Artificial Intelligence: Foundations & Applications

Introduction to Constraint Satisfaction Problem

Prof. Partha P. Chakrabarti & Arijit Mondal Indian Institute of Technology Kharagpur

Examples of CSP

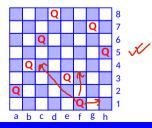
- Crossword puzzle
- N-queens on chess board //
- Knapsack 🖊
- Assembly scheduling /
- Operations research //
- Map coloring /
- Time tabling /
- Airline/train scheduling /

ĥ

- Cryptic puzzle 🦯
- Boolean satisfiability
- Car sequencing /
- Scene labeling
- etc.

TARLE-1 - TIME TARLE SLOTTING PATTERN Dariad 10:00AM 4:00 PM Time 8:00 AM 9:00 AM 11:00 AM 12:00 Noon 2:00 PM 3:00 PM -Day -8:55 AM -9:55AM -10:55AM 11:55 AM -12:55 PM 2:55 PM 3:55 PM 4:55 PM 1st Year LAB SLOT Q-1 D3(1) 113(1.2) H3(1) 42 B3(1) U4(1, 2) LAB SLOT:0 LAB SLOT: 1st Year LAB SLOT K-1 113(3) H2 D2 A3(3) B2 THE 114(3.4) H3(2, 3) R3(2, 3) LAB SLOT-I 1st Year LAB SLOT R-1 E3(1) F3(1) X4(1) G3(1) н E4(1) E4(1) WED C3(2, 3) LAB SLOT:X

CENTRAL TIMETABLE: SPRING SEMESTER (2019-2020)



5:00 PM

5:55 PM

\$3(1)

X4(4)

- Variables /
 - A set of *decision* variables x_1, x_2, \ldots, x_n

- Variables
- Domain of variables
- Variables A set of decision variables x_1, x_2, \dots, x_n $\{0, --, 0\}$ Domain of variables $\{0, -1\}$
 - Each variable has a domain (discrete or continuous) D_1, D_2, \ldots, D_n from which it can take a value.

- Variables
 - A set of decision variables x_1, x_2, \ldots, x_n
- Domain of variables

- Satisfaction constraint
 - A finite set of satisfaction constraints C_1, C_2, \ldots, C_m
 - A constraint can be unary, binary or among many variables. Given a value of variables, any constraint will yield yes or no only

2, that ng < 5 > T/F

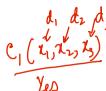
- Variables
 - A set of decision variables x_1, x_2, \ldots, x_n
- Domain of variables
 - Each variable has a domain (discrete or continuous) D_1, D_2, \ldots, D_n from which it can take a value.
- Satisfaction constraint
 - A finite set of satisfaction constraints C_1, C_2, \ldots, C_m
 - A constraint can be unary, binary or among many variables. Given a value of variables, any constraint will yield yes or no only
- Cost function for optimization (optional)
 - A set of optimization functions (typically min, max) O_1, O_2, \ldots, O_p

- Variables
 - A set of decision variables x_1, x_2, \ldots, x_n
- Domain of variables
 - Each variable has a domain (discrete or continuous) D_1, D_2, \ldots, D_n from which it can take a value.

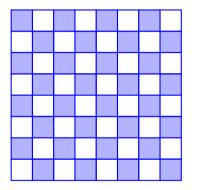
 $(\mathbf{x}_1 = \mathbf{d}_1 \in \mathbf{D}_1)$

- Satisfaction constraint
 - A finite set of satisfaction constraints C_1, C_2, \ldots, C_m
 - A constraint can be unary, binary or among many variables. Given a value of variables, any constraint will yield yes or no only
- Cost function for optimization (optional)
 - A set of optimization functions (typically min, max) O_1, O_2, \ldots, O_p
- Solution
 - A consistent assignment of domain values to each variable so that all constraints are satisfied and
 - the optimization criteria (if any) are met.

