Artificial Intelligence: Foundations & Applications

Solving Constraint Satisfaction Problem

Prof. Partha P. Chakrabarti & Arijit Mondal
Indian Institute of Technology Kharagpur

IIT Kharagpur 1

Solution overview

e CSP graph creation

e Create a node for every variable. All possible domain values are initially assigned to the variable
e Draw edges between nodes if there is a binary Constraint. Otherwise draw a hyper-edge between
nodes with constraints involving more than two variables
e Constraint propagation

e Reduce the valid domains of each variable by applying node consistency, arc / edge Consistency, K-

Consistency, till no further reduction is possible. If a solution is found or the problem found to have
no consistent solution, then terminate

e Search for solution
e Apply search algorithms to find solutions

e There are interesting properties of CSP graphs which lead of efficient algorithms in some cases: Trees,
Perfect Graphs, Interval Graphs, etc.

e Issues for Search: Backtracking Scheme, Ordering of Children, Forward Checking (Look-Ahead) using
Dynamic Constraint Propagation

e Solving by converting to satisfiability (SAT) problems

IIT Kharagpur 2

Search formulation of CSP

e Standard search formulation of CSP

Initial state: all unassigned variables

State: partial assignment of the variables

Successor function: assign a value to unassigned variables

Goal state: all variables are assigned and satisfies all constraints
Path cost: uniform path cost

IIT Kharagpur 3

Constraint propagation

e Constraints
e Unary constraints or node constraints (eg. x; # 9)
e Binary constraints or edge between nodes (eg. x; # x;)
e Higher order or hyper-edge between nodes (eg. x1 + X, = X3)
¢ Node consistency
e For every variable V;, remove all elements of D; that do not satisfy the unary constraints for the
variable
e First step is to reduce the domains using node consistency
e Arc consistency
e For every element x; of D, for every edge from V; to V;, remove x; if it has no consistent value(s) in
other domains satisfying the Constraints
e Continue to iterate using arc consistency till no further reduction happens.
e Path consistency
e For every element yj; of D;, choose a path of length L with L variables, use a consistency checking
method similar to above to reduce domains if possible

IIT Kharagpur 4

Arc consistency check (AC-3)

AC-3(csp) // inputs - CSP with variables, domains, constraints
1. queue « local variable initialized to all arcs in csp

2. while queue is not empty do

3 (Xi, Xj) < pop(queue)

4 if Revise(csp, X;, X;) then

5. if size of D; = O then return false

6 for each X in X,-.neighbors—{Xj} do

7. add (X, X;) to queue

8. return true

Revise(csp, X, X;)

1. revised « false

2. for each xin D; do

3 if no value y in D; allows (x, y) to satisfy constraint between X; and X; then
4. delete x from D;

5 revised « true

6. return revised

IIT Kharagpur 5

Arc consistency check (AC-3)

AC-3(csp) // inputs - CSP with variables, domains, constraints
1. queue « local variable initialized to all arcs in csp

2. while queue is not empty do

3 (Xi, Xj) < pop(queue)

4 if Revise(csp, X;, X;) then

5. if size of D; = O then return false

6 for each X in X,-.neighbors—{Xj} do

7. add (X, X;) to queue

8. return true

Revise(csp, X;, X;) Complexity?
revised « false

1.

2. for each xin D; do

3 if no value y in D; allows (x, y) to satisfy constraint between X; and X; then
4. delete x from D;

5 revised « true

6. return revised

IIT Kharagpur 5

AC-3 example

e Variables: A, B, C, D e Domain: {1, 2, 3} e Constraints: A# B,C<B,C<D

IIT Kharagpur 6

AC-3 example

e Variables: A, B, C, D e Domain: {1, 2, 3} e Constraints: A# B,C<B,C<D

queue: AB, BA, BC, CB, CD, DC

IIT Kharagpur 6

AC-3 example

e Variables: A, B, C, D e Domain: {1, 2, 3} e Constraints: A# B,C<B,C<D

queue: AB, BA, BC, CB, CD, DC
pop(queue) // AB

IIT Kharagpur 6

AC-3 example

e Variables: A, B, C, D e Domain: {1, 2, 3} e Constraints: A# B,C<B,C<D

queue: AB, BA, BC, CB, CD, DC
pop(queue) // AB
No change in queue. queue=BA, BC, CB, CD, DC

