Natural Language Processing
Dependency Parsing

Sudeshna Sarkar
18 Mar 2020

What is Syntax?

e Structure of language
— How words are arranged together and related to one another

— Ordering words in sequences to express meanings for which no separate word
exists.

e @Goal of syntactic analysis
— relate surface form to underlying structure, to support semantic analysis

* Two views of linguistic structure:
1. Constituency = phrase structure grammar= context-free grammars (CFGs)
2. Dependency Structure

* Dependency structure shows which words depend on (modify or are arguments
of) which other words.

Why is Syntax Important?

Grammar checkers
Question answering
Information extraction
Machine translation

Semantic role labeling

Many aspects of meaning can be learnt using
the syntactic structure.

— The NP preceding VP is likely the subject of the
action.

— The NP following the VP is likely the object of
the action.
Knowing basic units is helpful in modeling
language.

— You can use this to predict or complete the
sentence.

— Re-organize sentences or simplify them.

Phrase Structure Grammar

Phrase structure organizes words into nested constituents - Can represent
the grammar with CFG rules

Starting unit: words are given a category (part of speech = pos)
the, cat, cuddly, by, door
Det N Adfj P N
Words combine into phrases with categories
the cuddly cat, by the door
NP —>Det Adj N PP ->P NP
Phrases can combine into bigger phrases recursively
the cuddly cat by the door
NP ->NP PP

Dependency Grammar and
Dependency Structure

Dependency syntax postulates that syntactic structure consists of lexical
items linked by binary asymmetric relations (“arrows”) called
dependencies

The arrows are . submitted
commonly typed with ”S”bfpV l““xP“SfN’:ep
the name of Bills were by
grammatical relations prep* VObj
on Brownback
P0b1¢ ny \C(ppos
ports Senator Republican
The arrow connects a e/ \go e |
head (governor) with a and immigration of
dependent (modifier) pobj §

Kansas

Dependency Trees

ST
O%subj * M
3Tt IR i

amo mod:poss /
d compound

Exercise: Draw dependency trees for the following sentences
1. Look for the large barking dog by the door in a crate
2. Scientists study whales from space

Dependency Structure

* Dependency structure shows which words depend
on (modify or are arguments of) which other words.

1. Look for the large barking dog by the door in a crate
2. Scientists study whales from space

Panini’s grammar
(c. 5th century BCE)

Dependency Relations
(A sample from UDEP)

Clausal Argument Relations Description

NSUBJ Nominal subject

DOBJ Direct object

IOBJ Indirect object

CCOMP Clausal complement
XCOMP Open clausal complement
Nominal Modifier Relations Description

NMOD Nominal modifier

AMOD Adjectival modifier
NUMMOD Numeric modifier

APPOS Appositional modifier
DET Determiner

CASE Prepositions, postpositions and other case markers
Other Notable Relations Description

CONJ Conjunct

cC Coordinating conjunction

Dependency Parsing

Dependency tree — A tree composed of the input words,
which meets a few constraints:

Single-head

pmod
Connected el o a3
Acyclic suN % / ﬁhv

ate, the3 fish, with; a;, folk,
* Label

 Relation

* Type . .

. - Projective Parse:

obj ,
/ \ Arcs don’t cross each other.
eat, fish, Mostly true for English.

* Head * Modifier
wCroyerar * Depenglent Non-projective Parse:

* Parent * Child

Common in lang. w/ more flexible word order.
CArmmAan Nut~rh Coarh At~

e~

ROOT I Il give a talk tomorrow on bootstrapping
26 1/30/18

Parsing algorithms

 Dependency based parsers can be broadly categorized into

— Grammar driven approaches: Parsing done using grammars
1. Dynamic programming - Eisner (1996), McDonald (2006)
2. Deterministic Search - Covington (2001), Nivre (2006)
3. Constraint satisfaction

— Data driven approaches: Parsing by training on
annotated/un-annotated data

1. Could construct a fully connected tree, and prune it.
* Graph-based methods

2. Could construct a tree one edge at a time.
* Transition parsing.

Maximum Spanning Tree

* Each dependency is an edge in a directed graph
e Assign each edge a score (with machine learning)
* Keep the tree with the highest score

Graph Scored Graph Dependency Tree
Saw & Saw 4 x Saw 4
7N\ AN YN
I girl =» | girl =» | girl
\a/ ‘2\\1‘61'% aj/

(Chu-Liu-Edmonds Algorithm)

7

Transition-based parsing

« Transition-based parsing is a greedy word-by-word approach
to parsing
— Assingle dependency tree is built up an arc at a time as we move
left to right through a sentence
— No backtracking

— ML-based classifiers are used to make decisions as we move
through the sentence

* A transition system for dependency parsing defines:
— aset C of parser configurations or states
— aset T of transitions, each a functiont: C — C

Transition-based dependency parsing

Configuration or State

— Stack representing partially

processed words

— Buffer containing the remaining Input buffer

words to be processed

— Set of dependency relations

discovered so far

Stack

s1

s2

sn

w1 w2 wn

Dependency
Parser . Relations
: —

Oracle

—

Makes arc decisions about entries in the top of
the stack and buffer.
_ Keeps shifting words from the buffer until all

words are consumed.

