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Why Stream Ciphers ?

 Speed

• Initialization

• Keystream generation

 Resources – memory, power, cpu

 Hardware, software suitability



One-Time Pad

 Developed by Gilbert Vernam in 1918, another name: Vernam Cipher
 The key 

 a truly random sequence of 0’s and 1’s 
 the same length as the message
 use one time only

• The encryption
• adding the key to the message modulo 2, bit by bit. 

Encryption  

Decryption 

mi :  plain-text bits.
ki :  key (key-stream ) bits
ci :  cipher-text bits.



Example 

 Encryption:

 1001001 1000110 plaintext

 1010110 0110001 key

 0011111 1110110 ciphertext

 Decryption:

 0011111 1110110 ciphertext

 1010110 0110001 key

 1001001 1000110 plaintext



One-Time pad practical Problem
 Key-stream should be as long as plain-text

 Difficult in Key distribution & Management

 Solution : 

 Stream Ciphers 

 Key-stream is generated in pseudo-random fashion form 
Relatively short secret key



Stream Cipher Model
 Output function appears random

Si

F

G

Si+1

ki
mi ci

Si :  state of the cipher

at time t = i.

F     : state function.

G    :  output function. 

Initial state, output and state

functions are controlled by the

secret key.
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Stream Ciphers
 Synchronous stream cipher

• Sender and receiver must be in-synch

• Lost bit garbles all subsequent bits unless synch up

• Flipped bit garbles only one bit

• Can precompute key stream 

• Example: RC4, block cipher in OFB mode

 Self-synchronizing stream ciphers  
• Use n previous ciphertext bits to compute keystream

• Lost bit: synch up after n bits

• Flipped bit :  next n bits garbled

• Can’t precompute keystream

• Example: Block cipher in ciphertext feedback (CFB) mode 
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Stream Ciphers – General 
Concept

State Updates

• FSR based (SOBER, LILI)

• Array Permutations (RC4)
key

state (data)

output

function

pi (ci) ci (pi)

ksi

next state

function

synchronous
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Stream Ciphers – General 
Concept

key

state (data)

output

function

pi (ci) ci

ksi

next state

function

subset 

of ci’s

• error propagation 

• block cipher in CFB mode

self synchronizing
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Keystream Properties

 Period
• Period of 232 repeats after ~ 8.5 minutes when encrypting 

1MB/sec

 Random appearance: 
• Runs of 1’s or 0’s: ½  with length 1, ¼ with length 2,  1/8 have 

length 3 … 

• Test – little or no compression

• Dissipates statistics of plaintext

 Complexity: 
• Low ability to define a bit as a linear expression (or  algebraic 

expression) of bits < period bits away  

• No discernable relation to key (seed/initial state) bits



Random Numbers

 Many uses of random numbers in cryptography 

Nonce as Initialize Vector

 Session keys

Public key generation

Keystream for a one-time pad

 In all cases these values be 

 statistically random, uniform distribution, independent

 unpredictability of future values from previous values



Pseudorandom Number 
Generators (PRNGs)
 Often use deterministic algorithmic techniques to create 
“random numbers”

 although are not truly random

 can pass many tests of “randomness”

(ref: Knuth 2nd Volume, Art of Computer Science )

 Known as “Pseudorandom Numbers”

 Created by “Pseudorandom Number Generators 
(PRNGs)”



Random & Pseudorandom Number 
Generators



PRNG Requirements
 Randomness

 uniformity, scalability, consistency

 Unpredictability

 forward & backward Unpredictability

 use same tests to check

 Characteristics of the seed

 Secure

 if known adversary can determine output

 so must be random or pseudorandom number



Using Block Ciphers as PRNGs

 For cryptographic applications, can use a block cipher to 
generate random numbers

 Often for creating session keys from master key

 CTR

 Xi = EK[Vi]

 OFB

 Xi = EK[Xi-1]



