
Department of Electrical Engineering 

Indian Institute of Technology Kharagpur 
 

Digital Signal Processing Laboratory (EE39203) 
Autumn, 2022-23  

 

Experiment 7: Fast Fourier Transform  
Slot:    Date:  

 

 

 
Student Name:     Roll No.: 

 
 

 

Grading Rubric 

 Tick the best applicable per row 

Points  Below 

Expectation 

Lacking 

in Some 

Meets all 

Expectation 

Completeness of the report     

Organization of the report (5 pts) 
With cover sheet, answers are in the same 

order as questions in the lab, copies of the 

questions are included in report, prepared 

in LaTeX 

    

Quality of figures (5 pts) 
Correctly labelled with title, x-axis, y-axis, 

and name(s) 

    

Understanding of the frequency 

range of DFT and effects of zero-

padding (35 pts) 
DFT and DTFT plots, Matlab code (DTFT 

samples), questions 

    

Implementation of Divide-and-

Conquer DFT and FFT (40 pts) 
Matlab codes (dcDFT, fft2, fft4, fft8, fft 

stages), questions 

    

Computation time comparison (15 

pts) 
Runtimes, questions 

    

TOTAL (100 pts)  
 

 

 

 

 

 

 

Total Points (100):   TA Name:    TA Initials:  

 



EE39203 Digital Signal Processing Laboratory  Autumn 2022-23 

Experiment 7: Fast Fourier Transform 

Department of Electrical Engineering, Indian Institute of Technology Kharagpur Page 2 of 8 

1. Introduction 

This section continues the analysis of the DFT done earlier 

𝐷𝐹𝑇: 𝑋𝑁[𝑘] = ∑ 𝑥[𝑛]𝑒−𝑗2𝜋𝑘𝑛/𝑁

𝑁−1

𝑛=0

 

   (17) 

𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝐷𝐹𝑇: 𝑥[𝑛] =
1

𝑁
∑ 𝑋𝑁[𝑘]𝑒−𝑗2𝜋𝑘𝑛/𝑁

𝑁−1

𝑘=0

 

   (18) 

1.1. Shifting the Frequency Range 

In this section, we will illustrate a representation for the DFT of equation (17) that is a 

bit more intuitive. First create a Hamming window 𝑥 of length 𝑁 = 20, using the Matlab 

command x = hamming(20). Then use your matlab function DFTsum to compute the 

20 point DFT of 𝑥. Plot the magnitude of the DFT, |𝑋20[𝑘]|, versus the index 𝑘. Remember 

that the DFT index 𝑘 starts at 0 not 1! 

 

Our plot of the DFT has two disadvantages. First, the DFT values are plotted against 𝑘 

rather then the frequency 𝜔. Second, the arrangement of frequency samples in the DFT 

goes from 0 to 2𝜋 rather than from −𝜋 to 𝜋, as is conventional with the DTFT. In order 

to plot the DFT values similar to a conventional DTFT plot, we must compute the vector 

of frequencies in radians per sample, and then “rotate” the plot to produce the more 

familiar range, −𝜋 to 𝜋. 

Let’s first consider the vector w of frequencies in radians per sample. Each element of w 

should be the frequency of the corresponding DFT sample 𝑋[𝑘], which can be computed 

by 

𝜔 = 2𝜋𝑘/𝑁 𝑘 ∈ [0, … , 𝑁 − 1] 

   (19) 

However, the frequencies should also lie in the range from −𝜋 to 𝜋. Therefore, if 𝜔 ≥ 𝜋, 

then it should be set to 𝜔 − 2𝜋. An easy way of making this change in Matlab 5.1 is 
w(w>=pi) = w(w>=pi)-2*pi. 

The resulting vectors X and w are correct, but out of order. To reorder them, we must 

swap the first and second halves of the vectors. Fortunately, Matlab provides a function 

specifically for this purpose, called fftshift. 

Write a Matlab function to compute samples of the DTFT and their corresponding 

frequencies in the range −𝜋 to 𝜋. Use the syntax 

[X,w] = DTFTsamples(x) 

Lab Report: 

Hand in the plot of the |𝑋20[𝑘]|. Circle the regions of the plot corresponding to low 

frequency components. 
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where x is an N point vector, X is the length N vector of DTFT samples, and w is the 

length N vector of corresponding radial frequencies. Your function DTFTsamples should 

call your function DFTsum and use the Matlab function fftshift. 

Use your function DTFTsamples to compute DTFT samples of the Hamming window of 

length N = 20. Plot the magnitude of these DTFT samples versus frequency in 

rad/sample. 

