Artificial Intelligence: Foundations & Applications

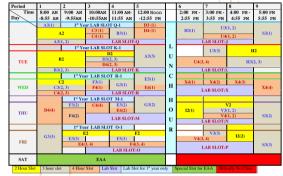
Introduction to Constraint Satisfaction Problem

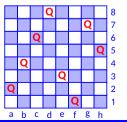
Prof. Partha P. Chakrabarti & Arijit Mondal Indian Institute of Technology Kharagpur

Examples of CSP

CENTRAL TIMETABLE: SPRING SEMESTER (2019- 2020)

TABLE-1 - TIME TABLE SLOTTING PATTERN





- Crossword puzzle
- N-queens on chess board
- Knapsack
- Assembly scheduling
- Operations research
- Map coloring
- Time tabling
- Airline/train scheduling
- Cryptic puzzle
- Boolean satisfiability
- Car sequencing
- Scene labeling
- etc.

- Variables
 - A set of decision variables x_1, x_2, \ldots, x_n

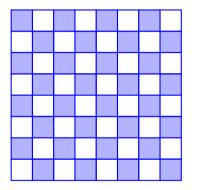
- Variables
 - A set of decision variables x_1, x_2, \ldots, x_n
- Domain of variables
 - Each variable has a domain (discrete or continuous) D_1, D_2, \ldots, D_n from which it can take a value.

- Variables
 - A set of decision variables x_1, x_2, \ldots, x_n
- Domain of variables
 - Each variable has a domain (discrete or continuous) D_1, D_2, \ldots, D_n from which it can take a value.
- Satisfaction constraint
 - A finite set of satisfaction constraints C_1, C_2, \ldots, C_m
 - A constraint can be unary, binary or among many variables. Given a value of variables, any constraint will yield yes or no only

- Variables
 - A set of decision variables x_1, x_2, \ldots, x_n
- Domain of variables
 - Each variable has a domain (discrete or continuous) D_1, D_2, \ldots, D_n from which it can take a value.
- Satisfaction constraint
 - A finite set of satisfaction constraints C_1, C_2, \ldots, C_m
 - A constraint can be unary, binary or among many variables. Given a value of variables, any constraint will yield yes or no only
- Cost function for optimization (optional)
 - A set of optimization functions (typically min, max) O_1, O_2, \ldots, O_p

- Variables
 - A set of decision variables x_1, x_2, \ldots, x_n
- Domain of variables
 - Each variable has a domain (discrete or continuous) D_1, D_2, \ldots, D_n from which it can take a value.
- Satisfaction constraint
 - A finite set of satisfaction constraints C_1, C_2, \ldots, C_m
 - A constraint can be unary, binary or among many variables. Given a value of variables, any constraint will yield yes or no only
- Cost function for optimization (optional)
 - A set of optimization functions (typically min, max) O_1, O_2, \ldots, O_p
- Solution
 - A consistent assignment of domain values to each variable so that all constraints are satisfied and the optimization criteria (if any) are met.

N-Queens

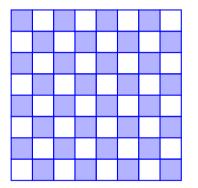


Need to place N-queens on this board

Rules:

• No queens are attacking each other

N-Queens



Need to place N-queens on this board

Rules:

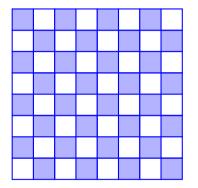
• No queens are attacking each other

- Variables: x_{ij} queen is in cell (i, j),
- Domains: $D_{ij} \in \{0, 1\}$
- Constraints:
 $$\begin{split} \sum_{i} x_{ij} &= 1, \sum_{j} x_{ij} = 1, \sum_{i,j} x_{ij} = N, \\ x_{ij} + x_{(i+k)(j+k)} &\leq 1, \quad x_{ij} + x_{(i+k)(j-k)} &\leq 1, \end{split}$$

k is in appropriate range

• Search space 2⁶⁴ = 18, 446, 744, 073, 709, 551, 616

N-Queens (alternative model)

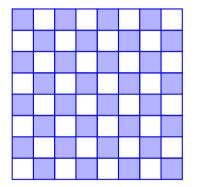


Need to place N-queens on this board

Rules:

• No queens are attacking each other

N-Queens (alternative model)



Need to place N-queens on this board

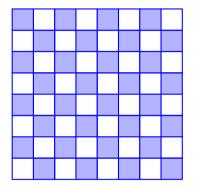
Rules:

• No queens are attacking each other

• Variables: x_i

- Domains: $D_i \in \{1, 2, ..., 8\}$
- Constraints: ...
- Search space 8⁸ = 16, 777, 216

N-Queens (alternative model)



Need to place N-queens on this board

Rules:

- No queens are attacking each other
- Variables: x_i
- Domains: $D_i \in \{1, 2, ..., 8\}$
- Constraints: ...
- Search space 8⁸ = 16, 777, 216