Stream Ciphers

 Generalization of one-time pad

 Stream cipher is initialized with short key

 Key is “stretched” into long keystream

 have a pseudo random property

 Keystream is used like a one-time pad

 XOR to encrypt or decrypt



Stream Cipher Structure
 Randomness of stream key completely destroys 

statistically properties in message 

 Must never reuse stream key
 otherwise can recover messages



Stream Cipher Properties

Some design considerations are:

 long period with no repetitions 

 statistically random 

 depends on large enough key

 large linear complexity

Properly designed, can be as secure as a block cipher with 
same size key

Benefit : usually simpler & faster
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Stream Ciphers - Approaches

 Feedback Shift Register (FSR) based – useful in 
hardware

 Block cipher – CTR, CFB, OFB modes

 Components similar to those found in block 
ciphers
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Feedback Shift Register

bn-1 bn-2 b1 b0……
b0

F(bn-1,…..b0)

……
new bn-1

Linear F: bn-1 = ibi for i {0,1}
i=0,n-1

Nonlinear F

Tap Sequence: 

bits used in F 

Feedback with Carry Shift  (FCSR)

F: s = (ibi + c) for i {0,1}
i=0,n-1

bn-1 = s mod 2

c =  s/2  mod log2 (# tap bits)

State: bi values

bits, same concept with bytes, words
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 Period
• LFSR of n bits: Maximum 2n –1 

• FCSR: depends on initial state

• Non-linear FSR: depends on function, initial state

 Inefficient in Software
• Small # of bits in tap sequence, easier to break.

• Large # of bits in tap sequence, slow.

 Security
• Berlekamp-Massey Algorithm: 2n output bits needed to 

reproduce the LFSR in O(n2) time.

• Non-linear FSR: avoid linear approximations

Feedback Shift Registers
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Variations Utilizing LFSR 
Combination generator

• Output bit = nonlinear function on output of multiple 
LFSRs.

• May clock each LFSR differently
• Various combinations of AND,OR,Thresholds

LSFR1

LSFR2

LSFRn

.

.

.

nonlinear
function keystream
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Variations Utilizing LFSR
 Clock controlled generator

• Move to next state only on some clock cycles.

• Move to next state on every cycle but only output bit on 
some clock cycles.

• 2nd LFSR may control clock.

 Clock control that affects output is also called 
stuttering



24

NESSIE Stream Cipher Submissions
 None recommended
 BMGL – too slow, small internal state –

time/memory tradeoff attack
 Leviathan - distinguishing attack
 LILI-128 – attack O(271)
 SNOW – distinguishing attack
 SOBER-t16 – distinguishing attack
 SOBER-t32 – distinguishing attack
 Both Sober algorithms thought to be subject to 

side channel analysis
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ECRYPT’s eStream Contest
 Just ended (3rd round of evaluations finished, winners 

selected)
• 4 for software, 4 for hardware

 In third round of evaluations 
• 16 candidates

 3+ years from time of call for proposals to final report
• originally November 2004 to January 2008
• Just ended

 ECRYPT: European Network of Excellence for Cryptology
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eStream Overview

 Categories

• key length of 128 bits and an IV length of 64 and/or 128 bits

• key length of 80 bits and an IV length of 32 and/or 64 bits

 Separate software and hardware categories within each

 Evaluation

• Security

• Free of licensing requirements …

• Performance, range of environments

 Committee is only collecting submissions.  Evaluations are done by the 
general cryptographic community.
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eStream Evaluation
 Security Criteria

• Any key-recovery attack should be at least as difficult as exhaustive 
search. 