 

1.2. Zero Padding 

The spacing between samples of the DTFT is determined by the number of points in the 

DFT. This can lead to surprising results when the number of samples is too small. In 

order to illustrate this effect, consider the finite-duration signal 

𝑥[𝑛] = {
sin(0.1𝜋𝑛) : 0 ≤ 𝑛 ≤ 49

0 : 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

   (20) 

In the following, you will compute the DTFT samples of 𝑥[𝑛] using both 𝑁 = 50 and 𝑁 =

200 point DFT’s. Notice that when 𝑁 = 200, most of the samples of 𝑥[𝑛] will be zeros 

because 𝑥[𝑛] = 0 for 𝑛 ≥ 50. This technique is known as “zero padding”, and may be used 

to produce a finer sampling of the DTFT. 

For N = 50 and N = 200, do the following: 

1. Compute the vector x containing the values 𝑥[0], … , 𝑥[𝑁 − 1]. 

2. Compute the samples of 𝑋[𝑘] using your function DTFTsamples. 

3. Plot the magnitude of the DTFT samples versus frequency in rad/sample. 

 

2. The Fast Fourier Transform Algorithm 

We have seen in the preceding sections that the DFT is a very computationally intensive 

operation. In 1965, Cooley and Tukey1 published an algorithm that could be used to 

compute the DFT much more efficiently. Various forms of their algorithm, which came to 

be known as the fast Fourier transform (FFT), had actually been developed much earlier 

by other mathematicians (even dating back to Gauss). It was their paper, however, which 

stimulated a revolution in the field of signal processing. 

It is important to keep in mind at the outset that the FFT is not a new transform. It is 

simply a very efficient way to compute an existing transform, namely the DFT. As we 

saw, a straight forward implementation of the DFT can be computationally expensive 

                                                           
1 J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of complex Fourier series,” 

Mathematics of Computation, vol. 19, no. 90, p. 297-301, April 1965. 

Lab Report: 

1. Hand in the code for your function DTFTsamples. 

2. Hand in the plot of the magnitude of the DTFT samples. 

Lab Report: 

1. Submit your two plots of the DTFT samples for N = 50 and N = 200. 

2. Which plot looks more like the true DTFT? 

3. Explain why the plots look so different. 
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because the number of multiplies grows as the square of the input length (i.e. 𝑁2 for an 

𝑁 point DFT). The FFT reduces this computation using two simple but important 

concepts. The first concept, known as divide-and-conquer, splits the problem into two 

smaller problems. The second concept, known as recursion, applies this divide-and-

conquer method repeatedly until the problem is solved. 

Consider the defining equation for the DFT and assume that 𝑁 is even, so that 𝑁/2 is an 

integer: 

𝑋[𝑘] = ∑ 𝑥[𝑛]𝑒−𝑗2𝜋𝑘𝑛/𝑁

𝑁−1

𝑛=0

 

   (21) 

Here we have dropped the subscript of N in the notation for 𝑋[𝑘]. We will also use the 

notation 

𝑋[𝑘] = DFT𝑁{𝑥[𝑛]} 

to denote the N point DFT of the signal 𝑥[𝑛]. Suppose we break the sum in (21) into two 

sums, one containing all the terms for which 𝑛 is even, and one containing all the terms 

for which 𝑛 is odd: 

𝑋[𝑘] = ∑ 𝑥[𝑛]𝑒−𝑗2𝜋𝑘𝑛/𝑁

𝑁−1

𝑛=0
𝑛 even

+ ∑ 𝑥[𝑛]𝑒−𝑗2𝜋𝑘𝑛/𝑁

𝑁−1

𝑛=0
𝑛 odd

 

   (22) 

We can eliminate the conditions “n even” and “n odd” in (22) by making a change of 

variable in each sum. In the first sum, we replace n by 2m. Then as we sum m from 0 to 

N/2 − 1, n = 2m will take on all even integer values between 0 and N − 2. Similarly, in the 

second sum, we replace n by 2m + 1. Then as we sum m from 0 to N/2 − 1, n = 2m + 1 will 

take on all odd integer values between 0 and N − 1. Thus, we can write 

𝑋[𝑘] = ∑ 𝑥[2𝑚]𝑒−𝑗2𝜋𝑘2𝑚/𝑁

𝑁/2−1

𝑚=0

+ ∑ 𝑥[2𝑚 + 1]𝑒−𝑗2𝜋𝑘(2𝑚+1)/𝑁

𝑁/2−1

𝑚=0

 

   (23) 

Next we rearrange the exponent of the complex exponential in the first sum, and split 

and rearrange the exponent in the second sum to yield 

𝑋[𝑘] = ∑ 𝑥[2𝑚]𝑒−𝑗2𝜋𝑘𝑚/(𝑁/2)

𝑁/2−1

𝑚=0

+ 𝑒−𝑗2𝜋𝑘/𝑁 ∑ 𝑥[2𝑚 + 1]𝑒−𝑗2𝜋𝑘𝑚/(𝑁/2)

𝑁/2−1

𝑚=0

 

   (24) 

Now compare the first sum in (24) with the definition for the DFT given by (21). They 

have exactly the same form if we replace N everywhere in (21) by N/2. Thus the first sum 

in (8) is an N/2 point DFT of the even-numbered data points in the original sequence. 