م om which it can ta ورر ب Trool



N-Queens

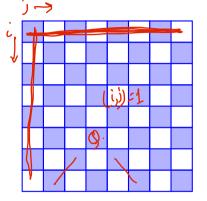


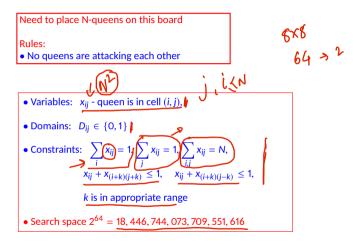
Need to place N-queens on this board

Rules:

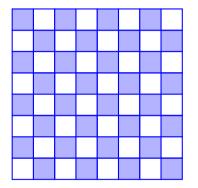
• No queens are attacking each other

N-Queens





N-Queens (alternative model)

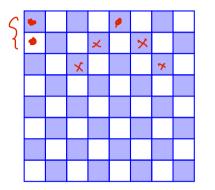


Need to place N-queens on this board

Rules:

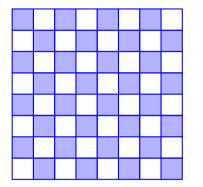
• No queens are attacking each other

N-Queens (alternative model)



λ₁ - þoixition -t gneen in row 1 (x1==1)≠ (x2==1) χ1 ≠ χ2 Need to place N-queens on this board Rules: • No queens are attacking each other • Variables: $\underline{x_i}$ $(\mathcal{X}) = - \mathcal{X}_{\mathcal{X}}$ • Domains: $D_i \in \{1, 2, ..., 8\}$ • Constraints: ... • Search space $8^8 = 16,777,216$

N-Queens (alternative model)



Need to place N-queens on this board

Rules:

- No queens are attacking each other
- Variables: x_i
- Domains: $D_i \in \{1, 2, ..., 8\}$
- Constraints:
- Search space $8^8 = 16,777,216$

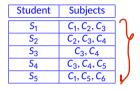
Other variants:

- At least a queen on the main diagonal *V*Two queens on the two main diagonals *V*
- Enumeration of all solutions

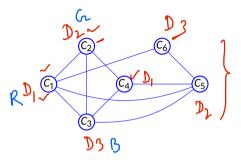
Student	Subjects
S ₁	C_1, C_2, C_3
S ₂	C_2, C_3, C_4
S 3	C_3, C_4
S ₄	C_3, C_4, C_5
S ₅	C_1, C_5, C_6

Student	Subjects
S ₁	C_1, C_2, C_3
S ₂	C_2, C_3, C_4
S ₃	C_3, C_4
S ₄	C_3, C_4, C_5
S ₅	C_1, C_5, C_6

Is it possible to conduct all these exams in 3 days assuming one exam per day?

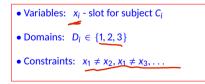


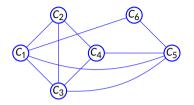
Is it possible to conduct all these exams in 3 days assuming one exam per day?



Student	Subjects
S ₁	C_1, C_2, C_3
S ₂	C_2, C_3, C_4
S ₃	<i>C</i> ₃ , <i>C</i> ₄
S ₄	C_3, C_4, C_5
S ₅	C_1, C_5, C_6

Is it possible to conduct all these exams in 3 days assuming one exam per day?





Student	Subjects
S ₁	C_1, C_2, C_3
S ₂	C_2, C_3, C_4
S ₃	<i>C</i> ₃ , <i>C</i> ₄
S ₄	C_3, C_4, C_5
S ₅	C_1, C_5, C_6

Is it possible to conduct all these exams in 3 days assuming one exam per day?

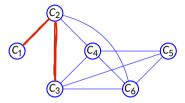
- Variables: x_i slot for subject C_i
- Domains: $D_i \in \{1, 2, 3\}$
- Constraints: $x_1 \neq x_2, x_1 \neq x_3, \ldots$

Graph coloring problem.

