Attacks on RSA

RSA Security

- possible approaches to attacking RSA are:
 - brute force key search (infeasible given size of numbers)
 - mathematical attacks (based on difficulty of computing ø(n), by factoring modulus n)
 - Side channel attacks (on running of decryption)
 - chosen ciphertext attacks (given properties of RSA)

Factoring Problem

- mathematical approach takes 3 forms:
 - factor n=p.q, hence compute ø(n) and then d
 - determine ø(n) directly and compute d
 - find d directly [e.d \equiv 1 (mod \emptyset (n))]
- currently believe all equivalent to factoring
 - have seen slow improvements over the years
 - as of May-05 best is 200 decimal digits (663) bit with LS
 - 1024 bit RSA is no more secure
 - currently assume 2048-4096 bit RSA is secure
 - ensure p, q of similar size and matching other constraints

Chosen Ciphertext Attacks

RSA is vulnerable to a Chosen Ciphertext Attack (CCA).

- Adversary chooses a number of ciphertexts and is then given the corresponding plaintexts, decrypted with the target's private key.
- The adversary exploits properties of RSA and selects blocks of data that, when processed using the target's private key, yield information needed for cryptanalysis.
- Can counter simple attacks with random pad of plaintext. More sophisticated variants need to modify the plaintext using a procedure known as optimal asymmetric encryption padding (OAEP).

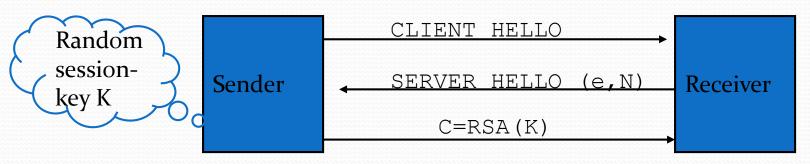
Textbook RSA is insecure

- Textbook RSA encryption:
 - public key: (N,e) Encrypt: $C = M^e \pmod{N}$
 - private key: **d** Decrypt: $C^d = M \pmod{N}$

$$(\mathbf{M} \in \mathbf{Z_N}^*)$$

- Completely insecure cryptosystem:
 - Does not satisfy basic definitions of security.
 - Many attacks exist.

A simple attack on textbook RSA



- Session-key K is 64 bits. View $K \in \{0,...,2^{64}\}$
- Eavesdropper sees: $C = K^e \pmod{N}$.
- Suppose $\mathbf{K} = \mathbf{K_1} \cdot \mathbf{K_2}$ where $\mathbf{K_1}$, $\mathbf{K_2} < 2^{34}$. (prob. $\approx 20\%$)

 Then: $\mathbf{C}/\mathbf{K_1}^{\mathbf{e}} = \mathbf{K_3}^{\mathbf{e}}$ (mod N)
- Build table: $C/1^e$, $C/2^e$, $C/3^e$, ..., $C/2^{34e}$. time: 2^{34} For $K_2 = 0,...$, 2^{34} test if K_2^e is in table. time: $2^{34} \cdot 34$
- Attack time: ≈2⁴⁰ << 2⁶⁴

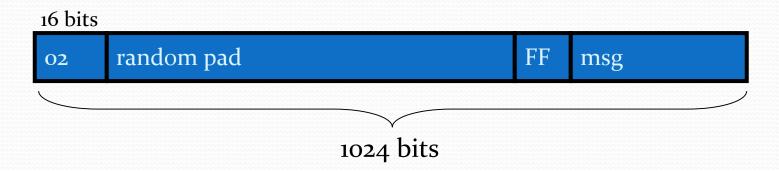
Attack on RSA by Re-encryption

- Property of RSA encryption:
 - For each M there exists a unique number k called the iteration exponent or period of M such that

$$C_{k+1} = C_0$$
, where $C_{k+1} = C_k^e \pmod{N}$ and $C_0 = M$

- Efficiently applied only for relatively small p, q and e
- Attack Principle:
 - Attacker has to re-encrypt (as encryption exponent and the modulus are public)
 - Iterate the encryption step on each new cipher text, until the message is recovered

Practical RSA



- Resulting value is RSA encrypted
- Widely deployed in communications for portable wireless systems
- Coppersmith "Short Pad Attack" that exploit random padding to determine M

Attacks on RSA using Low-exponent

- Commonly chosen exponent e for practical implementation of RSA:
 - $e = 2^1 + 1 = 3$, $e = 2^4 + 1 = 17$, or $e = 2^{16} + 1 = 65537$
 - Eve sees k cipher texts **M**^e (mod Ni)
 - To uniquely decipher the message the following condition must hold

$$M < Ni \text{ for } i = 1, 2, ..., k \text{ and so } M^e < N1. N2. ... Nk.$$

If the Ni are relatively prime, Eve can compute M^e (mod N1. N2. ... Nk), where e < k using Chinese Remainder Theorem. Then she has a perfect integer power over the integers, namely M^e

She can calculate eth root and recover M. Alternately, Eve can factor the Ni's and compute M

To avoid this attack, a large encryption e must be selected

Improving RSA's performance

 To speed up RSA decryption use small private key d.
 C^d = M (mod N)

- Wiener87: if $d < N^{0.25}$ then RSA is insecure
- Wiener 90: method to find decryption key when a small d is used
- Decryption key d can be found from (N,e).
- Small d should never be used

Wiener's attack

• Theorem:

Let N = pq with $q . Let <math>d < (1/3)(N)^{1/4}$. Given (n, e) such that $e \cdot d \equiv 1 \pmod{\phi(N)}$ then an attacker can efficiently recover d.

