
Programming Languages

Bibhas Adhikari

IIT Kharagpur

September 25, 2020

Bibhas Adhikari (IIT Kharagpur) Programming Languages September 25, 2020 1 / 22

Basics of Graph theory

Figure: Example of a multigraph

Degree sequence

If the degrees of all vertices in a graph are arranged in descending or
ascending order, then the sequence obtained is known as the degree
sequence of the graph. For the undirected simple graph, the vertices
{d , a, b, c , e}, the degree sequence is {3, 2, 2, 2, 1}

Bibhas Adhikari (IIT Kharagpur) Programming Languages September 25, 2020 2 / 22

Basics of Graph theory

Path in a graph

A path connecting two vertices a and b in a graph is a sequence of vertices
a = a1, a2, . . . , ak = b such that ai and ai+1, i = 1, . . . , k − 1 are adjacent.

Distance between two vertices

It is number of edges in a shortest path between vertices a and b. If there
are multiple paths connecting two vertices, then the shortest path is
considered as the distance between the two vertices

The maximum distance between a vertex to all other vertices is
considered as the eccentricity of vertex

The minimum eccentricity from all the vertices is considered as the
radius of the graph

The maximum eccentricity from all the vertices is considered as the
diameter of the graph

Bibhas Adhikari (IIT Kharagpur) Programming Languages September 25, 2020 3 / 22

Basics of Graph theory

Connected graph

A graph is said to be connected if there exists a path between every pair of
vertices, otherwise it is called disconnected. There should be at least one
edge for every vertex in the graph. So that we can say that it is connected
to some other vertex at the other side of the edge.

Cycle

A cycle in a graph is a path with no vertex repeated in the sequence of
vertices that defines the path, and the initial vertex of the path is same as
the terminal vertex of the path

Figure: Example of cycles in a graph
Bibhas Adhikari (IIT Kharagpur) Programming Languages September 25, 2020 4 / 22

Basics of Graph theory

Acyclic graph

A graph without a cycle is called acyclic

Tree and Forest

A connected acyclic graph is called a tree. In other words, a connected
graph with no cycles is called a tree. A disconnected acyclic graph is called
a forest. In other words, a disjoint collection of trees is called a forest.

Figure: Example of cycles in a graph

Bibhas Adhikari (IIT Kharagpur) Programming Languages September 25, 2020 5 / 22

Terminologies in a Tree

Ordered, rooted trees

A (rooted, ordered) tree is a finite set of vertices/nodes, such that if
it is not empty, a particular vertex/node is called the root and the
remaining nodes, if they exist, are partitioned between the elements of
an (ordered) n-tuple S1, S2, . . . , . . . , Sn, n ≥ 0, where each Si ,
i ∈ {1, . . . , n} is a tree

A tree allows us to group nodes into levels where, at level 0, we have
the root, at level 1 we have the roots of the trees S1,S2, . . . ,Sn and
so on.

The vertex at level 0 is called the root node. If a node n is at level i ,
and there exists the edge (n,m) then node m is at level i + 1

Given a node, n, the nodes m such that there exists an edge (n,m)
are said to be the children of n (and n is said to be their parent); for
every node n, a total order is established on the set of all the children
of n

Bibhas Adhikari (IIT Kharagpur) Programming Languages September 25, 2020 6 / 22

Rooted tree

Figure: Example of a rooted tree

Vertices/nodes with the same parent are said to be siblings while nodes
without children are said to be leaves. The root is the only node without a
parent.
Bibhas Adhikari (IIT Kharagpur) Programming Languages September 25, 2020 7 / 22

Context-Free Grammars

Example

G = ({E , I}, {a, b,+, ∗,−, (,)},R,E), where R is the following set of
productions:

1. E → I , 7. I → a
2. E→ E + E , 8. I → b
3. E→ E ∗ E 9. I → Ia
4. E→ E − E , 10. I→ Ib
5. E→ −E ,
6. E→ (E)

Bibhas Adhikari (IIT Kharagpur) Programming Languages September 25, 2020 8 / 22

Context-Free Grammars

Example: derivation tree

Figure: Derivation and its corresponding tree of ab ∗ (a + b)

Bibhas Adhikari (IIT Kharagpur) Programming Languages September 25, 2020 9 / 22

Context-Free Grammars

Definition: derivation tree

For a grammar G = (NT ,T ,R,S) derivation tree is an ordered tree in
which:

Each node is labelled with a symbol in NT ∪ T ∪ ε
The root is labelled with S

Each interior node is labelled with a symbol in NT

If a certain node has the label A ∈ NT and its children are m1, . . . ,mk

labelled respectively with X1, . . . ,Xk , where Xi ∈ NT ∪ T for all
i ∈ [1, k], then A→ X1 . . .Xk is a production of R

If a node has label ε, then that node is the unique child. If A is its
parent, A→ ε is a production in R

