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1. Introduction 

The first week of the laboratory covers some basic examples of FIR and IIR filters, and 

then introduces the concepts of FIR filter design. Then the second week covers systematic 

methods of designing both FIR and IIR filters. 

2. Background 

In digital signal processing applications, it is often necessary to change the relative 

amplitudes of frequency components or remove undesired frequencies of a signal. This 

process is called filtering. Digital filters are used in a variety of applications. In 

Laboratory 4, we saw that digital filters may be used in systems that perform 

interpolation and decimation on discrete-time signals. Digital filters are also used in 

audio systems that allow the listener to adjust the bass (low-frequency energy) and the 

treble (high frequency energy) of audio signals. 

Digital filter design requires the use of both frequency domain and time domain 

techniques. This is because filter design specifications are often given in the frequency 

domain, but filters are usually implemented in the time domain with a difference 

equation. Typically, frequency domain analysis is done using the Z-transform and the 

discrete-time Fourier Transform (DTFT). 

In general, a linear and time-invariant causal digital filter with input 𝑥[𝑛] and output 

𝑦[𝑛] may be specified by its difference equation 

𝑦[𝑛] = ∑ 𝑏𝑖𝑥[𝑛 − 𝑖]

𝑁−1

𝑖=0

− ∑ 𝑎𝑘𝑦[𝑛 − 𝑘]

𝑀

𝑘=1

 

   (1) 

where 𝑏𝑖 and 𝑎𝑘 are coefficients which parameterize the filter. This filter is said to have 

𝑁 zeros and 𝑀 poles. Each new value of the output signal, 𝑦[𝑛], is determined by past 

values of the output, and by present and past values of the input. The impulse response, 

ℎ[𝑛], is the response of the filter to an input of [𝑛], and is therefore the solution to the 

recursive difference equation 

ℎ[𝑛] = ∑ 𝑏𝑖𝛿[𝑛 − 𝑖]

𝑁−1

𝑖=0

− ∑ 𝑎𝑘ℎ[𝑛 − 𝑘]

𝑀

𝑘=1

 

  (2) 

There are two general classes of digital filters: infinite impulse response (IIR) and finite 

impulse response (FIR). The FIR case occurs when 𝑎𝑘 = 0, for all 𝑘. Such a filter is said 

to have no poles, only zeros. In this case, the difference equation (2) becomes 

ℎ[𝑛] = ∑ 𝑏𝑖𝛿[𝑛 − 𝑖]

𝑁−1

𝑖=0

 

  (3) 

Since (3) is no longer recursive, the impulse response has finite duration 𝑁. 

In the case where 𝑎𝑘 ≠ 0, the difference equation usually represents an IIR filter. In this 

case, (2) will usually generate an impulse response which has non-zero values as n → ∞. 
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However, later we will see that for certain values of 𝑎𝑘 ≠ 0 and 𝑏𝑖, it is possible to 

generate an FIR filter response. 

The Z-transform is the major tool used for analyzing the frequency response of filters and 

their difference equations. The Z-transform of a discrete-time signal, 𝑥[𝑛], is given by 

𝑋(𝑧) = ∑ 𝑥[𝑛]𝑧−𝑛

∞

𝑛=−∞

 

   

where 𝑧 is a complex variable. The DTFT may be thought of as a special case of the Z-

transform where 𝑧 is evaluated on the unit circle in the complex plane. 

𝑋(𝑒𝑗𝜔) = 𝑋(𝑧)|𝑧=𝑒𝑗𝜔 = ∑ 𝑥[𝑛]𝑒−𝑗𝜔𝑛

∞

𝑛=−∞

 

   

From the definition of the Z-transform, a change of variable 𝑚 = 𝑛 − 𝐾 shows that a delay 

of 𝐾 samples in the time domain is equivalent to multiplication by 𝑧−𝐾  in the Z-transform 

domain. 