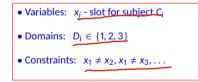
Flight	Arrv. time	Dept. time
F1	0715	0815
F2	0800	0900
F3	0830	0930
F4	0845	0945
F5	0915	1015
F6	0845	0945

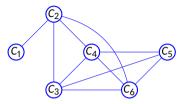
Flight	Arrv. time	Dept. time
F1	0715	0815
F2	0800	0900
F3	0830	0930
F4	0845	0945
F5	0915	1015
F6	0845	0945

Flight	Arrv. time	Dept. time
ζ F1	0715	0815
1 F2	0800	0900
F3 /	0830	0930
F4	0845	0945
F5	0915	1015
F6	0845	0945



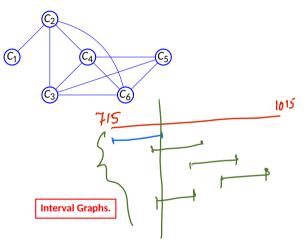
Flight	Arrv. time	Dept. time
F1	0715	0815
F2	0800	0900
F3	0830	0930
F4	0845	0945
F5	0915	1015
F6	0845	0945





Flight	Arrv. time	Dept. time
F1	0715	0815
F2	0800	0900
F3	0830	0930
F4	0845	0945
F5	0915	1015
F6	0845	0945

- Variables: x_i slot for subject C_i
- Domains: $D_i \in \{1, 2, 3\}$
- Constraints: $x_1 \neq x_2, x_1 \neq x_3, \ldots$



Cryptarithmetic

 S
 E
 N
 D

 +
 M
 O
 R
 E

 M
 O
 N
 E
 Y

Cryptarithmetic

 $\begin{array}{cccc} \mathcal{C}_{(\sigma\sigma} & \mathcal{C}_{f\sigma} & \mathcal{C}_{f0} \\ S & E & N & D \\ + & M & O & R & E \\ \hline M & O & N & E & Y \end{array}$

• Variables: S, E, N, D, M, O, R, Y• Domains: $D_i \in \{0, 1, \dots, 9\}$ • Constraints: All different, $10 \times M + O = S + M + C_{1000}, \dots$

- $D+E = 10 \times G_0 + Y$
- $C_{10} + N + R = E + 10 \times C_{100}$

Cryptarithmetic

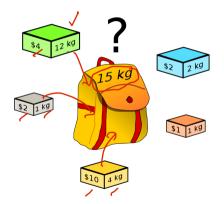
• Variables: S, E, N, D, M, O, R, Y,

- Domains: $D_i \in \{0, 1, ..., 9\}$
- Constraints: All different, $10 \times M + O = S + M + C_{1000}, \dots$

MiniZinc implementation: include "alldifferent.mzn"; 1 var 1..9: S; var 0..9: E; var 0..9: N; var 0..9: D; var 1..9: M: var 0..9: 0: var 0..9: R: var 0..9: Y: constraint 1000 * S + 100 * E + 10 * N + D+ 1000 * M + 100 * 0 + 10 * R + E= 10000 * M + 1000 * 0 + 100 * N + 10 * E + Y;constraint alldifferent([S,E,N,D,M,O,R,Y]); solve satisfy;

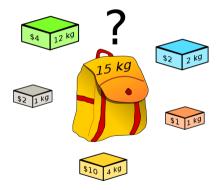
Knapsack

• There are *n* items namely, O_1, O_2, \ldots, O_n . Item O_i weighs w_i and provides profit of p_i . Target is to select a subset of the items such that the total weight of the items does not exceed W and profit is maximized.



