
Programming Languages

Bibhas Adhikari

IIT Kharagpur

October 16, 2020

Bibhas Adhikari (IIT Kharagpur) Programming Languages October 16, 2020 1 / 13



Semantics: Example of Conditional transitions

The rule of conditional transition is expressed as follows:

〈c1, σ1〉 → 〈c ′1, σ′1〉 〈c2, σ2〉 → 〈c ′2, σ′2〉
〈c , σ〉 → 〈c ′, σ′〉

Meaning: If the command c1 starting in state σ1 can transform itself into
command c ′1 in state σ′1, and if c2 starting in σ2 can transform itself into
the command c ′2 in state σ′2, then the command c starting in state σ can
transform itself into the command c ′ in state σ′

Bibhas Adhikari (IIT Kharagpur) Programming Languages October 16, 2020 2 / 13



Semantics: Rules for semantics of arithmetic expressions

Figure: Semantics of arithmetic expressions

Here, the pairs (a, σ), where a is an arithmetic expression and σ is a state,
arithmetic-expression configurations. 〈a, σ〉 → 〈b, σ′〉 means the expression
a in state σ evaluates to b.

Bibhas Adhikari (IIT Kharagpur) Programming Languages October 16, 2020 3 / 13



Semantics: Rules for semantics of Boolean expressions

Figure: Semantics of Boolean expressions

Here, bv denotes the a Boolean value (tt or ff)

Bibhas Adhikari (IIT Kharagpur) Programming Languages October 16, 2020 4 / 13



Semantics: Rules for semantics of commands

Figure: Semantics of commands

Bibhas Adhikari (IIT Kharagpur) Programming Languages October 16, 2020 5 / 13



Semantics: computation

Computation

It is a sequence of transitions that cannot be extended further by another
transition

Example

Consider the program c as
X := 1; while ¬(X == 0) do X := (X − 1),
where the later part after ′;′ is the command c ′

Bibhas Adhikari (IIT Kharagpur) Programming Languages October 16, 2020 6 / 13



Semantics: example of terminated computation

Bibhas Adhikari (IIT Kharagpur) Programming Languages October 16, 2020 7 / 13



Semantics: example of divergent computation

Consider the program d as
X := 1; while (X == 1) do skip
where the later part after ′;′ is the command d ′

Bibhas Adhikari (IIT Kharagpur) Programming Languages October 16, 2020 8 / 13



Pragmatics

Recall

syntax: described using a context-free grammar

semantics: described with verifiable contextual constraints using the
program text and it gives meaning to a program during execution

Pragmatics

what is the purpose of this command?

The pragmatics part of a programming language is dealt with software
engineering

Bibhas Adhikari (IIT Kharagpur) Programming Languages October 16, 2020 9 / 13



The Halting Problem

Let L be a programming language, and P be a program written in L.
Then we ask the following question.

Does there exist a program, H, such that, having been given an input a
program P and its input data x , will terminate and print “yes” if P(x)
terminates, and terminate and print “no” if P(x) loops infinitely?

We show that such a program H can not exist!

Reference

J. E. Hopcroft, R. Motwani, and J. Ullman. Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley, Reading, 2001
(Chapter 8, 9)

Bibhas Adhikari (IIT Kharagpur) Programming Languages October 16, 2020 10 / 13



The Halting Problem

Method of contradiction:

1 Suppose we have a program H with the properties stated above

2 Then we can define a program K utilizing the program H such that:
Given an input P, the program K terminates printing “yes” if
H(P,P) prints “no”; and it goes into an infinite loop if H(P,P)
prints “yes”. Thus

K (P) =

{
“yes” if P(P) does not terminate

does not terminate if P(P) terminates
(1)

3 If we substitute K in place of P in equation (2) then

K (P) =

{
“yes” if K (K ) does not terminate

does not terminate if K (K ) terminates
(2)

But this is absurd!!!

Bibhas Adhikari (IIT Kharagpur) Programming Languages October 16, 2020 11 / 13



Halting Problem

Undecidable problems

There exists no program such that

the program accepts arbitrary arguments

the program always terminates, and

the program determines which arguments are solutions to the problem
and which are not

Which functions are computable?

A function is computable in a language L if there exists a program P
written in L that computes it.

Turing Machine (developed by the mathematician Alan Turing, 1930)

Church’s Thesis: every computable function is computed by a Turing
Machine

Bibhas Adhikari (IIT Kharagpur) Programming Languages October 16, 2020 12 / 13



Turing Machine

The question raised by David Hilbert

For which classes of problems is it possible to find an algorithm?

A related question

Given a logical system defined by axioms and rules, can all possible
propositions in that system be proved? or at least in principle, can it be
judged as true or false?

1930, Kurt Godel : NOT Possible! There are propositions in any logical
system that can not be proved or disproved using the axioms and rules of
the logical system - it sets the limits for possibilities of a classical computer

Bibhas Adhikari (IIT Kharagpur) Programming Languages October 16, 2020 13 / 13