𝑥[𝑛 − 𝐾]  
𝑧

↔ 𝑧−𝐾𝑋(𝑧) 

   

We may use this fact to re-write Eq. (1) in the Z-transform domain, by taking Z-

transforms of both sides of the equation: 

𝑌(𝑧) = ∑ 𝑏𝑖𝑧−𝑖𝑋(𝑧)

𝑁−1

𝑖=0

− ∑ 𝑎𝑘𝑧−𝑘𝑌(𝑧)

𝑀

𝑘=1

 

𝑌(𝑧) (1 + ∑ 𝑎𝑘𝑧−𝑘

𝑀

𝑘=1

) = 𝑋(𝑧) ∑ 𝑏𝑖𝑧−𝑖

𝑁−1

𝑖=0

 

𝐻(𝑧) ≜
𝑌(𝑧)

𝑋(𝑧)
=

∑ 𝑏𝑖𝑧−𝑖𝑁−1
𝑖=0

(1 + ∑ 𝑎𝑘𝑧−𝑘𝑀
𝑘=1 )

 

From this formula, we see that any filter which can be represented by a linear difference 

equation with constant coefficients has a rational transfer function (i.e. a transfer 

function which is a ratio of polynomials). From this result, we may compute the frequency 

response of the filter by evaluating H(z) on the unit circle: 

𝐻(𝑒𝑗𝜔) =
∑ 𝑏𝑖𝑒−𝑗𝜔𝑖𝑁−1

𝑖=0

(1 + ∑ 𝑎𝑘𝑒−𝑗𝜔𝑘𝑀
𝑘=1 )

 

There are many different methods for implementing a general recursive difference 

equation of the form (1). Depending on the application, some methods may be more robust 

to quantization error, require fewer multiplies or adds, or require less memory. Fig. 1 

shows a system diagram known as the direct form implementation; it works for any 

discrete-time filter described by difference equation (1). Note that the boxes containing 

the symbol 𝑧−1 represent unit delays, while a parameter written next to a signal path 

represents multiplication by that parameter. 
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Figure 1: Direct form implementation for a discrete-time filter described by a general 

difference equation of the form in equation (1). 

3. Design of a Simple FIR Filter 

Download nspeech1.mat from 

https://engineering.purdue.edu/VISE/ee438L/lab5/data/nspeech1.zip 

Download DTFT.m from 

https://engineering.purdue.edu/VISE/ee438L/lab5/data/DTFT.zip 

 

Figure 2: Location of two zeros for a simple FIR filter. 

To illustrate the use of zeros in filter design, you will design a simple second order FIR 

filter with the two zeros on the unit circle as shown in Fig. 2. In order for the filter’s 

impulse response to be real-valued, the two zeros must be complex conjugates of one 

another: 

𝑧1 = 𝑒𝑗𝜃 , 𝑧2 = 𝑒−𝑗𝜃 

where 𝜃 is the angle of 𝑧1 relative to the positive real axis. We will see later that 𝜃 ∈ [0, 𝜋] 

may be interpreted as the location of the zeros in the frequency response. 
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The transfer function for this filter is given by 

𝐻𝑓(𝑧) = (1 − 𝑧1𝑧−1)(1 − 𝑧2𝑧−1) = 1 − 2 cos 𝜃 𝑧−1 + 𝑧−2 

Use this transfer function to determine the difference equation for this filter. Then draw 

the corresponding system diagram and compute the filter’s impulse response ℎ[𝑛].  

This filter is an FIR filter because it has impulse response ℎ[𝑛] of finite duration. Any 

filter with only zeros and no poles other than those at 0 and ±∞ is an FIR filter. Zeros in 

the transfer function represent frequencies that are not passed through the filter. This 

can be useful for removing unwanted frequencies in a signal. The fact that 𝐻𝑓(𝑧) has zeros 

at 𝑒±𝑗𝜃 implies that 𝐻𝑓(𝑒±𝑗𝜃) = 0. This means that the filter will not pass pure sine waves 

at a frequency of 𝜔 = 𝜃. 