Knapsack

- There are *n* items namely, O_1, O_2, \ldots, O_n . Item O_i weighs w_i and provides profit of p_i . Target is to select a subset of the items such that the total weight of the items does not exceed *W* and profit is maximized.
 - Variables: x_i selection of *i*th item
 - Domains: {0,1}
 - Constraints: $\sum_{i} x_i \times w_i \leq W$
 - Optimization function: $\sum x_i \times p_i$



• There are *n* possible locations to setup warehouses (*W*) which will deliver goods to <u>m</u> customers (*C*). Cost to setup W_j warehouse is f_j . Customer C_i has a demand of \underline{d}_i which needs to fulfilled by the warehouses. Delivery cost per unit item from W_j to C_i is c_{ji} . Target is to minimize total cost to serve the required demands.

• There are *n* possible locations to setup warehouses (W) which will deliver goods to *m* customers (C). Cost to setup W_j warehouse is f_j . Customer C_i has a demand of d_i which needs to fulfilled by the warehouses. Delivery cost per unit item from W_j to C_i is c_{ji} . Target is to minimize total cost to serve the required demands.

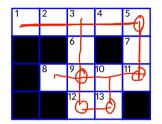
- Variables: x_j warehouse location, y_{ji} amount served by W_j to C_i
- **Domains:** $x_j \in \{0, 1\}, y_{ji} \in \{0, \infty\}$
- Constraints: $\sum_{j} y_{ji} = d_i$,

- There are *n* possible locations to setup warehouses (W) which will deliver goods to *m* customers (C). Cost to setup W_j warehouse is f_j . Customer C_i has a demand of d_i which needs to fulfilled by the warehouses. Delivery cost per unit item from W_j to C_i is c_{ji} . Target is to minimize total cost to serve the required demands.
 - Variables: x_j warehouse location, y_{ji} amount served by W_j to C_i
 - **Domains:** $x_j \in \{0, 1\}, y_{ji} \in \{0, \infty\}$

• Constraints:
$$\sum_{j} y_{ji} = d_i, \sum_{i} y_{ji} - x_j \left(\sum_{i} d_i \right) \le 0$$

- There are *n* possible locations to setup warehouses (W) which will deliver goods to *m* customers (C). Cost to setup W_j warehouse is f_j . Customer C_i has a demand of d_i which needs to fulfilled by the warehouses. Delivery cost per unit item from W_j to C_i is c_{ji} . Target is to minimize total cost to serve the required demands.
 - Variables: x_j warehouse location, y_{ji} amount served by W_j to C_i
 - **Domains:** $x_j \in \{0, 1\}, y_{ji} \in \{0, \infty\}$
 - Constraints: $\sum_{i} y_{ji} = d_i$, $\sum_{i} y_{ji} x_j \left(\sum_{i} d_i \right) \le 0$
 - Optimization function: $\sum_{i} x_{j} \times f_{j} + \sum_{i,j} c_{ji} \times y_{ji}$

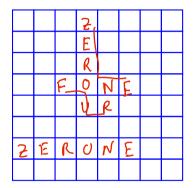
Crossword puzzle



Fill in words from the list in the given 8 × 8 board: HOSES, LASER, SHEET, SNAIL, STEER, ALSO, EARN, HIKE, IRON, SAME, EAT, LET, RUN, SUN, TEN, YES, BE, IT, NO, US

• Variables: $R_1, C_3, C_5, R_8, \ldots$, • Domains: $R_1 \in \{HOSES, LASER, SHEET, SNAIL, STEER\}, C_3 \in \{ALSO, SAME, \ldots\}$ • Constraints: $R_1[3] = C_3[1], \ldots$

Variant of crossword puzzle (practice problem)



Pack the following words in the given 8 × 8 board: ZERO, ONE, TWO, THREE, FOUR, FIVE, SIX, SEVEN, EIGHT, NINE, TEN

Rules:

ullet All words must read either across or down, as in a crossword puzzle. \checkmark

- No letters are adjacent unless they belong to one of the given words.
- The words are rookwise connected.

Words overlap only when one is vertical and the other is horizontal.

Thank you!

