Tutorial Sheet-1

MATHEMATICS-I(MA10001)

AUTUMN 2019

August 1,2019

1. Verify which functions satisfy the conditions of the Rolle's theorem and if satisfies find c which satisfy the conclusion of the Rolle's theorem:
(a) $f(x)=x^{2}+\cos (x)$ on $\left[\frac{-\pi}{4}, \frac{\pi}{4}\right]$
(b) $f(x)=1-|x-1| \quad$ on $[0,2]$
(c) $f(x)=\sin \left(\frac{1}{x}\right) \quad$ on $\left[\frac{1}{3 \pi}, \frac{1}{2 \pi}\right]$
(d) $f(x)=1-(x-1)^{\frac{2}{3}} \quad$ on $[0,2]$.
2. Calculate $\xi \in(a, b)$ in cauchy MVT for each of the following pairs:
(a) $f(x)=\sin x, g(x)=\cos x$ on $\left[\frac{\pi}{4}, \frac{3 \pi}{4}\right]$,
(b) $f(x)=(1+x)^{\frac{3}{2}}, g(x)=\sqrt{1+x}$ on $\left[0, \frac{1}{2}\right]$.
3. Prove that between any two real roots of the equation $e^{x} \sin x+1=0$ there is atleast one real root of the equation $\tan x+1=0$.
4. Show that the formula in the Lagrange MVT can be written as follows:

$$
\frac{f(x+h)-f(x)}{h}=f^{\prime}(x+\theta h)
$$

where $0<\theta<1$. Determine θ as a function of x and h when
(a) $f(x)=x^{2}$
(b) $f(x)=e^{x}$
(c) $f(x)=\log x, \quad x>0$.

Keep $x \neq 0$ fixed, and find $\lim _{h \rightarrow 0} \theta$ in each case.
5. Let f be a function having a finite derivative f^{\prime} in the half-open interval $0<x \leq 1$ such that $\left|f^{\prime}(x)\right|<1$. Define $a_{n}=f\left(\frac{1}{n}\right)$ for $n=1,2,3, \ldots$. Show that $\lim _{n \rightarrow \infty} a_{n}$ exists.
6. Assume f has a finite derivative in (a, b) and is continuous on $[a, b]$ with $f(a)=$ $f(b)=0$. Prove that for every real λ there is some c in (a, b) such that $f^{\prime}(c)=\lambda f(c)$.
7. Answer the followings:
(a) Suppose, $f(x)$ is continuous on $[-7,0]$ and differentiable in $(-7,0)$ such that $f(-7)=-3$ and $\left|f^{\prime}(x)\right| \leq 2$. Then, what is largest possible value of $f(0)$.
(b) Use Lagrange MVT to estimate $\sqrt[3]{28}$.
(c) If $f^{\prime \prime}(x) \geq 0$ on $[a, b]$ prove that $f\left(\frac{x_{1}+x_{2}}{2}\right) \leq \frac{1}{2}\left[f\left(x_{1}\right)+f\left(x_{2}\right)\right]$ for any two points x_{1} and x_{2} in $[a, b]$.
8. If f has a finite third derivative $f^{\prime \prime \prime}$ in $[a, b]$ and if $f(a)=f(b)=f^{\prime}(a)=f^{\prime}(b)=0$. Prove that $f^{\prime \prime \prime}(c)=0$ for some c in (a, b).
9. Prove that
(a) $\frac{2 x}{\pi}<\sin x<x$ for $0<x<\frac{\pi}{2}$.
(b) $n a^{n-1}(b-a)<b^{n}-a^{n}<n b^{n-1}(b-a)$ where $0<a<b$ and $n>1$.
(c) $\frac{x}{1+x}<\log (1+x)<x$ for all $x>0$.
10. Use Rolle's theorem to prove the following:
(a) Let $f:[1,3] \rightarrow \mathbb{R}$ be a continuous function such that $\int_{1}^{2} f(x) d x=2$ and $\int_{1}^{3} f(x) d x=3$. Then show that there exist some $c \in(2,3)$ such that

$$
c f(c)=\int_{1}^{c} f(x) d x
$$

(b) Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function on $[a, b]$ and $f^{\prime \prime}(x)$ exists for all $x \in(a, b)$. Let $a<c<b$, then there exists a point ξ in (a, b) such that

$$
f(c)=\frac{b-c}{b-a} f(a)+\frac{c-a}{b-a} f(b)+\frac{1}{2}(c-a)(c-b) f^{\prime \prime}(\xi) .
$$

11. If $c_{0}+\frac{c_{1}}{2}+\frac{c_{2}}{3}+\ldots+\frac{c_{n}}{n+1}=0$ where $c_{0}, c_{1}, \ldots, c_{n}$ are real. Show that the equation $c_{0}+c_{1} x+\ldots . .+c_{n} x^{n}=0$ has atleast one real root between 0 and 1 .
12. Answer the followings:
(a) Assume f is continuous on $[a, b]$ and has a finite second derivative $f^{\prime \prime}$ in the open interval (a, b). Assume that the line segment joining the points $A=$ $(a, f(a))$ and $B=(b, f(b))$ intersects the graph of f in a third point P different from A and B. Prove that $f^{\prime \prime}(c)=0$ for some c in (a, b).
(b) If f is differentiable on $[0,1]$ show by Cauchy's MVT that the equation $f(1)-$ $f(0)=\frac{f^{\prime}(x)}{2 x}$ has atleast one solution in $(0,1)$.
(c) Let, f be continuous on $[a, b]$ and differentiable on $[a, b]$. If $f(a)=a$ and $f(b)=$ b, show that there exist distinct c_{1} and c_{2} in (a, b) such that $f^{\prime}\left(c_{1}\right)+f^{\prime}\left(c_{2}\right)=2$.
13. Answer the followings:
(a) If $f(x)$ and $\phi(x)$ are continuous on $[a, b]$ and differentiable on (a, b), then show that

$$
\left|\begin{array}{ll}
f(a) & f(b) \\
\phi(a) & \phi(b)
\end{array}\right|=(b-a)\left|\begin{array}{ll}
f(b) & f^{\prime}(c) \\
\phi(b) & \phi^{\prime}(c)
\end{array}\right|, a<c<b
$$

(b) Let f be continuous on $[a, b]$ and differentiable on (a, b). Using Cauchy's MVT show that if $a \geq 0$ then there exist $x_{1}, x_{2}, x_{3} \in(a, b)$ such that

$$
f^{\prime}\left(x_{1}\right)=(b+a) \frac{f^{\prime}\left(x_{2}\right)}{2 x_{2}}=\left(b^{2}+b a+a^{2}\right) \frac{f^{\prime}\left(x_{3}\right)}{3 x_{3}^{2}} .
$$

14. Use CMVT to prove the followings:
(a) Show that $1-\frac{x^{2}}{2!}<\cos x$ for $x \neq 0$.
(b) Let f be continuous on $[a, b], a>0$ and differentiable on (a, b). Prove that there exist $c \in(a, b)$ such that $\frac{b^{2} f(a)-a^{2} f(b)}{b^{2}-a^{2}}=\frac{1}{2}\left[2 c f(c)-c^{2} f^{\prime}(c)\right]$.
(c) Show that $\frac{2 \ln x}{2 \arcsin x-\pi}<\frac{\sqrt{1-x^{2}}}{x}$.