IIT Kharagpur 6

AC-3 example

e Variables: A, B, C, D e Domain: {1, 2, 3} e Constraints: A# B,C<B,C<D

queue: AB, BA, BC, CB, CD, DC

pop(queue) // AB

No change in queue. queue=BA, BC, CB, CD, DC
pop(queue) // BA

IIT Kharagpur 6

AC-3 example

e Variables: A, B, C, D e Domain: {1, 2, 3} e Constraints: A# B,C<B,C<D

queue: AB, BA, BC, CB, CD, DC

pop(queue) // AB

No change in queue. queue=BA, BC, CB, CD, DC
pop(queue) // BA

No change in queue. queue=BC, CB, CD, DC

IIT Kharagpur 6

AC-3 example

e Variables: A, B, C, D e Domain: {1, 2, 3} e Constraints: A# B,C<B,C<D

queue: AB, BA, BC, CB, CD, DC

pop(queue) // AB

No change in queue. queue=BA, BC, CB, CD, DC
pop(queue) // BA

No change in queue. queue=BC, CB, CD, DC
pop(queue) // BC

IIT Kharagpur 6

AC-3 example

e Variables: A, B, C, D e Domain: {1, 2, 3} e Constraints: A# B,C<B,C<D

queue: AB, BA, BC, CB, CD, DC

pop(queue) // AB

No change in queue. queue=BA, BC, CB, CD, DC
pop(queue) // BA

No change in queue. queue=BC, CB, CD, DC
pop(queue) // BC

Remove 1. Dg = {2,3}

IIT Kharagpur 6

AC-3 example

e Variables: A, B, C, D e Domain: {1, 2, 3} e Constraints: A# B,C<B,C<D

queue: AB, BA, BC, CB, CD, DC

pop(queue) // AB

No change in queue. queue=BA, BC, CB, CD, DC
pop(queue) // BA

No change in queue. queue=BC, CB, CD, DC
pop(queue) // BC

Remove 1. Dg = {2,3}

Add AB to queue. queue=CB, CD, DC, AB

pop(queue) // CB A={1,23},B={23},
Remove 3. D¢ = {1,2} c={1,2},D={2,3}.
No change in queue. queue=CD, DC, AB

pop(queue) // CD

No change. queue=DC, AB

pop(queue) // DC

Remove 1. Dp = {2, 3}

No change. queue=AB
pop(queue) // AB

No change in queue. queue=g

IIT Kharagpur 6

Sudoku

3 2 6

9 3 5 1
1 614
811 219

7 X 8
617 8]2
216 915

8 2 3 9
5 11V]3

IIT Kharagpur 7

AC-3 limitations

e After successful run of AC-3

e There can be only one solution
e There can be more than one solutions
e There may be no solution and it fails to identify

IIT Kharagpur

Examination schedule

[Student | Subjects |

S G,C2,C3 Is it possible to conduct all
S2 €2,C3,C4 these exams in 3 days assum-
S3 C3,Ca ing one exam per day?

S4 C3,C4,Cs

S5 Gy, Cs, C6

e How does naive BFS & DFS perform?

IIT Kharagpur

Backtracking search

e Backtracking is a basic search methodology for solving CSP
e Basic steps:
e Assign one variable at a time
e Fix ordering of variables (eg.C; =1,C, = 3issameasC, = 3,C; = 1)
e Check constraint
e Check with previously assigned variables

IIT Kharagpur

Backtracking search

Backtrack(assignment)
if assignment is complete then return success, assignment
var <« Choose-unassigned-variable()
for each value of Domain(var) do
if value is consistent with the assignment then

add var = value to assignment

result = Backtrack(assignment)

if result # failure return result, assignment
return failure

e Choices:
e Variable to be assigned next
e Value to be assigned to the variable next
o Early detection of failure

IIT Kharagpur

4 Queens

IIT Kharagpur

4 Queens

IIT Kharagpur

4 Queens

IIT Kharagpur

4 Queens

IIT Kharagpur

4 Queens

IIT Kharagpur

4 Queens

IIT Kharagpur

4 Queens

IIT Kharagpur

4 Queens

IIT Kharagpur

4 Queens

IIT Kharagpur

4 Queens

IIT Kharagpur

4 Queens

IIT Kharagpur

4 Queens

IIT Kharagpur

> Success

Heuristic strategy

e Variable ordering

e Static or random
e Minimum remaining values

e Variable with fewest legal values (also known as most constrained variable)
e Degree heuristic

e Variable with the largest number of constraints on other unassigned variables
e Choice of value

e Least constraining value

e Value that leaves most choices for the neighboring variables in the constraint graph

IIT Kharagpur

Forward checking

e Forward checking propagates information from assigned to unassigned variables

G C Cs Cs Cs Co
[] | [| | [] | [[| [] | [| |

IIT Kharagpur

Forward checking

e Forward checking propagates information from assigned to unassigned variables

G C Cs Cs Cs Co
[] | [| | [] | [[| [] | [| |
[|

IIT Kharagpur

Forward checking

e Forward checking propagates information from assigned to unassigned variables

G C Cs Cs Cs Co
[] | [| | [] | [[| [] | [| |
[| [| [| [[| [| [|

IIT Kharagpur

Forward checking

e Forward checking propagates information from assigned to unassigned variables

G C Cs Cs Cs Co
[] | [| | [] | [[| [] | [| |
[| [| [| [[| [| [|

IIT Kharagpur

Forward checking

e Forward checking propagates information from assigned to unassigned variables

G C Cs Cs Cs Co
[] | [| | [] | [[| [] | [| |
[| [| [| [[| [| [|

IIT Kharagpur

Special cases

e General CSP problem is NP-Complete

e For perfect graphs, chordal graphs, interval graphs, the graph coloring problem can be solved in poly-
nomial time

e Tree structured CSP can be solved in polynomial time

IIT Kharagpur

%%/ %M./