Other variants:

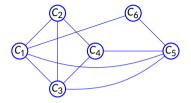
- At least a queen on the main diagonal
- Two queens on the two main diagonals
- Enumeration of all solutions

Student	Subjects
S ₁	C_1, C_2, C_3
S ₂	C_2, C_3, C_4
S 3	C_3, C_4
S ₄	C_3, C_4, C_5
S ₅	C_1, C_5, C_6

Student	Subjects
S ₁	C_1, C_2, C_3
S ₂	C_2, C_3, C_4
S ₃	C_3, C_4
S ₄	C_3, C_4, C_5
S ₅	C_1, C_5, C_6

Is it possible to conduct all these exams in 3 days assuming one exam per day?

Student	Subjects
S ₁	C_1, C_2, C_3
S ₂	C_2, C_3, C_4
S ₃	C_3, C_4
S ₄	C_3, C_4, C_5
S ₅	C_1, C_5, C_6



Is it possible to conduct all these exams in 3 days assuming one exam per day?

Student	Subjects
S ₁	C_1, C_2, C_3
S ₂	C_2, C_3, C_4
S ₃	<i>C</i> ₃ , <i>C</i> ₄
S ₄	C_3, C_4, C_5
S ₅	C_1, C_5, C_6

Is it possible to conduct all these exams in 3 days assuming one exam per day?

- Variables: x_i slot for subject C_i
- Domains: $D_i \in \{1, 2, 3\}$
- Constraints: $x_1 \neq x_2, x_1 \neq x_3, \ldots$

Student	Subjects
S ₁	C_1, C_2, C_3
S ₂	C_2, C_3, C_4
S ₃	<i>C</i> ₃ , <i>C</i> ₄
S ₄	C_3, C_4, C_5
S ₅	C_1, C_5, C_6

Is it possible to conduct all these exams in 3 days assuming one exam per day?

- Variables: x_i slot for subject C_i
- Domains: $D_i \in \{1, 2, 3\}$
- Constraints: $x_1 \neq x_2, x_1 \neq x_3, \ldots$

Graph coloring problem.

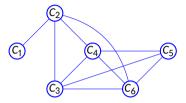
Flight	Arrv. time	Dept. time
F1	0715	0815
F2	0800	0900
F3	0830	0930
F4	0845	0945
F5	0915	1015
F6	0845	0945

Flight	Arrv. time	Dept. time
F1	0715	0815
F2	0800	0900
F3	0830	0930
F4	0845	0945
F5	0915	1015
F6	0845	0945

Is it possible to schedule all flights using 3 gates?

Flight	Arrv. time	Dept. time
F1	0715	0815
F2	0800	0900
F3	0830	0930
F4	0845	0945
F5	0915	1015
F6	0845	0945

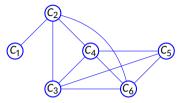
Is it possible to schedule all flights using 3 gates?



Flight	Arrv. time	Dept. time
F1	0715	0815
F2	0800	0900
F3	0830	0930
F4	0845	0945
F5	0915	1015
F6	0845	0945

Is it possible to schedule all flights using 3 gates?

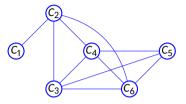
- Variables: x_i slot for subject C_i
- Domains: $D_i \in \{1, 2, 3\}$
- Constraints: $x_1 \neq x_2, x_1 \neq x_3, \ldots$



Flight	Arrv. time	Dept. time
F1	0715	0815
F2	0800	0900
F3	0830	0930
F4	0845	0945
F5	0915	1015
F6	0845	0945

Is it possible to schedule all flights using 3 gates?

- Variables: x_i slot for subject C_i
- Domains: $D_i \in \{1, 2, 3\}$
- Constraints: $x_1 \neq x_2, x_1 \neq x_3, \ldots$



Interval Graphs.

Cryptarithmetic

 S
 E
 N
 D

 +
 M
 O
 R
 E

 M
 O
 N
 E
 Y

Cryptarithmetic

 $\begin{array}{cccccccc} S & E & N & D \\ + & M & O & R & E \\ \hline M & O & N & E & Y \end{array}$

• Variables: S, E, N, D, M, O, R, Y,

- Domains: $D_i \in \{0, 1, ..., 9\}$
- Constraints: All different, $10 \times M + O = S + M + C_{1000}, \dots$

Cryptarithmetic

S E N D + M O R E M O N E Y

• Variables: S, E, N, D, M, O, R, Y,

- Domains: $D_i \in \{0, 1, ..., 9\}$
- Constraints: All different, $10 \times M + O = S + M + C_{1000}, \dots$

MiniZinc implementation:

include "alldifferent.mzn";

var 1..9: S; var 0..9: E; var 0..9: N; var 0..9: D; var 1..9: M; var 0..9: C; var 0..9: R; var 0..9: Y;

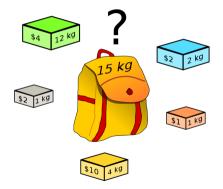
constraint

constraint alldifferent([S,E,N,D,M,O,R,Y]);

```
solve satisfy;
```

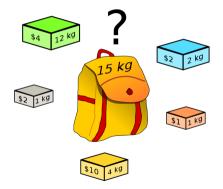
Knapsack

• There are *n* items namely, O_1, O_2, \ldots, O_n . Item O_i weighs w_i and provides profit of p_i . Target is to select a subset of the items such that the total weight of the items does not exceed *W* and profit is maximized.