Artificial Intelligence: Foundations & Applications

Solving Constraint Satisfaction Problem

Prof. Partha P. Chakrabarti & Arijit Mondal Indian Institute of Technology Kharagpur

Solution overview

- CSP graph creation
 - Create a node for every variable. All possible domain values are initially assigned to the variable
 - Draw edges between nodes if there is a binary Constraint. Otherwise draw a hyper-edge between nodes with constraints involving more than two variables
- Constraint propagation
 - Reduce the valid domains of each variable by applying node consistency, arc / edge Consistency, K-Consistency, till no further reduction is possible. If a solution is found or the problem found to have no consistent solution, then terminate
- Search for solution
 - Apply search algorithms to find solutions
 - There are interesting properties of CSP graphs which lead of efficient algorithms in some cases: Trees, Perfect Graphs, Interval Graphs, etc.
 - Issues for Search: Backtracking Scheme, Ordering of Children, Forward Checking (Look-Ahead) using Dynamic Constraint Propagation
 - Solving by converting to satisfiability (SAT) problems

Search formulation of CSP

- Standard search formulation of CSP
 - Initial state: all unassigned variables
 - State: partial assignment of the variables
 - Successor function: assign a value to unassigned variables
 - Goal state: all variables are assigned and satisfies all constraints
 - Path cost: uniform path cost

Constraint propagation

- Constraints
 - Unary constraints or node constraints (eg. $x_i \neq 9$)
 - Binary constraints or edge between nodes (eg. $x_i \neq x_j$)
 - Higher order or hyper-edge between nodes (eg. $x_1 + x_2 = x_3$)
- Node consistency
 - For every variable V_i, remove all elements of D_i that do not satisfy the unary constraints for the variable
 - First step is to reduce the domains using node consistency
- Arc consistency
 - For every element x_{ij} of D_i , for every edge from V_i to V_j , remove x_{ij} if it has no consistent value(s) in other domains satisfying the Constraints
 - Continue to iterate using arc consistency till no further reduction happens.
- Path consistency
 - For every element y_{ij} of D_i , choose a path of length L with L variables, use a consistency checking method similar to above to reduce domains if possible

Arc consistency check (AC-3)

AC-3(csp) // inputs - CSP with variables, domains, constraints

- 1. queue \leftarrow local variable initialized to all arcs in csp
- 2. while queue is not empty do
- 3. $(X_i, X_j) \leftarrow \text{pop(queue)}$
- 4. **if** Revise(csp, X_i , X_j) **then**
- 5. **if** size of $D_i = 0$ **then return** false
- 6. **for each** X_k **in** X_i .neighbors- $\{X_i\}$ **do**
- 7. $add(X_k, X_i)$ to queue
- 8. return true

Revise(csp, X_i, X_j)

- 1. revised \leftarrow false
- 2. for each x in D_i do
- 3. **if** no value y in D_j allows (x, y) to satisfy constraint between X_i and X_j **then**
- 4. delete x from D_i
- 5. revised \leftarrow true
- 6. return revised

Arc consistency check (AC-3)

AC-3(csp) // inputs - CSP with variables, domains, constraints

- 1. queue \leftarrow local variable initialized to all arcs in csp
- 2. while queue is not empty do
- 3. $(X_i, X_j) \leftarrow \text{pop(queue)}$
- 4. **if** Revise(csp, X_i , X_j) **then**
- 5. **if** size of $D_i = 0$ **then return** false
- 6. **for each** X_k **in** X_i .neighbors-{ X_j } **do**
- 7. $add(X_k, X_i)$ to queue
- 8. return true

Revise(csp, X_i, X_j)

- 1. revised \leftarrow false
- 2. for each x in D_i do
- 3. **if** no value y in D_j allows (x, y) to satisfy constraint between X_j and X_j **then**
- 4. delete x from D_i
- 5. revised \leftarrow true
- 6. return revised

Complexity?

