Knowledge Graph



Lecture Outline

* Tools for Knowledge Graph

 NLP tool: SPACY

e Relation extraction: OpenlE

* Managing graph data: NEO4)



Spacy: Overview

e Spacy is a NLP toolkit based on Deep Learning
* Industry standard
* Very fast processing

* Python APIs



Statistical Models

* en_core_web_sm: English multi-task CNN, trained on OntoNotes

* en_core_web_md: English multi-task CNN trained on OntoNotes,
with Glove vectors trained on Common Craw|

* en_core_web lg: English multi-task CNN trained on OntoNotes, with
GloVe vectors trained on bigger Common Crawl|



Spacy: Importing a model

* General syntax:
spacy.load(‘model name’)

* Example:

Import spacy
nlp = spacy.load('en_core_web sm")



Processing Pipeline

Text -

B E

"

"

"
=
-

Fogomom T Ea

Source: https://spacy.io/usage/processing-pipelines



https://spacy.io/usage/processing-pipelines

Creating an NLP object

Import spacy
nlp = spacy.load('en_core_web sm’)

doc = nlp("He went to play basketball")



Activating/disabling pipeline component

* Knowing the active components

nlp.pipe_names

* Disabling components
nip.disable pipes('tagger’, 'parser’)



Part-of-Speech (POS) Tagging using spaCy

import spacy
nlp = spacy.load('en_core_web sm’)

# Create an nlp object
doc = nlp("He went to play basketball")

# print tokens and its part-of-speech tag
for token in doc:
print(token.text, "-->", token.pos_)

Output:

He —> PRON

went —> VERB

to —> PART

play —> VERB
basketball => NOUN

To know the meaning of the tags:

spacy.explain("PART")



Dependency Parsing using spaCy

import spacy

Output:
nlp = spacy.load('‘en core web sm'
P pacy ( - - - ) He —> nsubj
went —> ROOT
# Create an nlp object to —> aux
play —> advcl

doc = nlp("He went to play basketball") basketball = dobj

# print tokens and dependency
for token in doc:
print(token.text, "-->", token.dep )

To know the meaning of the tags:

spacy.explain(“nsubj")



Named Entity Recognition using spaCy

import spacy
nlp = spacy.load('en_core_web sm’)

# Create an nlp object
doc = nlp("Indians spent over $71 billion on clothes in 2018")

# print tokens and and ner tags Output:

for ent in doc.ents: Indians NORP

. over S71 billion MONEY
print(ent.text, ent.label ) 5018 DATE

To know the meaning of the tags:

spacy.explain(“NORP")



Relation Extraction



Open relation extraction: OpenlE

* Extraction of relation tuples, typically binary relations, from plain text

* Example:

Barack Obama was born in Hawaii

|

(Barack Obama; was born in; Hawaii)

!

born-in(Barack-Obama, Hawaii) Relation




Running OpenlE

java -mx1g -cp "*" edu.stanford.nlp.naturalli.OpenlE /path/to/filel /path/to/file2

Files contain the senetences.

Reference: https://nlp.stanford.edu/software/openie.html



Managing Graph Data

NEO4)



Main building blocks

* Nodes

* Relationships

* Properties



Graph Data Model

The model represents data in Nodes, Relationships and Properties

Properties are key-value pairs

Relationships have directions: Unidirectional and Bidirectional

Elacdh ﬁelationship contains "Start Node" or "From Node" and "To Node" or "End
ode

Both Nodes and Relationships contain properties

Relationships connect nodes

https://www.tutorialspoint.com/neo4j/index.htm



https://www.tutorialspoint.com/neo4j/index.htm

Cypher Query Language (CQL)

* Query language for Neo4j Graph Database.
* Declarative pattern-matching language.
* Follows SQL like syntax.

e Syntax is very simple and in human readable format.



CQL Clauses for Reading

Sr.No
1

Read Clauses
MATCH

OPTIONAL
MATCH

WHERE

START

LOAD CSV

Usage

This clause is used to search the data with a specified
pattern.

This is the same as match, the only difference being it
can use nulls in case of missing parts of the pattern.

This clause id is used to add contents to the CQL
qgueries.

This clause is used to find the starting points through
the legacy indexes.