Use Matlab to compute and plot the magnitude of the filter’s frequency response |𝐻𝑓(𝑒𝑗𝜔)| 

as a function of 𝜔 on the interval−𝜋 < 𝜔 < 𝜋, for the following three values of 𝜃: 

i) 𝜃 = 𝜋 6⁄  

ii) 𝜃 = 𝜋 3⁄  

iii) 𝜃 = 𝜋 2⁄  

Put all three plots on the same figure using the subplot command. 

 

In the next experiment, we will use the filter 𝐻𝑓(𝑧) to remove an undesirable sinusoidal 

interference from a speech signal. To run the experiment, first download the audio signal 

nspeech1.mat, and the M-file DTFT.m Load nspeech1.mat into Matlab using the 

command load nspeech1. This will load the signal nspeech1 into the workspace. Play 

nspeech1 using the sound command, and then plot 101 samples of the signal for the time 

indices (100:200). 

We will next use the DTFT command to compute samples of the DTFT of the audio signal. 

The DTFT command has the syntax [X,w]=DTFT(x,M), where x is a signal which is 

assumed to start at time n = 0, and M specifies the number of output points of the DTFT. 

The command [X,w]=DTFT(x,0) will generate a DTFT that is the same duration as the 

input; if this is not sufficient, it may be increased by specifying M. The outputs of the 

function are a vector X containing the samples of the DTFT, and a vector w containing 

the corresponding frequencies of these samples. 

Compute the magnitude of the DTFT of 1001 samples of the audio signal for the time 

indices (100:1100). Plot the magnitude of the DTFT samples versus frequency for|𝜔| < 𝜋. 

Notice that there are two large peaks corresponding to the sinusoidal interference signal. 

Use the Matlab max command to determine the exact frequency of the peaks. This will 

be the value of 𝜃 that we will use for filtering with 𝐻𝑓(𝑧). Hint: Use the command 

Lab Report: 

Submit the difference equation, system diagram, and the analytical expression of the 

impulse response for the filter 𝐻𝑓(𝑧). Also submit the plot of the magnitude response 

for the three values of 𝜃. Explain how the value of 𝜃 affects the magnitude of the filter’s 

frequency response. 
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[Xmax,Imax]=max(abs(X)) to find the value and index of the maximum element in X. 

𝜃 can be derived using this index. 

Write a Matlab function FIRfilter(x) that implements the filter 𝐻𝑓(𝑧) with the 

measured value of 𝜃 and outputs the filtered signal (Hint: Use convolution). Apply the 

new function FIRfilter to the nspeech1 vector to attenuate the sinusoidal interference. 

Listen to the filtered signal to hear the effects of the filter. Plot 101 samples of the signal 

for the time indices (100:200), and plot the magnitude of the DTFT of 1001 samples of 

the filtered signal for the time indices (100:1100). 

 

4. Design of a Simple IIR Filter 

Download pcm.mat https://engineering.purdue.edu/VISE/ee438L/lab5/data/pcm.zip 

While zeros attenuate a filtered signal, poles amplify signals that are near their 

frequency. In this section, we will illustrate how poles can be used to separate a narrow-

band signal from adjacent noise. Such filters are commonly used to separate modulated 

signals from background noise in applications such as radio-frequency demodulation. 

Consider the following transfer function for a second order IIR filter with complex-

conjugate poles: 

𝐻𝑖(𝑧) =
1 − 𝑟

(1 − 𝑟𝑒𝑗𝜃𝑧−1)(1 − 𝑟𝑒−𝑗𝜃𝑧−1)
=

1 − 𝑟

1 − 2𝑟 cos(𝜃) 𝑧−1 + 𝑟2𝑧−2
 

 

Figure 3: Location of two poles for a simple IIR filter. 

Figure 3 shows the locations of the two poles of this filter. The poles have the form 

𝑝1 = 𝑟𝑒𝑗𝜃 , 𝑝2 = 𝑟𝑒−𝑗𝜃 

Lab Report: 

For both the original audio signal and the filtered output, hand in the following: 

• The time domain plot of 101 samples. 