• Variables: A, B, C, D

• Domain: {1, 2, 3}

• Variables: A, B, C, D

• Domain: {1, 2, 3}

queue: AB, BA, BC, CB, CD, DC

• Variables: A, B, C, D

• Domain: {1, 2, 3}

queue: AB, BA, BC, CB, CD, DC pop(queue) // AB

• Variables: A, B, C, D

• Domain: {1, 2, 3}

queue: AB, BA, BC, CB, CD, DC pop(queue) // AB No change in queue. queue=BA, BC, CB, CD, DC

• Variables: A, B, C, D

• Domain: {1, 2, 3}

queue: AB, BA, BC, CB, CD, DC pop(queue) // AB No change in queue. queue=BA, BC, CB, CD, DC pop(queue) // BA

• Variables: A, B, C, D

• Domain: {1, 2, 3}

queue: AB, BA, BC, CB, CD, DC pop(queue) // AB No change in queue. queue=BA, BC, CB, CD, DC pop(queue) // BA No change in queue. queue=BC, CB, CD, DC

• Variables: A, B, C, D

• Domain: {1, 2, 3}

queue: AB, BA, BC, CB, CD, DC
pop(queue) // AB
No change in queue. queue=BA, BC, CB, CD, DC
pop(queue) // BA
No change in queue. queue=BC, CB, CD, DC
pop(queue) // BC

• Variables: A, B, C, D

• Domain: {1, 2, 3}

```
queue: AB, BA, BC, CB, CD, DC
pop(queue) // AB
No change in queue. queue=BA, BC, CB, CD, DC
pop(queue) // BA
No change in queue. queue=BC, CB, CD, DC
pop(queue) // BC
Remove 1. D_B = \{2, 3\}
```

• Variables: A, B, C, D

• Domain: {1, 2, 3}

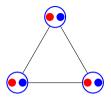
```
aueue: AB, BA, BC, CB, CD, DC
pop(queue) // AB
No change in gueue. gueue=BA, BC, CB, CD, DC
pop(queue) // BA
No change in queue. queue=BC, CB, CD, DC
pop(queue) // BC
Remove 1. D_{B} = \{2, 3\}
Add AB to queue. queue=CB, CD, DC, AB
pop(queue) // CB
Remove 3. D_C = \{1, 2\}
No change in queue. queue=CD, DC, AB
pop(queue) // CD
No change. queue=DC, AB
pop(queue) // DC
Remove 1. D_D = \{2, 3\}
No change. queue=AB
pop(queue) // AB
No change in queue. queue=∅
```

Sudoku

	3		2		6	
9		3		5		1
	1	8		6	4	
	8	1		2	9	
7				X		8
	6	7		8	2	
	2	6		9	5	
8		2		3		9
	5		1	У	3	

AC-3 limitations

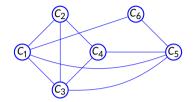
- After successful run of AC-3
 - There can be only one solution
 - There can be more than one solutions
 - There may be no solution and it fails to identify



Examination schedule

Student	Subjects			
S ₁	C_1, C_2, C_3			
S ₂	C_2, C_3, C_4			
S ₃	C_{3}, C_{4}			
S ₄	C_3, C_4, C_5			
S ₅	C_1, C_5, C_6			

Is it possible to conduct all these exams in 3 days assuming one exam per day?



• How does naive BFS & DFS perform?

Backtracking search

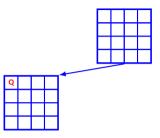
- Backtracking is a basic search methodology for solving CSP
- Basic steps:
 - Assign one variable at a time
 - Fix ordering of variables (eg. $C_1 = 1$, $C_2 = 3$ is same as $C_2 = 3$, $C_1 = 1$)
 - Check constraint
 - Check with previously assigned variables