This clause is used to import data from CSV files.

https://www.tutorialspoint.com/neo4j/index.htm



https://www.tutorialspoint.com/neo4j/index.htm

CQL Clauses for Writing

Sr.No
1

Write Clause

CREATE

MERGE

SET

DELETE

REMOVE

FOREACH

Usage

This clause is used to create nodes, relationships, and
properties.

This clause verifies whether the specified pattern
exists in the graph. If not, it creates the pattern.

This clause is used to update labels on nodes,
properties on nodes and relationships.

This clause is used to delete nodes and relationships
or paths etc. from the graph.

This clause is used to remove properties and
elements from nodes and relationships.

This class is used to update the data within a list.

https://www.tutorialspoint.com/neo4j/index.htm



https://www.tutorialspoint.com/neo4j/index.htm

CQL: General Clauses

Sr.No General Usage
Clauses
1 RETURN This clause is used to define what to include in the query result set.
2 ORDER BY This clause is used to arrange the output of a query in order. It is used

along with the clauses RETURN or WITH.

3 LIMIT This clause is used to limit the rows in the result to a specific value.

4 SKIP This clause is used to define from which row to start including the rows
in the output.

5 WITH This clause is used to chain the query parts together.

6 UNWIND This clause is used to expand a list into a sequence of rows.

7 UNION This clause is used to combine the result of multiple queries.

8 CALL This clause is used to invoke a procedure deployed in the database.

https://www.tutorialspoint.com/neo4j/index.htm



https://www.tutorialspoint.com/neo4j/index.htm

CQL: Data Types

Sr.No

CQL Data Type
Boolean

byte
short
int
long

float

double

char

String

Usage
It is used to represent Boolean literals: true, false.

It is used to represent 8-bit integers.

It is used to represent 16-bit integers.
It is used to represent 32-bit integers.
It is used to represent 64-bit integers.

It is used to represent 32-bit floating-point numbers.

It is used to represent 64-bit floating-point numbers.

It is used to represent 16-bit characters.

It is used to represent Strings.

https://www.tutorialspoint.com/neo4j/index.htm



https://www.tutorialspoint.com/neo4j/index.htm

CQL: Comparison Operators

Sr.No
1

Boolean Operators

<>

Description

It is a Neodj CQL "Equal To" operator.

It is a Neodj CQL "Not Equal To" operator.
It is a Neodj CQL "Less Than" operator.

It is a Neodj CQL "Greater Than" operator.

It is @ Neo4j CQL "Less Than Or Equal To" operator.

It is @ Neo4j CQL "Greater Than Or Equal To" operator.

https://www.tutorialspoint.com/neo4j/index.htm



https://www.tutorialspoint.com/neo4j/index.htm

CQL: Boolean Operators

1

Sr.No

Boolean Operators
AND

OR

NOT

XOR

Description

It is a Neo4j CQL keyword to support AND operation. It is like
SQL AND operator.

It is a Neo4j CQL keyword to support OR operation. It is like
SQL AND operator.

It is a Neo4j CQL keyword to support NOT operation. It is like
SQL AND operator.

It is a Neo4j CQL keyword to support XOR operation. It is like
SQL AND operator.

https://www.tutorialspoint.com/neo4j/index.htm



https://www.tutorialspoint.com/neo4j/index.htm

Creating Nodes and labels

e Create nodes
* CREATE (nodel),(node2)

e Create nodes with label
 CREATE (Obama:politician)

* Create node with multiple label
* CREATE (Obama:politician:person)



Creating Node with Properties

* Properties are given in key, value pairs
* Key -> property name, value-> value of the property

* Example:
 CREATE (Obama:politician{name: “Barack Obama", nationality:"American”})



Creating Relationships

* Note: relationships are directional (nodel -> node2)
 Step 1: create two nodes/entities
 Step 2: create relationship

* Example
* CREATE (Obama:politician{name: “Barack Obama", nationality:”american”})
 CREATE (Usa:Country {name: “USA"})
 CREATE (Obama)-[r:CITIZEN_OF]->(Usa)



For More Details

* See these resources

 NEO4J homepage: https://neodj.com/

* Book: https://go.neodj.com/rs/710-RRC-
335/images/Graph Databases for Beginners.pdf



https://neo4j.com/
https://go.neo4j.com/rs/710-RRC-335/images/Graph_Databases_for_Beginners.pdf