• The plot of the magnitude of the DTFT for 1001 samples. 

Also hand in the code for the FIRfilter filtering function. Comment on how the 

frequency content of the signal changed after filtering. Is the filter we used a lowpass, 

highpass, bandpass, or a bandstop filter? Comment on how the filtering changed the 

quality of the audio signal. 
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where 𝑟 is the distance from the origin, and 𝜃 is the angle of 𝑝1 relative to the positive 

real axis. From the theory of Z-transforms, we know that a causal filter is stable if and 

only if its poles are located within the unit circle. This implies that this filter is stable if 

and only if |𝑟| < 1. However, we will see that by locating the poles close to the unit circle, 

the filter’s bandwidth may be made extremely narrow around 𝜃. 

This two-pole system is an example of an IIR filter because its impulse response has 

infinite duration. Any filter with nontrivial poles (not at 𝑧 = 0 or ±∞) is an IIR filter 

unless the poles are cancelled by zeros. 

Calculate the magnitude of the filter’s frequency response |𝐻𝑖(𝑒𝑗𝜔)| on |𝜔| < 𝜋 for 𝜃 = 𝜋
3⁄  

and the following three values of 𝑟. 

• 𝑟 = 0.99 

• 𝑟 = 0.9 

• 𝑟 = 0.7 

Put all three plots on the same figure using the subplot command.  

 

In the following experiment, we will use the filter 𝐻𝑖(𝑧) to separate a modulated sinusoid 

from background noise. To run the experiment, first download the file pcm.mat and load 

it into the Matlab workspace using the command load pcm . Play pcm using the sound 

command. Plot 101 samples of the signal for indices (100:200), and then compute the 

magnitude of the DTFT of 1001 samples of pcm using the time indices (100:1100). Plot 

the magnitude of the DTFT samples versus radial frequency for |𝜔| < 𝜋. The two peaks 

in the spectrum correspond to the center frequency of the modulated signal. The low 

amplitude wideband content is the background noise. In this exercise, you will use the 

IIR filter described above to amplify the desired signal, relative to the background noise. 

The pcm signal is modulated at 3146Hz and sampled at 8kHz. Use these values to 

calculate the value of 𝜃 for the filter 𝐻𝑖(𝑧). Remember from the sampling theorem that a 

radial frequency of 2𝜋 corresponds to the sampling frequency. 

Write a Matlab function IIRfilter(x) that implements the filter 𝐻𝑖(𝑧). In this case, 

you need to use a for loop to implement the recursive difference equation. Use your 

calculated value of 𝜃 and r = 0.995. You can assume that 𝑦(𝑛) is equal to 0 for negative 

values of 𝑛. Apply the new command IIRfilter to the signal pcm to separate the desired 

signal from the background noise, and listen to the filtered signal to hear the effects. Plot 

the filtered signal for indices (100:200), and then compute the DTFT of 1001 samples of 

the filtered signal using the time indices (100:1100). Plot the magnitude of this DTFT. In 

order to see the DTFT around 𝜔 = 𝜃 more clearly, plot also the portion of this DTFT for 

the values of 𝜔 in the range[𝜃 − 0.02, 𝜃 + 0.02]. Use your calculated value of 𝜃. 

Lab Report: 

Submit the difference equation, system diagram and the analytical expression of the 

impulse response for 𝐻𝑖(𝑧). (Hint: The frequency response of the system can be 

obtained by restricting the z-transform to the unit circle. So the DTFT of ℎ𝑖[𝑛] is 

𝐻𝑖(𝑒𝑗𝜔). Therefore, to get ℎ𝑖[𝑛], you can take the inverse Fourier transform of 𝐻𝑖(𝑒𝑗𝜔).) 

Also submit the plot of the magnitude of the frequency response for each value of 𝑟. 

