

Medical Image Analysis (EE61008)

End-Semester Examination

Full Marks: 80

Spring, 2014-15 Duration of Examination: 3 hours

Credits: 4 Date: Tuesday, 28 April 2015, 9-12 AM

Instructions:

- 1 All questions are compulsory. Marks are indicated in parentheses.
- Please write your name, roll number, subject name and code, date and time of examination on the answer script before 2. attempting any solution.
- 3. Use of only electronic calculators is permitted.
- No extra resources viz. graph papers, log-tables, trigonometric tables would be required. 4.

Question 1:

Identify the following in Fig. 1

- (a) Organ? (1) Liver
- (b) Plane of imaging? (Transverse, Sagittal, Coronal) (1)
- (c) Modality of Imaging? (1) Ultrasound
- (d) Structure / anatomical location of interest? (1) Abdomen

Question 2:

A linear geometry ultrasound transducer has the elements arranged as per the following configuration. The velocity of sound in the media it propagated through it is c and the frequency of the transducer is f.

(Lower)

Let $t_{k,R}$ be the time taken by the ultrasonic pulse originating at the transducer element p_k to reach the point marked as R. Similarly the time taken by the ultrasonic pulse echoed from R to reach the transducer element p_k be $t_{R,k}$. Please answer the following.

- (a) Prove that $t_{k,R} = t_{R,k}$ under the specified conditions.
 - (5)Compute distance between p_k and R. Since speed of sound is same in the same media, so you would mathematically deduce that $t_{k,R} = t_{R,k}$

- (b) If P_k^0 is the power of the ultrasonic pulse emitted at p_k , then what is the power of the echo pulse received at p_{k+1} ? (10)
- (c) What will be the change in the pressure of the received echo pulse at p_{k+1} if the operating frequency is changed from 10MHz to 40MHz?

Question 3:

Consider that you are provided with a 2.5T MRI scanner which has a slice encoding gradient of 40 mT/M. If you are typically required to scan a whole human body (height = ~ 200 cm), then answer the following

- (a) What would be the minimum and maximum magnetic field created in the slide encoding direction? Min = 2.5 T and Max = 2.58 T (3)
- (b) What would be the step size in scanning frequency needed to achieve a slice resolution of
- 4 mm? Freq. step size = 6.8128 kHz (8) (c) What would be the range of Larmour frequencies generated by activating only the slice encoding gradient in this configuration? (4) f_min = 106.45 MHz and f_max = 109.86 MHz

Question 4:

Consider the challenge of registering the image B on to the image A, such that the image B can be rotated by some predefined angle about the underlined pixel.

A =	128	150	176	0	<i>B</i> =	138	0	0	1]
	160	168	1	0		163	1	0	150
	157	<u>0</u>	0	1		157	<u>0</u>	138	164
	163	129	150	160		163	129	150	160

- (a) Evaluate the quality-of-fit measure (QoF) by rotating B and matching it to A at the following angles (0°, 45°, 90°, 135°, 180°) counter-clockwise about the underlined pixel using the following metrics.
 - i. Mean square deviation
 - ii. Correlation coefficient
- (5)(5)
- (b) Find the best match based on these metrics and report on the angle of rotation corresponding to the best match? (5)180 degs

Question 5:

Compute the edge weights at the underlined pixel location in a random walks solver for the 8-connected graph representation of an ultrasound image where similarity across pixels in a scan-line is 100 times less likely to be compared to similarity of pixels along a scan-line. Pixels across diagonal are 10 times more likely to be similar compared to similarity across scan-lines. The scan-lines are vertical. (10)beta v = 100 beta H, and beta D = 10 beta H.

67 72 10 11 1 0 5 32 9 1 57 <u>2</u> 0 15 23 0 11 20 10 1 1 10 23 3 2 10 1 1 22 2 29 10 10 1

(5)

Attenuation at 40MHz is higher than at 10MHz

Question 6:

(a) Compute the TP, FP, TN, FN, Precision, Recall, Sensitivity, Specificity, F-Score, Accuracy for the following RGB color image segmentation problem of optical microscopic histology I and its ground truth M. Seed for Class 0 is $\{(9,9,9)\}$ and Class 1 is $\{(0,0,0)\}$. (10)

$$I = \begin{bmatrix} (1,1,2) & (1,1,1) & (0,0,1) & (10,2,4) \\ (0,1,2) & (1,3,4) & (10,1,2) & (1,3,1) \\ (0,0,0) & (9,9,9) & (9,8,9) & (10,2,10) \\ (1,1,1) & (1,2,1) & (9,10,11) & (10,11,10) \end{bmatrix} \quad M = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}$$

(b) Find the entropy of class distribution of the two classes?

seg = [1 1 1 0; 1 1 1 1; 1 0 0 0; 1 1 0 0]