• Distinguishing attacks 
 Interest to the cryptographic community 

 Relative importance of high complexity distinguishing attacks is an issue 
for wider discussion

• Clarity of design

 Implementation Criteria
• Software and hardware efficiency

• Execution code and memory sizes

• Performance

• Flexibility of use 
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eSTREAM Phase 3 Candidates
Profile 1 (SW) Profile 2 (HW)

CryptMT (CryptMT Version 3) DECIM (DECIM v2 and DECIM-128) 

Dragon Edon80

HC (HC-128 and HC-256) F-FCSR (F-FCSR-H v2 and F-FCSR-16) 

LEX (LEX-128, LEX-192 and LEX-256) Grain (Grain v1 and Grain-128) 

NLS (NLSv2, encryption-only) MICKEY (MICKEY 2.0 and MICKEY-12 2.0)

Rabbit Moustique

Salsa20 Pomaranch (Pomaranch Version 3) 

SOSEMANUK Trivium

http://www.ecrypt.eu.org/stream/phase3list.html
key lengths: 128 bits for SW and 80 bits for HW 

http://www.ecrypt.eu.org/stream/rabbitp3.html
http://www.ecrypt.eu.org/stream/phase3list.html
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eSTREAM Winners

Profile 1 (SW) Profile 2 (HW)

HC (HC-128 and HC-256) F-FCSR (F-FCSR-H v2 and F-FCSR-16) 

Rabbit Grain (Grain v1 and Grain-128) 

Salsa20 MICKEY (MICKEY 2.0 and MICKEY-12 2.0)

SOSEMANUK Trivium

http://www.ecrypt.eu.org/stream/
key lengths: 128 bits for SW and 80 bits for HW 

http://www.ecrypt.eu.org/stream/rabbitp3.html
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Stream Cipher Examples

•Lists
•http://en.wikipedia.org/wiki/Stream_cipher
•http://www.ecrypt.eu.org/stream/

• RC4
• A5/1
• A5/3
• LILI
• Sober
• Trivium
• Lex
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RC4

S-Box Creation

input key;

if (key < 256 bytes) { 

repeat key until 256 bytes;

}

for (i=0; i < 256; ++i) {

S[i] = i; // initialize S-Box

K[i] = ith key byte;

}

j = 0;

for (i = 0; i <256; ++i) {

j = (j + S[i] + K[i]) mod 256;

swap(S[i],S[j]);

}

Keystream Generator
i = 0; j = 0;

loop {

i = (i+1) mod 256;

j = (j+S[i]) mod 256;

Swap(S[i],S[j]);

t = (S[i] + S[j]) mod 256;

ks_byte = S[t]; 

}

2 S-Box entries form index into S-Box 

Output S-Box entry (byte)

S-Box: key dependent 

permutation of 0 to 255. 

(lookup table)
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RC4 Cryptanalysis

• Initial keystream byte highly correlated with first few key 

bytes

• Recommendations to discard first 256 or 512 output bytes

• Distinguish from random:  O(230.6) bytes needed

• Attempts to backtrack to initial state from keystream

Keystream Generator

i = 0; j = 0;

loop {

i = (i+1) mod 256;

j = (j+S[i]) mod 256;

Swap(S[i],S[j]);

t = (S[i] + S[j]) mod 256;

ks_byte = S[t]; 

}



Grain-128 proposed is one of the four hardware based 
ciphers enlisted in the eStream portfolio.

Grain is a stream cipher submitted to eSTREAM in 
2004 by Martin Hell, Thomas Johansson and Willi 
Meier.

A number of potential weaknesses in the cipher have 
been identified and corrected in Grain 128a.

 Provides 128-bit security.

Dept. of Computer Science & Engg. 
IIT Kharagpur, India



 Grain-128 stream cipher consists of three main 
building blocks, namely, an NFSR, an LFSR and a 
nonlinear filter function, h(x).

Dept. of Computer Science & Engg. 
IIT Kharagpur, India



 NFSR bits are  bi, bi+1, …, bi+127 and 

LFSR bits are si, si+1, ..., si+127.

The update function of the LFSR is given by,

The NFSR is updated by,

The nonlinear filter function h(.) is given by,



The output bit z is defined as,

An initialization phase is carried out before the cipher 
generates any keystream.

During initialization the cipher is run for 256 rounds 
without producing any keystreams and the output bit is fed 
back to both LFSR and NFSR.

