Medical Image Analysis (EE61008)

Assignment 10

Due: 30 Mar 2015, 2:30 - 4:30 PM, N232 Dept. of Electrical Engineering Type: Solve in class. Spring 2014-15

1. Consider the beamforming arrangement of an ultrasound scanner and solve for the following assuming c to be the velocity of sound in the media, the transducer to have a frequency of f and elucidating any further assumptions / notations used in the solution.

- a. Find the transmit beamformer triggering sequence for each of the transducer elements p_j where $j \in [0, N-1]$ such that the pulses from all of the elements arrive at the focus point R on the scanline corresponding to element p_k and oriented at an angle θ to the normal from the plane of transducer elements? (Hint: Sec 4.1, SPRAB12)
- b. Find the transmitter apodization factor such that the pulses arriving from all elements are of same amplitude on the focus point?

(Hint: Sec 4.1 and Sec 2.4.2, SPRAB12)

- c. Find the receiver apodization factor for all the receiver elements when a pulse is received from the focus point?
- 2. An ultrasonic imaging transducer T operating at a frequency of 10MHz is used to image an internal organ comprising of soft tissues with different acoustic indices. The transducer is placed on a tissue with an acoustic index of Z_1 . T_1 , T_2 and T_3 are location of three piezoelectric elements on the transducer T. Consider that the transducer is focused on the junction between the two tissues characterized by acoustic indices Z_1 and Z_2 . F_1 is a point on this junction as indicated in the figure. Consider a compounded excitation and image acquisition strategy whereby T_1 , T_2 and T_3 are excited with appropriate time delay to constructively focus energy at F_1 and the reflected energy is sensed with appropriate time delay and amplification prior to beam formation. The inter-element spacing between the transducer elements is δ

and the point F_1 being imaged is at a distance of R_1 from T_1 . The velocity of sound in the tissue with acoustic index Z_1 is c_1 . θ is the angle formed by the line R_1 to the horizontal line connecting T_1 , T_2 and T_3 .

- a. If P₀ is the acoustic pressure of the ultrasonic wave originating at T₁ and no compounded excitation system is switched on, what would be the magnitude of pressure (P_{T1,F1}) of the wave reflected from F₁ and sensed at T₁? Specify any assumptions if made or any variables if introduced.
- b. If we switch on a compounded excitation arrangement, where $\tau_{1,2}$ is the time difference between switching on T₂ and T₁, and $\tau_{2,3}$ is the time difference between switching on T₃ and T₂, then find the analytical expressions of $\tau_{1,2}$ and $\tau_{2,3}$ in terms of the information provided herein?
- c. In a compounded image acquisition arrangement, signal acquisitions at T₁, T₂ and T₃ are appropriately amplified to match their signal strength using the time gain control circuitry. If A₁ is the amplification factor of the signal sensed by T₁, then what are the amplification factors A₂ and A₃ for the transducer T₂ and T₃ respectively in terms of A₁?
- d. Does a change in the operating frequency of the transducer to 63MHz induce any change in $\tau_{1,2}$ and $\tau_{2,3}$ and the ratio A_2/A_1 and A_3/A_1 ?
- 3. Find the following parameters for an OCT system which operates using a 1,325 nm laser source with BW of 100 nm
 - a. Axial resolution (air equivalent) along a scan line? (Hint: Pg. 24, Fujimoto)
 - b. What should be the spot size of beam incident on objective lens of focal length 20 cm such that the transverse resolution is $6 \mu m$?
 - c. What would be the change in axial and transverse resolution when imaging in a media with refractive index of 1.53?
 - d. If the BW of the system is increased to 200 nm, what would be the changes in the air equivalent axial and transverse resolution of the OCT imaging system?
 - e. If the OCT now operates using a 800 nm laser source with BW of 100 nm, what would be the air equivalent axial and transverse resolution keeping the other arrangement of optics constant?
- 4. Consider a 1.5 T MRI scanner with a slice encoding gradient of 10 mT/m. What should be the step size in scanning frequency to achieve a slice resolution of 10 mm? (Hint: Sec 5.4.1) What would be the maximum scanning time at this resolution when max T1 relaxation is 2400 ms and T2 relaxation is 160 ms for CSF?