Knapsack

- There are *n* items namely, O_1, O_2, \ldots, O_n . Item O_i weighs w_i and provides profit of p_i . Target is to select a subset of the items such that the total weight of the items does not exceed *W* and profit is maximized.
 - Variables: x_i selection of *i*th item
 - **Domains:** {0, 1}
 - Constraints: $\sum_{i} x_i \times w_i \leq W$
 - Optimization function: $\sum x_i \times p_i$



• There are *n* possible locations to setup warehouses (*W*) which will deliver goods to *m* customers (*C*). Cost to setup W_j warehouse is f_j . Customer C_i has a demand of d_i which needs to fulfilled by the warehouses. Delivery cost per unit item from W_j to C_i is c_{ji} . Target is to minimize total cost to serve the required demands.

- There are *n* possible locations to setup warehouses (*W*) which will deliver goods to *m* customers (*C*). Cost to setup W_j warehouse is f_j . Customer C_i has a demand of d_i which needs to fulfilled by the warehouses. Delivery cost per unit item from W_j to C_i is c_{ji} . Target is to minimize total cost to serve the required demands.
 - Variables: x_j warehouse location, y_{ji} amount served by W_j to C_i
 - **Domains:** $x_j \in \{0, 1\}, y_{ji} \in \{0, \infty\}$
 - Constraints: $\sum_{i} y_{ji} = d_i$,

- There are *n* possible locations to setup warehouses (*W*) which will deliver goods to *m* customers (*C*). Cost to setup W_j warehouse is f_j . Customer C_i has a demand of d_i which needs to fulfilled by the warehouses. Delivery cost per unit item from W_j to C_i is c_{ji} . Target is to minimize total cost to serve the required demands.
 - Variables: x_j warehouse location, y_{ji} amount served by W_j to C_i

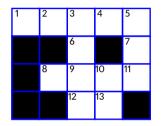
.

• **Domains:** $x_j \in \{0, 1\}, y_{ji} \in \{0, \infty\}$

• Constraints:
$$\sum_{j} y_{ji} = d_i, \sum_{i} y_{ji} - x_j \left(\sum_{i} d_i \right) \le 0$$

- There are *n* possible locations to setup warehouses (W) which will deliver goods to *m* customers (C). Cost to setup W_j warehouse is f_j . Customer C_i has a demand of d_i which needs to fulfilled by the warehouses. Delivery cost per unit item from W_j to C_i is c_{ji} . Target is to minimize total cost to serve the required demands.
 - Variables: x_j warehouse location, y_{ji} amount served by W_j to C_i
 - **Domains:** $x_j \in \{0, 1\}, y_{ji} \in \{0, \infty\}$
 - Constraints: $\sum_{i} y_{ji} = d_i$, $\sum_{i} y_{ji} x_j \left(\sum_{i} d_i \right) \le 0$
 - Optimization function: $\sum_{i} x_j \times f_j + \sum_{i,j} c_{ji} \times y_{ji}$

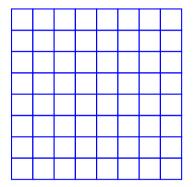
Crossword puzzle



Fill in words from the list in the given 8 × 8 board: HOSES, LASER, SHEET, SNAIL, STEER, ALSO, EARN, HIKE, IRON, SAME, EAT, LET, RUN, SUN, TEN, YES, BE, IT, NO, US

- Variables: *R*₁, *C*₃, *C*₅, *R*₈, . . .,
- Domains: $R_1 \in \{\text{HOSES}, \text{LASER}, \text{SHEET}, \text{SNAIL}, \text{STEER}\}, C_3 \in \{\text{ALSO}, \text{SAME}, \ldots\}$
- Constraints: $R_1[3] = C_3[1], ...$

Variant of crossword puzzle (practice problem)



Pack the following words in the given 8 \times 8 board: ZERO, ONE, TWO, THREE, FOUR, FIVE, SIX, SEVEN, EIGHT, NINE, TEN

Rules:

- All words must read either across or down, as in a crossword puzzle.
- No letters are adjacent unless they belong to one of the given words.
- The words are rookwise connected.
- Words overlap only when one is vertical and the other is horizontal.

Thank you!