
Programming Languages

Bibhas Adhikari

IIT Kharagpur

November 5, 2020

Bibhas Adhikari (IIT Kharagpur) Programming Languages November 5, 2020 1 / 12

ADT:Passing arrays of structure to function

typedef struct employee {
int id;

char name [10];
float salary;

} e;

main ()
{
e emp1 [3] = {0, 0, 0};
int x ;
processEmp(emp1); //pass array name, which is a pointer
for (x = 0; x < 3; x + +){
printf (“\n ID: %d\n”, emp1[x].id);
printf("Name: %s\n”, emp1[x].name);
printf("Salary: $%.2f \n\n”, emp1[x].salary);
}
}

Bibhas Adhikari (IIT Kharagpur) Programming Languages November 5, 2020 2 / 12

ADT:Passing arrays of structure to function

void processEmp(e * emp) //function receives a pointer
{
emp [0].id = 123;
strcpy(emp [0].name, "Ankush");

emp [0].salary = 65000.00;
emp [1].id = 234;
strcpy(emp [1].name, "Bibhas");

emp [1].salary = 28000.00;
emp [2].id = 456;
strcpy(emp [2].name, "Chandan");

emp [2].salary = 48000.00;
}

Bibhas Adhikari (IIT Kharagpur) Programming Languages November 5, 2020 3 / 12

Dynamic memory allocation

allocating, reallocating, and freeing memory using different functions
I RAM (Random Access Memory) is considered as a volatile memory

which is used for allocating, storing, and retrieving data
I virtual memory - a reserved part of hard disk in which the operating

system can swap memory segments

Stack

Software programs use their own area of memory, which is a combination
of RAM and virtual memory, is called a stack. When a function is called in
a program, the variables and parameters of the function are pushed onto
the program’s memory stack and then pushed off or “popped” when the
function has completed or returned.

Bibhas Adhikari (IIT Kharagpur) Programming Languages November 5, 2020 4 / 12

Dynamic memory allocation

Heap

Once a software program has terminated, the memory is returned for reuse
for other software and system programs, and the operating system is
responsible for managing this unallocated memory, which is called the heap

sizeof operator

The sizeof operator considers a variable name or data type as an argument
and returns the number of bytes required to store the data in memory

Bibhas Adhikari (IIT Kharagpur) Programming Languages November 5, 2020 5 / 12

Dynamic memory allocation
main ()
{
int x ;
float f ;
double d ;
char c ;
typedef struct employee {
int id;

char *name;

float salary;

}e;
printf (“\nSize of integer: %d bytes \n”, sizeof (x));
printf("Size of float: %d bytes \n”, sizeof(f));
printf("Size of double %d bytes \n”, sizeof (d));
printf("Size of char %d byte \n”, sizeof (c));
printf("Size of employee structure: %d bytes \n”, sizeof (e));
}
Bibhas Adhikari (IIT Kharagpur) Programming Languages November 5, 2020 6 / 12

Dynamic memory allocation

The sizeof operator can be used to calculatee the memory requirements of
arrays:
main ()
{
int array [10];
printf (“\nSize of array: %d bytes \n”, sizeof(array));
printf("Number of elements in array ");

printf (“%d\n”, sizeof(array) / sizeof(int));

}

Bibhas Adhikari (IIT Kharagpur) Programming Languages November 5, 2020 7 / 12

Dynamic memory allocation

malloc() function

malloc () is a function in the standard library <stdlib.h> and takes a
number as an argument. malloc () attempts to retrieve designated
memory segments from the heap and it returns a pointer which is the
starting point for the memory reserved

main ()
{
char *name;

name = (char *) malloc(80 * sizeof(char));

if (name == NULL)

printf (“\nOut of memory! \n”);
else

printf (“\nMemory allocated. \n”);
}

Bibhas Adhikari (IIT Kharagpur) Programming Languages November 5, 2020 8 / 12

Dynamic memory allocation

Managing strings using malloc() function

main ()
{
char *name;

name = (char *) malloc(5*sizeof(char));

if (name != NULL) {
printf (“\nEnter your name: ");

gets(name);

printf (“\nHi %s\n”, name);
}
}

Individual memory segments acquired by malloc() can be treated
much like array members

Bibhas Adhikari (IIT Kharagpur) Programming Languages November 5, 2020 9 / 12

Dynamic memory allocation

Freeing memory

free () function - takes a pointer as an argument and frees the memory
the pointer refers to

main ()
{
char *name;

name = (char *) malloc(5*sizeof(char));

if (name != NULL) {
printf (“\nEnter your name: ");

gets(name);

printf (“\nHi %s\n”, name);
free(name);

}
}

Bibhas Adhikari (IIT Kharagpur) Programming Languages November 5, 2020 10 / 12

Dynamic memory allocation

calloc()

calloc() function attempts to take hold of contiguous segments of
memory from the heap. It takes two arguments: the first determines the
number of memory segments needed and the second is the size of the data
type
main()

{
int *numbers;

numbers = (int *) calloc(10, sizeof(int));

if (numbers == NULL)

return; // return if calloc is not successful

}

Bibhas Adhikari (IIT Kharagpur) Programming Languages November 5, 2020 11 / 12

Dynamic memory allocation

realloc()

realloc() function provides a way to expand contiguous blocks of
memory while preserving the original contents. It takes two arguments for
parameters and returns a pointer as output
newPointer = realloc(oldPointer, 10 * sizeof(int));

realloc() ’s first argument takes the original pointer set by malloc()

or calloc(). The second argument describes the total amount of
memory you want to allocate.

Scenario Outcome

Successful without move Same pointer returned
Successful with move New pointer returned

Not successful NULL pointer returned

Bibhas Adhikari (IIT Kharagpur) Programming Languages November 5, 2020 12 / 12