Similarly, the second sum in (8) is an N/2 point DFT of the odd-numbered data points in 

the original sequence. To obtain the N point DFT of the complete sequence, we multiply 

the DFT of the odd-numbered data points by the complex exponential factor 𝑒−𝑗2𝜋𝑘/𝑁, and 

then simply sum the two N/2 point DFTs. 
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To summarize, we will rewrite (24) according to this interpretation. First, we define two 

new N/2 point data sequences 𝑥0[𝑛] and 𝑥1[𝑛], which contain the even and odd-numbered 

data points from the original N point sequence, respectively: 

𝑥0[𝑛] = 𝑥[2𝑛] 𝑥1[𝑛] = 𝑥[2𝑛 + 1] 

   (25) 

where 𝑛 = 0, … , 𝑁/2. This separation of even and odd points is called decimation in time. 

The N point DFT of 𝑥[𝑛] is then given by 

𝑋[𝑘] = 𝑋0[𝑘] + 𝑒−𝑗2𝜋𝑘/𝑁𝑋1[𝑘] for 𝑘 = 0, … , 𝑁 − 1     

   (26) 

where 𝑋0[𝑘] and 𝑋1[𝑘] are the N/2 point DFT’s of the even and odd points. 

𝑋0[𝑘] = DFT𝑁/2{𝑥0[𝑛]} 𝑋1[𝑘] = DFT𝑁/2{𝑥1[𝑛]} 

   (27) 

While equation (26) requires less computation than the original N point DFT, it can still 

be further simplified. First, note that each N/2 point DFT is periodic with period N/2. This 

means that we need to only compute 𝑋0[𝑘] and 𝑋1[𝑘] for N/2 values of k rather than the N 

values shown in (10). Furthermore, the complex exponential factor 𝑒−𝑗2𝜋𝑘/𝑁 has the 

property that 

−𝑒−𝑗2𝜋
𝑘
𝑁 = 𝑒−𝑗2𝜋

𝑘+𝑁/2
𝑁  

These two facts may be combined to yield a simpler expression for the N point DFT: 

𝑋[𝑘] = 𝑋0[𝑘] + 𝑊𝑁
𝑘𝑋1[𝑘]

𝑋[𝑘 + 𝑁/2] = 𝑋0[𝑘] − 𝑊𝑁
𝑘𝑋1[𝑘]

}  for 𝑘 = 0, … ,
𝑁

2
− 1 

   (28) 

where the complex constants defined by 𝑊𝑁
𝑘 = 𝑒−𝑗2𝜋𝑘/𝑁 are commonly known as the 

twiddle factors. 

 

Figure 2: Divide and conquer DFT of equation (28). The N-point DFT is computed using 

the two N/2-point DFT’s 𝑋0
(𝑁/2)

[𝑘] and 𝑋1
(𝑁/2)

[𝑘]. 

Figure 2 shows a graphical interpretation of (28) which we will refer to as the “divide-

and-conquer DFT”. We start on the left side with the data separated into even and odd 

subsets. We perform an N/2 point DFT on each subset, and then multiply the output of 
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the odd DFT by the required twiddle factors. The first half of the output is computed by 

adding the two branches, while the second half is formed by subtraction. This type of flow 

diagram is conventionally used to describe a fast Fourier transform algorithm. 

2.1. Implementation of Divide-and-Conquer DFT 

In this section, you will implement the DFT transformation using equation (28) and the 

illustration in Fig. 2. Write a Matlab function with the syntax 

X=dcDFT(x) 

where x is a vector of even length N, and X is its DFT. Your function dcDFT should do the 

following: 

1. Separate the samples of x into even and odd points. Hint: The Matlab command 

x0 = x(1:2:N) can be used to obtain the “even” points. 

2. Use your function DFTsum to compute the two N/2 point DFT’s. 

3. Multiply by the twiddle factors 𝑊𝑁
𝑘 = 𝑒−𝑗2𝜋𝑘/𝑁  

4. Combine the two DFT’s to form X. 

Test your function dcDFT by using it to compute the DFT’s of the following signals. 