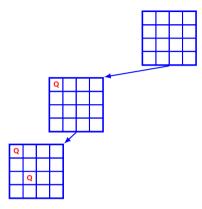
Backtracking search

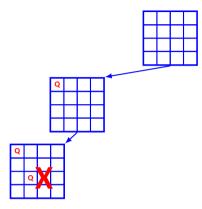
Backtrack(assignment) if assignment is complete then return success, assignment var ← Choose-unassigned-variable() for each value of Domain(var) do if value is consistent with the assignment then add var = value to assignment result = Backtrack(assignment) if result ≠ failure return result, assignment return failure

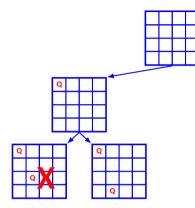
• Choices:

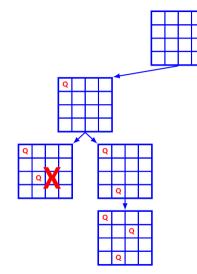
- Variable to be assigned next
- Value to be assigned to the variable next
- Early detection of failure

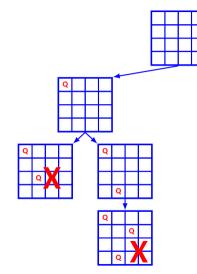


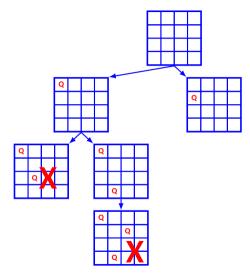


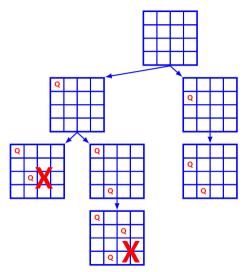


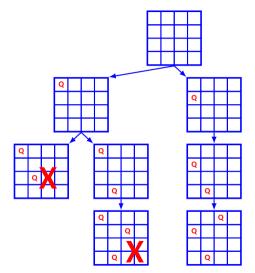


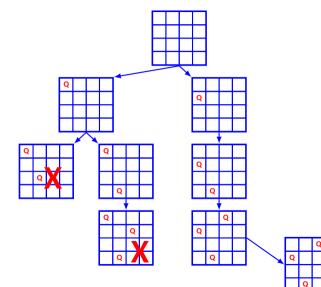




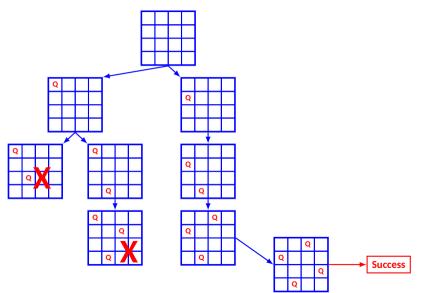






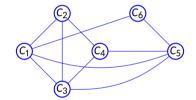


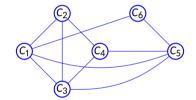
0

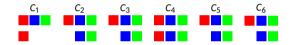


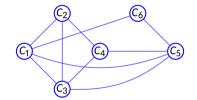
Heuristic strategy

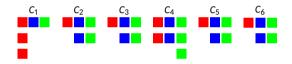
- Variable ordering
 - Static or random
 - Minimum remaining values
 - Variable with fewest legal values (also known as most constrained variable)
 - Degree heuristic
 - Variable with the largest number of constraints on other unassigned variables
- Choice of value
 - Least constraining value
 - Value that leaves most choices for the neighboring variables in the constraint graph

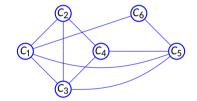


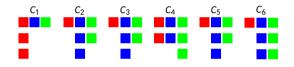


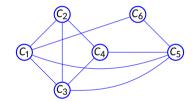






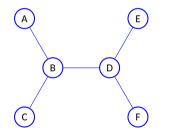






Special cases

- General CSP problem is NP-Complete
- For perfect graphs, chordal graphs, interval graphs, the graph coloring problem can be solved in polynomial time
- Tree structured CSP can be solved in polynomial time



Thank you!