 (mod p). Therefore, p divides (xt-1), and p
divides n.

Now, d = gcd of ((xt-1), n ), it follows that p divides d.
This means that we have factored n.

Ref: Pollard 74, Lenstra 87 with Elliptic Curves.
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Pollard’s p-1 Factoring Algorithm

Example:
letn=2117,B=7
Then choosetasLCMof{1,2,3,4,5,6,7}=420
Choose x = 2 (randomly)

Then 2429 (mod 2117) = 1451, thus, y = 1451

So, d=gcd(y-1, n) = gcd(1450, 2117) = 29.
It follows that n = 29.73
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Implementation attacks

Attack the implementation of RSA.

Timing attack: (Kocher 97)
The time it takes to compute 2 (mod N)
can expose d.

Power attack: (Kocher 99)
The power consumptlon of a smartcard while
it is computing C® (mod N) can expose d.

Faults attack: (BDL 97)
A computer error during C? (mod N)
can expose d.
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Timing Attacks

developed by Paul Kocher in mid-1990’s

exploit timing variations in operations

eg. multiplying by small vs large number

or IF's varying which instructions executed
infer operand size based on time taken
RSA exploits time taken in exponentiation

countermeasures
use constant exponentiation time
add random delays
blind values used in calculations



/ e

/Key lengths

Security of public key system should be comparable to
security of block cipher.

NIST:
Cipher key-size Modulus size
< 64 bits 512 bits.
8o bits 1024 bits
128 bits 3072 bits.
256 bits (AES) 15360 bits

High security = very large moduli.
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/Prlvaté—l<ey versus public-key cryptography

* The prime advantage of public-key cryptography is increased
security.

- Public key cryptography is not meant to replace secret-key
cryptography, but rather to supplement it, to make it more secure.

- Example: RSA and DES are usually combined as follows
1. The message is encrypted with a random DES key
2. DES-key is encrypted with RSA
3. DES-encrypted message and RSA-encrypted DES-key are sent.

- In software (hardware) DES is generally about 100 (1000) times faster
than RSA.

If n users communicate with secrete-key cryptography, they need

n (n - 1) / 2 keys. In the case they use public key cryptography 2n keys are
sufficient.