1. 𝑥[𝑛] = 𝛿[𝑛] for 𝑁 = 10 

2. 𝑥[𝑛] = 1 for 𝑁 = 10 

3. 𝑥[𝑛] = 𝑒𝑗2𝜋𝑛/10 for 𝑁 = 10 

 

2.2. Recursive Divide and Conquer 

The second basic concept underlying the FFT algorithm is that of recursion. Suppose N/2 

is also even. Then we may apply the same decimation-in-time idea to the computation of 

each of the N/2 point DFT’s in Fig. 2. This yields the process depicted in Fig. 3. We now 

have two stages of twiddle factors instead of one. 

How many times can we repeat the process of decimating the input sequence? Suppose N 

is a power of 2, i.e. 𝑁 = 2𝑝 for some integer p. We can then repeatedly decimate the 

sequence until each subsequence contains only two points. It is easily seen from (21) that 

the 2 point DFT is a simple sum and difference of values. 

𝑋[0] = 𝑥[0] + 𝑥[1]

𝑋[1] = 𝑥[0] − 𝑥[1]
 

   (29) 

Lab Report: 

Do the following: 

1. Submit the code for your function dcDFT. 

2. Determine the number of multiplies that are required in this approach to 

computing an N point DFT. (Consider a multiply to be one multiplication of real 

or complex numbers.) HINT: Refer to the diagram of Fig. 2, and remember to 

consider the N/2 point DFTs. 
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Figure 3: Recursion of the decimation-in-time process. Now each N/2-point is calculated 

by combining two N/4-point DFT’s. 

Fig. 4 shows the flow diagram that results for an 8 point DFT when we decimate 3 times. 

Note that there are 3 stages of twiddle factors (in the first stage, the twiddle factors 

simplify to “1”). This is the flow diagram for the complete decimation-in-time 8 point FFT 

algorithm. How many multiplies are required to compute it? 

Write three Matlab functions to compute the 2, 4, and 8-point FFT’s using the syntax 

X = FFT2(x) 

X = FFT4(x) 

X = FFT8(x) 

The function FFT2 should directly compute the 2-point DFT using (29), but the functions 

FFT4 and FFT8 should compute their respective FFT’s using the divide and conquer 

strategy. This means that FFT8 should call FFT4, and FFT4 should call FFT2. 

Test your function FFT8 by using it to compute the DFT’s of the following signals. 

Compare these results to the previous ones. 

1. 𝑥[𝑛] = 𝛿[𝑛] for 𝑁 = 8 

2. 𝑥[𝑛] = 1 for 𝑁 = 8 

3. 𝑥[𝑛] = 𝑒𝑗2𝜋𝑛/8 for 𝑁 = 8 
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Figure 4: 8-point FFT 

 

If you wrote the FFT4 and FFT8 functions properly, they should have almost the exact 

same form. The only difference between them is the length of the input signal, and the 

function called to compute the (N/2)-pt DFTs. Obviously, it’s redundant to write a separate 

function for each specific length DFT when they each have the same form. The preferred 

method is to write a recursive function, which means that the function calls itself within 

the body. It is imperative that a recursive function has a condition for exiting without 

calling itself, otherwise it would never terminate. 

Write a recursive function X = fft_stage(x) that performs one stage of the FFT algorithm 

for a power-of-2 length signal. An outline of the function is as follows: 

1. Determine the length of the input signal. 

2. If N = 2, then the function should just compute the 2-pt DFT as in equation (29), 

and then return. 

3. If N > 2, then the function should perform the FFT steps described previously (i.e. 

decimate, compute (N/2)-pt DFTs, re-combine), calling fft_stage to compute the 

(N/2)-pt DFTs. 

Note that the body of this function should look very similar to previous functions written 

in this lab. Test fft_stage on the three 8-point signals given above, and verify that it 

returns the same results as FFT8. 

 

 

Acknowledgement: This manual is based on “Purdue University: ECE438 - Digital Signal Processing with 

Applications (2016)” by Prof. Charles Bouman and Prof. Mireille Boutin. 

Lab Report: 

1. Submit the code for your functions FFT2, FFT4 and FFT8. 

2. List the output of FFT8 for the case 𝑥[𝑛] = 1 for N = 8. 

3. Calculate the total number of multiplies by twiddle factors required for your 8-

point FFT. (A multiply is a multiplication by a real or complex number.) 

4. Determine a formula for the number of multiplies required for an N = 2p point 

FFT. Leave the expression in terms of N and p. How does this compare to the 

number of multiplies required for direct implementation when p = 10? 

Lab Report: 

Submit the code for your fft_stage function. 