Explain how the value of 𝑟 affects this magnitude. 
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5. Lowpass Filter Design Parameters 

Download nspeech2.mat  

https://engineering.purdue.edu/VISE/ee438L/lab5/data/nspeech2.zip 

Oftentimes it is necessary to design a good approximation to an ideal lowpass, highpass 

or bandpass filter. Figure 4 illustrates the typical characteristics of a real low-pass filter. 

The frequencies |𝜔| < 𝜔𝑝 are known as the passband, and the frequencies 𝜔𝑠 < |𝜔| ≤ 𝜋 

are the stopband. For any real filter, 𝜔𝑝 < 𝜔𝑠. The range of frequencies 𝜔𝑝 ≤ 𝜔 ≤ 𝜔𝑠 is 

known as the transition band. The magnitude of the filter response, 𝐻(𝑒𝑗𝜔), is 

constrained in the passband and stopband by the following two equations 

|𝐻(𝑒𝑗𝜔) − 1| ≤ 𝛿𝑝 for |𝜔| < 𝜔𝑝 

|𝐻(𝑒𝑗𝜔)| ≤ 𝛿𝑠 for 𝜔𝑠 < |𝜔| ≤ 𝜋 

where 𝛿𝑝 and 𝛿𝑠 are known as the passband and stopband ripple respectively. Most 

lowpass filter design techniques depend on the specification of these four parameters: 𝜔𝑝, 

𝜔𝑠, 𝛿𝑝 and 𝛿𝑠. 

 

Figure 5: DTFT of a section of noisy speech. 

To illustrate the selection of these parameters consider the problem of filtering out 

background noise from a speech signal. Figure 5 shows the magnitude of the DTFT over 

a window of such a signal, called nspeech2. Notice that there are two main components 

Lab Report: 

For both the pcm signal and the filtered output, submit the following: 

• The time domain plot of the signal for 101 points. 

• The plot of the magnitude of the DTFT computed from 1001 samples of the 

signal. 

• The plot of the magnitude of the DTFT for 𝜔 in the range [𝜃 − 0.02, 𝜃 + 0.02]. 

Also hand in the code for the IIRfilter filtering function. Comment on how the 

signal looks and sounds before and after filtering. How would you expect changes in r 

to change the filtered output? Would a value of r = 0.9999999 be effective for this 

application? Why might such a value for r be ill-advised? (Consider the spectrum of 

the desired signal around 𝜔 = 𝜃.) 
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in nspeech2: one at the low frequencies and one at the high. The high frequency signal is 

noise, and it is band limited to |𝜔| > 2.2. The low frequency signal is speech and it is band 

limited to |𝜔| < 1.8. Download the file nspeech2.mat and load it into the Matlab 

workspace. It contains the signal nspeech2 from Fig. 5. Play the nspeech2 using the sound 

command and note the quality of the speech and background noise. 

In the following sections, we will compute low-pass filters for separating the speech and 

noise using a number of different methods. 

5.1. Filter Design Using Truncation 

Ideally, a low-pass filter with cutoff frequency 𝜔𝑐 should have a frequency response of 

𝐻𝑖𝑑𝑒𝑎𝑙(𝑒𝑗𝜔) = {
1 |𝜔| ≤ 𝜔𝑐

0 𝜔𝑐 < |𝜔| ≤ 𝜋
 

and a corresponding impulse response of 

ℎ𝑖𝑑𝑒𝑎𝑙(𝑛) =
𝜔𝑐

𝜋
sinc (

𝜔𝑐𝑛

𝜋
) for −∞ < 𝑛 < ∞    (4) 

However, no real filter can have this frequency response because ℎ𝑖𝑑𝑒𝑎𝑙(𝑛) is infinite in 

duration. 

One method for creating a realizable approximation to an ideal filter is to truncate this 

impulse response outside of 𝑛 ∈ [−𝑀, 𝑀]. 

ℎ𝑡𝑟𝑢𝑛𝑐(𝑛) = {

𝜔𝑐

𝜋
sinc (

𝜔𝑐

𝜋
𝑛) 𝑛 = −𝑀, … , −1,0,1, … , 𝑀

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

 

Figure 6: Frequency response of low-pass filter designed using the truncation method. 