Wiener's attack

• Sketch: $e \cdot d = 1 \pmod{\phi(N)}$ $\Rightarrow \exists k \in \mathbb{Z} : e \cdot d = k \cdot \phi(N) + 1$ $\Rightarrow \left| \frac{e}{\phi(N)} - \frac{k}{d} \right| \leq \frac{1}{d\phi(N)}$

$$\varphi(N) = N-p-q+1 \implies |N-\varphi(N)| \le p+q \le 3\sqrt{N}$$

$$d \le N^{0.25}/3 \quad \Rightarrow \quad \left| \frac{e}{N} - \frac{k}{d} \right| \le \frac{1}{2d^2}$$

Continued fraction expansion of e/N gives k/d.

$$e \cdot d = 1 \pmod{k} \implies \gcd(d,k) = 1$$

Prime Recognition and Factorization

- The key problems for the development of RSA cryptosystem are that of prime recognition and integer factorization.
- August 2002 first polynomial time algorithm has been discovered that allows to determine whether a given m bit integer is a prime. Algorithm works in time $O(m^{12})$.
- Fast randomized algorithms for prime recognition has been known since 1977. One of the simplest one is due to Rabin.

Integer Factorization

- No polynomial time classical algorithm is known.
- Simple, but not efficient factorization algorithms are known.
- Several sophisticated distributed factorization algorithms are known that allowed to factorize, using enormous computation power, surprisingly large integers.
- Progress in integer factorization, due to progress in algorithms and technology, has been recently enormous.
- Polynomial time quantum algorithms for integer factorization are known since 1994 (P. Shor).

• Principle:

n is the product of two large primes p and q.

The number (p-1) is uniquely expressible as the product of prime powers.

 $p-1 = p_1^{a_1} \cdot p_2^{a_2} \dots p_s^{a_s}$, where $p_1, p_2 \dots p_s$ are the distinct primes dividing (p-1).

Thus no two of $p_1^{a_1}$. $p_2^{a_2}$... $p_s^{a_s}$ are equal

We assume that $p_1^{a_1} < p_2^{a_2} < ... < p_s^{as}$ and also assume that p_s^{as} is less than or equal to some small number B.

Then, p_i^{ai} is less than or equal to B, for $1 \le i \le s$

- Pick some integer t that is a multiple of all integers less than or equal to B, t = factorial(B). Or choose t to be the LCM of {1, 2, 3 B}
- Choose the integer x randomly, with n-2 > x > 2
- Calculate $y = x^t$ by repeated squaring
- Let d be the gcd of (x^t -1) and n
- We have that d divides n. we can guarantee that d > 1. This
 means that unless (x^t -1) is a multiple of n, d is a proper factor
 of n.

- Any two of the numbers $p_1^{a_1}$. $p_2^{a_2}$... $p_s^{a_s}$ are relatively prime and each is less than B.
- By choice, their product (p-1) divides t. so, t = v(p-1).
- Therefore, $x^t = x^{v(p-1)}$
- By Fermat's Little Theorem, $(x^{(p-1)})^{V} \equiv 1 \pmod{p}$.

Thus, $x^t \equiv 1 \pmod{p}$. Therefore, p divides $(x^t - 1)$, and p divides n.

Now, $d = \gcd of ((x^t-1), n)$, it follows that p divides d. This means that we have factored n.

Ref: Pollard 74, Lenstra 87 with Elliptic Curves.

• Example:

```
Let n = 2117, B = 7
Then choose t as LCM of \{1, 2, 3, 4, 5, 6, 7\} = 420
Choose x = 2 (randomly)
```

Then 2^{420} (mod 2117) = 1451, thus, y = 1451 So, d= gcd(y-1, n) = gcd(1450, 2117) = 29. It follows that n = 29.73

Implementation attacks

- Attack the implementation of RSA.
- Timing attack: (Kocher 97)
 The time it takes to compute C^d (mod N) can expose d.
- Power attack: (Kocher 99)
 The power consumption of a smartcard while it is computing C^d (mod N) can expose d.
- Faults attack: (BDL 97)
 A computer error during C^d (mod N)
 can expose d.

Timing Attacks

- developed by Paul Kocher in mid-1990's
- exploit timing variations in operations
 - eg. multiplying by small vs large number
 - or IF's varying which instructions executed
- infer operand size based on time taken
- RSA exploits time taken in exponentiation
- countermeasures
 - use constant exponentiation time
 - add random delays
 - blind values used in calculations

Key lengths

 Security of public key system should be comparable to security of block cipher.

NIST:

<u>Cipher key-size</u>	<u>Modulus size</u>
≤ 64 bits	512 bits.
80 bits	1024 bits
128 bits	3072 bits.
256 bits (AES)	<u> 15360</u> bits

• High security \Rightarrow very large moduli.

Private-key versus public-key cryptography

- The prime advantage of public-key cryptography is increased security.
- Public key cryptography is not meant to replace secret-key cryptography, but rather to supplement it, to make it more secure.
- Example: RSA and DES are usually combined as follows
 - 1. The message is encrypted with a random DES key
 - 2. DES-key is encrypted with RSA
 - 3. DES-encrypted message and RSA-encrypted DES-key are sent.
- In software (hardware) DES is generally about 100 (1000) times faster than RSA.
- If n users communicate with secrete-key cryptography, they need n(n-1)/2 keys. In the case they use public key cryptography 2n keys are sufficient.