
Programming Languages

Bibhas Adhikari

IIT Kharagpur

November 12, 2020

Bibhas Adhikari (IIT Kharagpur) Programming Languages November 12, 2020 1 / 11



Operation on Bits: why to use?

Compression: Occasionally, you may want to implement a large
number of Boolean variables, without using a lot of space. A 32-bit
int can be used to store 32 Boolean variables. Normally, the minimum
size for one Boolean variable is one byte. All types in C must have
sizes that are multiples of bytes. However, only one bit is necessary to
represent a Boolean value.

Set operations: You can also use bits to represent elements of a
(small) set. If a bit is 1, then element i is in the set, otherwise it’s
not. You can use bitwise AND to implement set intersection, bitwise
OR to implement set union.

Encryption: swapping the bits of a string for e.g. according to a
predefined shared key will create an encrypted string

Device communication: When reading input from a device - Each bit
may indicate a status for the device or it may be one bit of control for
that device

Bibhas Adhikari (IIT Kharagpur) Programming Languages November 12, 2020 2 / 11



Operation on Bits

C provides a host of operators specifically designed for performing
operations on individual bits. For instance, 01100100 represents a
string of eight binary digits, as called byte

The rightmost bit of a byte is known as the least significant or
low-order bit, whereas the leftmost bit is known as the most
significant or high-order bit.

If a string of bits represents an integer, the rightmost bit of the
preceding byte represents 20 or 1, the bit immediately to its left
represents 21 or 2, the next bit 22 or 4, and so on. For example,
01100100 represents the decimal number (integer)
22 + 25 + 26 = 4 + 32 + 64 = 100.

Bibhas Adhikari (IIT Kharagpur) Programming Languages November 12, 2020 3 / 11



Operation on Bits

However, negative numbers is handled slightly differently. The
leftmost bit represents the sign bit. If this bit is 1, the number is
negative; otherwise, the bit is 0 and the number is positive

A convenient way to convert a negative number from decimal to
binary is to first add 1 to the value, express the absolute value of the
result in binary, and then “complement” all the bits; that is, change
all 1s to 0s and 0s to 1s. So, for example, to convert −5 to binary, 1
is added, which gives −4; 4 expressed in binary is 00000100, and
complementing the bits produces 11111011

To convert a negative number from binary back to decimal, first
complement all of the bits, convert the result to decimal, change the
sign of the result, and then subtract 1

Bibhas Adhikari (IIT Kharagpur) Programming Languages November 12, 2020 4 / 11



Operation on Bits
The largest positive number that can be stored into n bits is 2n–1–1
(Home Work)

On most of today’s processors, integers occupy four contiguous bytes,
or 32 bits, in the computer’s memory.The largest positive value that
can, therefore, be stored into such an integer is 231–1 or
2, 147, 483, 647, whereas the smallest negative number that can be
stored is –2, 147, 483, 648.

Symbol Operation

& Bitwise AND
| Bitwise Inclusive-OR̂ Bitwise Exclusive-OR˜ Ones complement

<< Left shift
>> Right shift

All the operators listed in the Table, with the exception of the ones
complement operator ,̃ are binary operators

Bibhas Adhikari (IIT Kharagpur) Programming Languages November 12, 2020 5 / 11



Operation on Bits

Bibhas Adhikari (IIT Kharagpur) Programming Languages November 12, 2020 6 / 11



Operation on Bits

Bibhas Adhikari (IIT Kharagpur) Programming Languages November 12, 2020 7 / 11



Operation on Bits

Bibhas Adhikari (IIT Kharagpur) Programming Languages November 12, 2020 8 / 11



Operation on Bits

Bit operations can be performed on any type of integer value in C
and on characters, but cannot be performed on floating-point values.

For example, 25 & 77 = 0000000000011001 & 0000000001001101 =
0000000000001001 = 9

Recall that, the operation x << n shifts the value of x left by n bits.
Homework: Show that shifting left on an unsigned int by n bits, this
is equivalent to multiplying by 2n

Shifting does not change value:
int x = 3;
int n = 2;
x << n;
printf (“%d\n”, x);

Bibhas Adhikari (IIT Kharagpur) Programming Languages November 12, 2020 9 / 11



Operation on Bits

How do you save the change after shifting?
x = x << n;
printf (“%d\n”, x);

Otherwise use:
x <<= n;
printf (“%d\n”, x);

Bibhas Adhikari (IIT Kharagpur) Programming Languages November 12, 2020 10 / 11



Operation on Bits: properties of XOR (⊕)

XOR on Boolean values

Let x , y be two bits, that is, x , y ∈ {0, 1}. Then x ⊕ y is true if
exactly one of x and y is true

x1 ⊕ x2 ⊕ . . .⊕ xn, xi ∈ {0, 1}, i = 1, . . . , n is true if the number of
variables with the value true is odd (and is false if the number of
variables with the value true is even).

bitwise XOR or XOR on Boolean values

x⊕ 0 = x

x⊕ 1 =˜x
x⊕ x = 0

(x⊕ y)⊕ z = x⊕ (y ⊕ z) (associative)

x⊕ y = y ⊕ y (commutative)

Bibhas Adhikari (IIT Kharagpur) Programming Languages November 12, 2020 11 / 11