Figure 6 shows the magnitude response of the lowpass filter with cutoff frequency 𝜔𝑐 =

2.0, with the impulse response truncated to 𝑛 ∈ [−10,10]. Notice the oscillatory behaviour 

of the magnitude response near the cutoff frequency and the large amount of ripple in 

the stopband. 

Due to the modulation property of the DTFT, the frequency response of the truncated 

filter is the result of convolving the magnitude response of the ideal filter (a rect) with 

the DTFT of the truncating window. The DTFT of the truncating window, shown in Fig. 
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7, is similar to a sinc function since it is the DTFT of a sampled rectangular window. 

Notice that this DTFT has very large sidelobes, which lead to large stopband ripple in 

the final filter. 

 

Figure 7: DTFT of a rectangular window of size 21. 

A truncated impulse response is of finite duration, yet the filter is still noncausal. In 

order to make the FIR filter causal, it must be shifted to the right by 𝑀 units. For a filter 

of size 𝑁 =  2𝑀 +  1 this shifted and truncated filter is given by 

ℎ(𝑛) = {
𝜔𝑐

𝜋
sinc (

𝜔𝑐

𝜋
(𝑛 −

𝑁−1

2
)) 𝑛 = 0,1, … , 𝑁 − 1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (5) 

This time shift of (𝑁 − 1)/2 units to the right corresponds to multiplying the frequency 

response by𝑒−𝑗𝜔(𝑁−1)/2. It does not affect the magnitude response of the filter, but adds a 

factor of −𝑗𝜔(𝑁 − 1)/2 to the phase response. Such a filter is called linear phase because 

the phase is a linear function of 𝜔. 

It is interesting to see that the filter formula of (5) is valid for 𝑁 both even and odd. While 

both of these filters are linear phase, they have different characteristics in the time 

domain. When 𝑁 is odd, then the value at 𝑛 = (𝑁 − 1)/2 is sampled at the peak of the sinc 

function, but when 𝑁 is even, then the two values at 𝑛 = 𝑁/2 and 𝑛 = (𝑁/2) − 1 straddle 

the peak. 

To examine the effect of filter size on the frequency characteristics of the filter, write a 

Matlab function LPFtrunc(N) that computes the truncated and shifted impulse 

response of size N for a low pass filter with a cutoff frequency of 𝜔𝑐 = 2.0. For each of the 

following filter sizes, plot the magnitude of the filter’s DTFT in decibels. Hints: The 

magnitude of the response in decibels is given by |𝐻𝑑𝐵(𝑒𝑗𝜔)| = 20 log10|𝐻(𝑒𝑗𝜔)|. Note that 

the log command in Matlab computes the natural logarithm. Therefore, use the log10 

command to compute decibels. To get an accurate representation of the DTFT make sure 

that you compute at least 512 sample points using the command 
[X,w]=DTFT(filter_response,512). 

• 𝑁 = 21 

• 𝑁 = 101 

Now download the noisy speech signal nspeech2.mat, and load it into the Matlab 

workspace. Apply the two filters with the above sizes to this signal. Since these are FIR 

filters, you can simply convolve them with the audio signal. Listen carefully to the 
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unfiltered and filtered signals, and note the result. Can you hear a difference between 

the two filtered signals? In order to hear the filtered signals better, you may want to 

multiply each of them by 2 or 3 before using sound. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Acknowledgement: This manual is based on “Purdue University: ECE438 - Digital Signal Processing with 

Applications (2016)” by Prof. Charles Bouman and Prof. Mireille Boutin. 

Lab Report: 

• Submit the plots of the magnitude response for the two filters (not in decibels). 

On each of the plots, mark the passband, the transition band and the stopband. 

• Submit the plots of the magnitude response in decibels for the two filters. 

• Explain how the filter size effects the stopband ripple. Why does it have this 

effect? 

• Comment on the quality of the filtered signals. Does the filter size have a 

noticeable effect on the audio quality? 


