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Euler's Theorem
 a generalisation of Fermat's Theorem 

 Mø(n) = 1 (mod n)
 for any M, n where gcd(M,n)=1

 Corollary:

M1+k.ø(n) = [(Mø(n))k x M1] mod n

= [(1)k x M] mod n

=  M mod n



Public-Key Cryptography

 probably most significant advance in the 3000 
year history of cryptography 

 uses two keys – a public & a private key

 asymmetric since parties are not equal 

 uses clever application of number theoretic 
concepts to function

 complements rather than replaces private key 
crypto



Why Public-Key Cryptography?

 developed to address two key issues:

 key distribution – how to have secure 
communications in general without having to trust a 
KDC with your key

 digital signatures – how to verify a message comes 
intact from the claimed sender

 public invention due to Whitfield Diffie & Martin Hellman 
at Stanford Uni in 1976

 known earlier in classified community



Public-Key Cryptography
 public-key/two-key/asymmetric cryptography 

involves the use of two keys: 
 a public-key, which may be known by anybody, and can 

be used to encrypt messages, and verify signatures

 a private-key, known only to the recipient, used to 
decrypt messages, and sign (create) signatures

 is asymmetric because
 those who encrypt messages or verify signatures cannot

decrypt messages or create signatures
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Public-Key Characteristics

 Public-Key algorithms rely on two keys where:

 it is computationally infeasible to find decryption key 
knowing only algorithm & encryption key

 it is computationally easy to en/decrypt messages when 
the relevant (en/decrypt) key is known

 either of the two related keys can be used for 
encryption, with the other used for decryption (for some 
algorithms)
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Public-Key Applications
 can classify uses into 3 categories:

 encryption/decryption (provide secrecy)

 digital signatures (provide authentication)

 key exchange (of session keys)

 some algorithms are suitable for all uses, others are 
specific to one



Security of Public Key Schemes
 like private key schemes brute force exhaustive 

search attack is always theoretically possible 

 but keys used are too large (>1024 bits) 

 security relies on a large enough difference in 
difficulty between easy (en/decrypt) and hard
(cryptanalyse) problems

 more generally the hard problem is known, but is 
made hard enough to be impractical to break 

 requires the use of very large numbers

 hence is slow compared to private key schemes



RSA
 by Rivest, Shamir & Adleman of MIT in 1977 

 best known & widely used public-key scheme 

 based on exponentiation in a finite (Galois) field 
over integers modulo a prime 

 nb. exponentiation takes O((log n)3) operations (easy) 

 uses large integers (eg. 1024 bits)

 security due to cost of factoring large numbers 

 nb. factorization takes O(e log n log log n) operations (hard) 



RSA Key Setup

 each user generates a public/private key pair by: 
 selecting two large primes at random - p, q
 computing their system modulus n=p.q

 note ø(n)=(p-1)(q-1)

 selecting at random the encryption key e
 where 1<e<ø(n), gcd(e,ø(n))=1 

 solve following equation to find decryption key d
 e.d ≡1 mod ø(n) and 0≤d≤n

 publish their public encryption key: PU={e,n} 
 keep secret private decryption key: PR={d,n} 



RSA Use

 to encrypt a message M the sender:

 obtains public key of recipient PU={e,n} 

 computes: C = Me mod n, where 0≤M<n

 to decrypt the ciphertext C the owner:

 uses their private key PR={d,n} 

 computes: M = Cd mod n 

 note that the message M must be smaller than the 
modulus n (block if needed)