Bibhas Adhikari (IIT Kharagpur) Programming Languages September 25, 2020 10 / 22

Context-Free Grammars

Example: derivation tree

Figure: Derivation and its corresponding tree of a ∗ b + a

Bibhas Adhikari (IIT Kharagpur) Programming Languages September 25, 2020 11 / 22

Context-Free Grammars

Example: derivation tree

Figure: Another Derivation tree for a ∗ b + a

Bibhas Adhikari (IIT Kharagpur) Programming Languages September 25, 2020 12 / 22

Context-Free Grammars

Ambiguity

Two different trees producing the same string (see above example)

Thus the context free grammar is incapable of assigning a unique
structure to the string in question

Definition: Ambiguity

A grammar, G , is said to be ambiguous if there exists at least one string of
L(G) which admits more than one derivation tree

However, there are techniques to transform an ambiguous grammar to an
unambiguous grammar which can generate the same language

Bibhas Adhikari (IIT Kharagpur) Programming Languages September 25, 2020 13 / 22

Context-free Grammars

Backus-Naur Form (BNF)

The arrow “→” is replaced by “::=”

The non-terminal symbols are written between angle brackets

Productions with the same head are grouped into a single block using
vertical bar (“|”) to separate the productions

For instance the productions for E in the above example can be written as:

〈E 〉 ::= 〈I 〉|〈E 〉+ 〈E 〉|〈E 〉 ∗ 〈E 〉|〈E 〉 − 〈E 〉| − 〈E 〉|(〈E 〉)

when E → I , E → E + E , E → E ∗ E , E → E − E , E → −E , E → (E)

Bibhas Adhikari (IIT Kharagpur) Programming Languages September 25, 2020 14 / 22

Context-free Grammar

Example of an unambiguous grammar

G = ({E ,T ,A, I}, {a, b,+, ∗,−, (,)},R ′,E), where R ′ is the following set
of productions:

E → T |T + E |T − E

T → A |A ∗ T
A→ I | − A | (E)

I → a | b | Ia | Ib

Grammar gives structure to a program (just like a natural language)

Unary minus (“−”) has the highest precedence, followed by ∗,
followed in their turn by + and binary − (which have the same
precedence)

grammar interprets a sequence of operators at the same level of
precedence by association to the right

Bibhas Adhikari (IIT Kharagpur) Programming Languages September 25, 2020 15 / 22

Context-free Grammar

Figure: Grammar for Java conditional commands

Bibhas Adhikari (IIT Kharagpur) Programming Languages September 25, 2020 16 / 22

Example of a derivation tree

Pascal string

if A = 0 then X := 0 else X := 1

Java string

if (A == 0)X = 0; else X = 1;

Figure: Syntax treeBibhas Adhikari (IIT Kharagpur) Programming Languages September 25, 2020 17 / 22

The syntactic correctness of a phrase

Strings which are correct according to the grammar, can be legal only
in a given context

I In C, the number of actual parameters to a function must be the same
as the formal parameters

I In C, the type of an expression must be compatible with that of the
variable to which it is assigned

Example

x = y + 2 may be a legal string

If the language requires the declaration of variables, it is necessary for
programs to contain the declarations of x and y before the assignment

Syntactic constraints - contextual grammars
I A program is syntactically incorrect when a division by 0 can happen

int x, y;

read(x);

y = 10/x;

Bibhas Adhikari (IIT Kharagpur) Programming Languages September 25, 2020 18 / 22

Compiler: how it translates, the logical structure

Figure: Logical structure of a compiler

Bibhas Adhikari (IIT Kharagpur) Programming Languages September 25, 2020 19 / 22

Organization of a compiler

Lexical Analysis

The aim of lexical analysis is to read the symbols (characters) forming
the program sequentially from the input and to group these symbols
into meaningful logical units, which are called tokens For example,
the string x = 1 + foo++; will produce 7 tokens

Lexical analysis is a particular class of generative grammars (regular
grammars)

Regular grammar

A grammar is said to be regular if all productions are of the form
A→ bB where A and B are non-terminal symbols (B can also be
absent or coincide with A) and b is a single terminal symbol

The subgrammar with initial non terminal symbol I

Bibhas Adhikari (IIT Kharagpur) Programming Languages September 25, 2020 20 / 22

Syntactic Analysis

The syntactic analyser (or parser) seeks to construct a derivation tree
for this list of tokens. Each leaf of this tree must correspond to a
token from the list obtained by the scanner (the above step).
Moreover, these leaves, read from left to right, must form a correct
phrase (or a sequence of terminal symbols) in the language

Bibhas Adhikari (IIT Kharagpur) Programming Languages September 25, 2020 21 / 22

Organization of a compiler

Semantic analysis

The derivation tree is subjected to checks of the language’s various
context-based constraints.

Generation of intermediate forms

This is designed to be independent of both the source and the object
languages

Code optimisation

This is designed to be independent of both the source and the object
languages

Removal of useless code

In-line expansion of function calls.

Subexpression factorisation

Loop optimisations

Bibhas Adhikari (IIT Kharagpur) Programming Languages September 25, 2020 22 / 22