The 128 bit key, k = (k0, k1, … , k127) and the 96 bit 
initialization vector IV = (IV0, IV1, …, IV95) are loaded in the 
NFSR and the LFSR respectively as, bi = ki; 0 <= i <= 127 and 
si = IVi; 0 <= i <= 95, rest of the LFSR bits, (s96, s97, …, s127) 
are loaded with 1.

Dept. of Computer Science & Engg. 
IIT Kharagpur, India



 Algebraic Attack

- Cube Attack

 Side Channel Attacks

- Fault Attack

- Scan attack

Dept. of Computer Science & Engg. 
IIT Kharagpur, India



Dept. of Computer Science & Engg.
IIT Kharagpur, India

Fault injection techniques
 Transient (provisional) and permanent (destructive) 

faults
 Variations to supply voltage

 Variations in the external clock

 Temperature

 White light

 Laser light

 X-rays and ion beams

 Electromagnetic flux



 Fault attacks are one of the most efficient side channel 
attacks known till date.

 In this kind of attack, faults are injected during cipher 
operations. 

 The attacker then analyzes the fault free and faulty cipher-
texts or key-streams to deduce partial or full value of the 
secret key.

 The literature shows that both the block ciphers and 
stream ciphers are vulnerable against fault attack.

 Methods like clock glitch, laser shots have been shown to 
be a practical way of inducing faults in a crypto-system.

Fault Attack Principle

Dept. of Computer Science & Engg. 
IIT Kharagpur, India



Fault Induction by Clock Glitch
 Non – invasive

 Strategy : Switch system clock

 Determine max clock frequency

 Use a faster clock to violate critical path

 Results in setup/hold violation = fault

 Easy/economical to mount

 Can be used to control 

# of faults

 Has been used to inject 

fault in AES

Dept. of Computer Science & Engg. 
IIT Kharagpur, India



Fault Injection by  Scan -Chain
 Non – invasive

 Strategy : Use scan-chain to insert fault
 Scan out intermediate state in test-mode

 Flip-bits in scan-in pattern 

 Run in normal mode = fault in positions of bit-flips

 Easy/economical to mount

 Highest form of controllability over fault

 May not work if some special scan-chain protection 
schemes are in place

 Often protection schemes are avoided to reduce 
overhead
 Very useful fault injection in such cases



Cryptanalysis based on dynamic cube attack and one 
fault based attack (LFSR as a fault target) are the only 
known weaknesses of Grain-128.

We inject faults in the NFSR and show that secret key 
of the cipher can be recovered.

Complexity of our attack is better than the previous 
one.

Dept. of Computer Science & Engg. 
IIT Kharagpur, India



The attacker is able to induce faults at random positions of the 
NFSR of the Grain-128 implementation (hardware or software). 

A fault is a bit-flip in the internal register.
The fault affects exactly one bit of the NFSR at any cycle of 

operation.
A fault to an NFSR bit can be reproduced at any cycle of 

operation, once, it is created.
The attacker is able to determine and control the cycles of 

operation of the implementation, i.e., the timing of the 
implementation is under control of the attacker.

The attacker can reset the implementation to its original state.
The attacker can run the implementation with different IV, 

without changing the key.

Dept. of Computer Science & Engg. 
IIT Kharagpur, India



The following steps are carried out in the attack:

Determining Fault Location in NFSR

Pre-computation of Fault Traces

Determining NFSR bits

Determining LFSR bits

 Inversion of states to obtain key

Dept. of Computer Science & Engg. 
IIT Kharagpur, India



 Experimentally it is seen that, 56 faults on an average are 
required to obtain full internal NFSR bits of the cipher.

 Maximum 256 faults are needed to obtain full LFSR 
state of the cipher.

 The time complexity of the attack is O(221).

Dept. of Computer Science & Engg. 
IIT Kharagpur, India



Dept. of Computer Science & Engg. 
IIT Kharagpur, India
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