States

e Start state:

[[root], [word list], ()]
[[root], [| booked a morning flight], ()]
* Avalid final state:

[[root], [] (R)]

[[root],

[],

((booked, 1) (booked, flight) (flight, a) (flight, morning))]
— Empty buffer
— Ris the set of relations that we’ve discovered

17-Mar-20

Speech and Language Processing - Jurafsky and Martin

15

Arc Standard Transition System

Refines 3 transition operators
* LEFT-ARC: o,wilw;,,A - a|lw;, 5,AU {r(w-, Wl-)}
— create head-dependentrel. between word at top of stack and 2ndword (under top)
— remove 2ndword from stack
* RIGHT-ARC: o,wilw;,,A — alw;, B,AU {r(wi,wj)}
— Create head-dependent rel. between word on 2"¥ word on stack and word on top
— Remove word at top of stack

* SHIFT o,w;| B,A - alw;, B,A
— Remove word at head of input buffer
— Push it on the stack

Note: There are other transition schemes such as Arc-eager

Example: Arc-standard

Analysis of “I went home”

Start

(o) 1) Lo (e

Shift

([mﬂ]] et home

Shift

B

Analysis of “l went home”

Left Arc

[[[root]] { I J [went }][home] > [[[root] M went }] ﬁ‘s::bj (went - 1)
Shift

[] ‘ '[[root]][went] home]
Right Arc

[[[root]][went }[home }] # I [root] M went }] ﬁ;iz(went — home)

Right Arc

[{ [root] H went]) [root] f‘o:; ([root] = went)

Classification for Shift-Reduce

 Given a state:

Stack Queue
'/saw a girl

* Which action do we choose?

shift| ? rleft|? r right|?
saw a qirl a irl saw irl
g 7 g R g
I ;,aw a

« Correct actions — correct tree

11

Shift-Reduce as a supervised classification task

 Given the current state (<stack, buffer, A>) predict the next action.
 We have a weight vector for “shift” “left arc” “right arc”
Ws Wi Wy
* Calculate feature functions from the queue and stack
d(queue, stack)
Word in stack, POS of word, Word in buffer and POS of Word in buffer
* Multiply the feature functions to get scores
S¢ = W * d(queue,stack)
* Take the highest score to predict the next transition
* Quite fast! O(N) in length of sentence.

Three Problems

 To apply ML in situations like this we have three problems
1. Discovering features that are useful indicators of what to do in any situation
2. Acquiring the necessary training data
* Treebanks associate sentences with their corresponding trees

* We need parser states paired with their corresponding correct
operators

3. Training a classifier

Speech and Language Processing -
17-Mar-20 Jurafsky and Martin 21

Preparing the Training Set

Get dependency parses from treebank.

Compute correct sequence of “oracle” shift-reduce parse actions
(transitions, t;) at each step from gold-standard parse trees.

Determine correct parse sequence by using a “shortest stack” oracle
which always prefers LeftArc over Shift.

At each stage the oracle chooses

1. Leftiftherelationtobe addedis in the referencetree.

2. Rightif the resultingrelationis in the correct tree AND if all the other outgoing
relations associated with the word are already in the relation list.

3. Otherwise shift

17-Mar-20 Speech and 29

Language Processing - Jurafsky and Martin

Universal Dependencies treebanks

[Universal Dependencies: http://universaldependencies.org/

[context] [conllu]

76 think Miramar was a famous goat trainer or somethmg

[context] [conllu]

-'/ -'[mEmy \—" ssssss “‘°’"°

77 Why is the called eramar ‘7

[context] [conllu]

punct
nmod
ccomp nsubj
ns bj expl h ’ucase

‘ 84 think there are any koreans in Miramar ?

* If we have a test set from a treebank and if we represent parses as a

Evaluation

list of relations

(booked, I) (booked, flight) (flight, a) (flight, morning)

* Unlabeled attachment score (UAS) is just what fraction of words were assigned the
right head.

* Labeled attachment score (LAS) is what fraction of words were assigned the right

head with the right relation.

17-Mar-20

Speech and Language Processing -
Jurafsky and Martin

24

Labeled Relations

* We really want labeled relations
— That is, we want things like subject, direct object, indirect
object, etc. as relations
 We can add new transitions
— Replace Left and Right with
{Left, Right} X {all the relations of interest}

Speech and Language Processing -
17-Mar-20 Jurafsky and Martin

25

Stanford Neural Dependency Parser
(Chen and Manning, 2014)

 Train a neural net to choose the best shift-reduce
parser action to take at each step.

e Uses features (words, POS tags, arc labels) extracted
from the current stack, buffer, and arcs as context.

26

Neural Architecture

Parse action classification

Softmax layer:
p = softmax(Wsh)
Hidden layer:
h=(Wea® + Wizt + What +)3

Input layer: [z%, 2!, 2] E .

arc labels
Buffer
Configuration ROOT has_VBZ good_JJ control_NN
< nsubj
He_PRP

27

State Representation

Extract a set of tokens from Stack/Buffer

- > Instead of using one-hot input encodings,
.. “« ” -
TRoOT Tavpz wmodllli (i . | words and POS tags are “embedded” in a 50
"""" by T T dimensional set of input features.

He_PRP

Word POS dep Embeddings express

S1 good JJ 0 similarities
S2 has VBZ 0 POS: NN similar to NNS
B1 control NN 0 deps: amod similar num
Ic(S1) 0 0 0
re(S1) 0 0 0
Ic(S2) He PRP nsubj
rc(S2) 0 0 0

Concatenate their vector embeddings