Why RSA Works

 because of Euler's Theorem:
 aø(n)mod n = 1 where gcd(a,n)=1

 in RSA have:
 n=p.q

 ø(n)=(p-1)(q-1)

 carefully chose e & d to be inverses mod ø(n)
 hence e.d=1+k.ø(n) for some k, 
ed ≡ 1 mod ø(n, so d ≡ e-1 mod ø(n)

 hence :
Cd = Me.d = M1+k.ø(n) = M1.(Mø(n))k

= M1.(1)k = M1 = M mod n



RSA Example - Key Setup
1. Select primes: p=17 & q=11

2. Compute n = pq =17 x 11=187

3. Compute ø(n)=(p–1)(q-1)=16 x 10=160

4. Select e: gcd(e,160)=1; choose e=7

5. Determine d: de=1 mod 160 and d < 160 Value is 
d=23 since 23x7=161= 10x160+1

6. Publish public key PU={7,187}

7. Keep secret private key PR={23,187}



RSA Example - En/Decryption
 sample RSA encryption/decryption is: 

 given message M = 88 (nb. 88<187)

 encryption:

C = 887 mod 187 = 11

 decryption:

M = 1123 mod 187 = 88



Exponentiation
 can use the Square and Multiply Algorithm

 a fast, efficient algorithm for exponentiation 

 concept is based on repeatedly squaring base 

 and multiplying in the ones that are needed to 
compute the result 

 look at binary representation of exponent 

 only takes O(log2 n) multiples for number n 
 eg. 75 = 74.71 = 3.7 = 10 mod 11

 eg. 3129 = 3128.31 = 5.3 = 4 mod 11



Exponentiation
c = 0; f = 1

for i = k down to 0 

do c = 2 x c

f = (f x f) mod n

if bi == 1 then 

c = c + 1

f = (f x a) mod n 

return f



Efficient Encryption
 encryption uses exponentiation to power e
 hence if e small, this will be faster

 often choose e=65537 (216-1)
 also see choices of e=3 or e=17

 but if e too small (eg e=3) can attack
 using Chinese remainder theorem & 3 messages 

with different modulii

 if e fixed must ensure gcd(e,ø(n))=1
 ie reject any p or q not relatively prime to e



Efficient Decryption
 decryption uses exponentiation to power d

 this is likely large, insecure if not

 can use the Chinese Remainder Theorem (CRT) to 
compute mod p & q separately. then combine to get 
desired answer
 approx 4 times faster than doing directly

 only owner of private key who knows values of p & q 
can use this technique 



RSA Key Generation

 users of RSA must:
 determine two primes at random - p, q

 select either e or d and compute the other

 primes p,q must not be easily derived from modulus 
n=p.q

 means must be sufficiently large

 typically guess and use probabilistic test

 exponents e, d are inverses, so use Inverse algorithm 
to compute the other



RSA Security
 possible approaches to attacking RSA are:

 brute force key search (infeasible given size of 
numbers)

 mathematical attacks (based on difficulty of 
computing ø(n), by factoring modulus n)

 timing attacks (on running of decryption)

 chosen ciphertext attacks (given properties of 
RSA)



Factoring Problem
 mathematical approach takes 3 forms:

 factor n=p.q, hence compute ø(n) and then d

 determine ø(n) directly and compute d

 find d directly

 currently believe all equivalent to factoring

 have seen slow improvements over the years 

• as of May-05 best is 200 decimal digits (663) bit with LS 

 biggest improvement comes from improved algorithm

• cf QS to GHFS to LS

 currently assume 1024-2048 bit RSA is secure

• ensure p, q of similar size and matching other constraints



Timing Attacks
 developed by Paul Kocher in mid-1990’s

 exploit timing variations in operations
 eg. multiplying by small vs large number 

 or IF's varying which instructions executed

 infer operand size based on time taken 

 RSA exploits time taken in exponentiation

 countermeasures
 use constant exponentiation time

 add random delays

 blind values used in calculations



Chosen Ciphertext Attacks
• RSA is vulnerable to a Chosen Ciphertext Attack 

(CCA)
• attackers chooses ciphertexts & gets decrypted 

plaintext back
• choose ciphertext to exploit properties of RSA to 

provide info to help cryptanalysis
• can counter with random pad of plaintext
• or use Optimal Asymmetric Encryption Padding 

(OASP)


