Medical Image Analysis (EE61008)

Assignment 4

Due: 19 Jan 2015, 3:30 - 4:00 PM, N232 Dept. of Electrical Engineering Type: Solve in class. Spring 2014-15

1. You are provided with a section of the T1 weighted MRI of the Brain (f) and a shape template for the Medulla oblongata (t).

	50	20	30	44	53	10					
f =	30	20	10	1	72	65	<i>t</i> =	1	1	0	1
	54	0	1	4	0	10		0	0	0	0
	32	1	0	1	0	12		0	0	0	0
	20	43	45	0	91	32		1	1	0	1
	5	89	56	72	79	30					_

(a) Identify the plane of imaging of *f* with respect to the conventions for anatomical body planes used for medical imaging, as described in the adjacent figure.

- (b) Compute the quality-of-fit measure (QoF) over the complete domain of f for the pair (*f*,*t*) using the following metrics
 - i. Mean square deviation
 - ii. Correlation coefficient
 - iii. Covariance in Fourier domain
- (c) Indicate the coordinate location where t matches f best?
- (d) Which of the earlier computed QoF measures offers the maximum dynamic range in the computed metric? Substantiate with respect to this numerical problem.
- (e) Which of the QoF measures is robust to intensity shifts of the image? Substantiate with respect to this numerical problem.
- (f) Compute the QoF measures with respect to (f, t_1) where $t_1=50 \times t$?
- (g) Verify if you have obtained the same best match location is in (c)?
- (h) Comment on your answers for (d) and (e)?
- (i) Compute the QoF measures with respect to (f, t_2) where $t_2 = -23 \times t + 1$?
- (j) Re-evaluate your responses for (g) and (h)?

2. Consider the following image of blood vascular network in a section of the retina

	67	72	1	0	10	11
	5	32	1	1	9	57
f _	15	23	0	2	11	20
J —	10	10	1	0	1	23
	10	3	1	1	2	22
	10	10	1	1	2	29

- (a) Suggest an average image intensity invariant method of segmenting the blood vessels? Implement the method and obtain the result of segmentation.
- (b) Suggest a local intensity invariant method of vessel segmentation? Implement the method and obtain the result of segmentation. Mention the output of each of the steps involved in the process.
- (c) Compute the medial axis of the segmented blood vessel?
- (d) Compute the thickness of the vessel in pixel units along each point on the medial axis?
- (e) What is the mean and variance of the vessel thickness?