

Digital Image Processing (EE60062)

Mid-Semester Examination

Autumn, 2015-16

Credits: 4Full Marks: 70Duration of Examination: 2 hoursDate:14 September 2015, MondayTime: 2:00 PM - 4:00 PM

Instructions:

- 1. All questions are compulsory. Marks are indicated in parentheses. This question paper has been cross checked and no errors exist.
- 2. Please write your name, roll number, subject name and code, date and time of examination on the answer script before attempting any solution.
- 3. Use of only electronic calculators is permitted.
- 4. No extra resources viz. graph papers, log-tables, trigonometric tables would be required.

Question 1:

An image sensor with 1600×900 elements is used to record a digital image in grayscale intensity format. The analog-to-digital convertor (ADC) attached to the sensor has a 14 bit resolution. The image can be stored in a file which allows byte mode read-/write capability. What would be the size of the portable pixel map (ppm) in bytes used to store a full fidelity image recorded with this sensor? (5 marks)

Question 2:

(a) Define the adjacency neighborhood relationship between the 0-marked pixels in these images? (4 marks)

	1	I	I	0		1	I	0	0	
T	1	1	0	1	T	1	1	0	1	
<i>I</i> ₁ =	1	0	0	1	$I_2 =$	1	0	0	1	
	1	<u>0</u>	1	1		1	<u>0</u>	1	1	
			-	_			-			

(b) What is the length of path traversal between the underlined pixels in these images as measured using (i) Euclidean distance, (ii) city-block (Manhattan) distance measures?(6 marks)

Question 3:

(a) What is the maximum number of bits needed to store the following image? (1 mark)

 $I_{3} = \begin{bmatrix} (4,4,4) & (4,4,4) & (0,0,0) & (6,6,6) \\ (2,2,2) & (2,2,2) & (2,2,2) & (0,0,0) \\ (2,2,2) & (4,4,4) & (4,4,4) & (7,7,7) \\ (1,1,1) & (3,3,3) & (0,0,7) & (0,7,0) \end{bmatrix}$

(b) Convert I_3 represented in the RGB format to (i) CYM and (ii) CYMK formats. (4 marks)

Question 4:

(a) Compute the histogram of intensity of I_3 ?	(2 marks)
(b) Compute the pdf of intensity of I_3 ?	(2 marks)
(c) Find the maxima and minima locations on the pdf of intensity of I_3 ?	(6 marks)

Question 5:

The zero-frequency component of the DFT of an 1000×1000 size image is 127.89×10^6 . Find the mean intensity of the image? Derive the solution with the steps involved in the process. (5 marks)

Question 6:

An image F is to be transformed to an image G. Deduce the value of G(2,3) = F(2.5,4.5) = ?given that the transformation follows the bilinear interpolation rule and F(2,4) = 20, F(2,5) = 0, F(3,4) = 20, F(3,5) = 20. Provide detailed steps. (10 marks)

Question 7:

Match the histogram of intensity of I_3 to that of the histogram of the red-channel of I_3 ? Provide details of the steps involved and mention the image matrix after matching. (10 marks)

Question 8:

Prove that convolution of an image with an averaging kernel yields the low pass filtered version of the image. Mention all assumptions and conditions. (5 marks)

Question 9:

(a) Derive an analytical expression for the Laplacian-of-Gaussian (LoG) kernel of any arbitrary size defined with σ as the isotropic standard deviation of the 2-D Gaussian kernel. (5 marks) (b) Derive the filtered response at the underlined pixel in the following image filtered using the homogeneous mask area filter? (5 marks)

1	1	1	2	3
1	1	1	3	4
2	1	1	5	6
3	5	6	9	1
4	7	8	0	0