Artificial Intelligence: Foundations & Applications

Prof. Partha P. Chakrabarti & Arijit Mondal Indian Institute of Technology Kharagpur

Introduction

- SAT is one of the central problems in computer science community that has both theoretical as well as
 practical challenges
- This was the first NP-Complete problem
- Wide variety of application domains formal verification, test pattern generation, planning, scheduling, time tabling, etc.
- Provides a generic framework for combinatorial reasoning and search platform
- It is based upon propositional logic (Boolean logic)
- CSP problems can be mapped to SAT
- There exists good open-source industrial strength SAT solvers

SAT problems

- **Propositions** $\mathcal{P} = \{a, b, c, \ldots\}$
- Literals $\{a, \neg a, b, \neg b, \ldots\}$
- Clause $C_1 = (\underline{a \lor b \lor \neg c}), C_2 = (\neg a \lor b \lor \neg d), \dots$
 - Clause is disjunction of literals t
- Formula $\mathcal{F} = C_1 \wedge C_2 \wedge \ldots$
 - Conjunctive normal form (CNF) (

- Goal is to find an assignment (interpretation) to the propositions such that \mathcal{F} is true
 - \mathcal{F} is satisfiable if there exists at least one valid interpretation
 - \mathcal{F} is unsatisfiable if there exists none

SAT tools

- Very good open-source SAT solvers are available
 - MiniSAT
 - zChaff
 - CaDiCaL
 - Glucose
 - Lingeling
- http://www.satcompetition.org/ 🧲

- PicoSAT
- Cryptominisat
- Rsat
- Riss
- many others

Input format - DIMACS

- There is standard format to specify clauses and its literals
- To specify comments

C This line is comment

Input format - DIMACS

- There is standard format to specify clauses and its literals
- To specify comments
 - c This line is comment
- To specify problem, you need to provide number of variables and number of clauses

c p cnf num_of_variables num_of_clauses
p cnf 3 4

Input format - DIMACS

- There is standard format to specify clauses and its literals
- To specify comments
 - c This line is comment
- To specify problem, you need to provide number of variables and number of clauses
 - c p cnf num_of_variables num_of_clauses p cnf 4
- To specify CNF

c list_of_literals 0

$$1 -2 3 \bigcirc$$

 $2 4 0 \rightarrow b \lor d$
 $-3 0 \neg c$
 $-1 2 3 -4 0$
 $\neg R \lor b \lor C \lor \neg d$

$$a \vee \neg b \vee c$$

 $1 -2 3$

a, b, c , a, 7b, 7e 1 2 5 -1 -2 -3

Output format

- Outputs from a SAT solver are SATISFIABLE / UNSATISFIABLE, an assignment of Boolean variables
- Typically it will be as follows
- → SAT → -1 2 -3 4 0 ←
 - The last line needs to be interpreted as follows: $\neg a \land b \land \neg c \land d$
 - There may be additional messages to provide information on resource usage, statistics, etc.

• If Rajat is the Director then Rajat is well known. Rajat is the Director. So, Rajat is well known.

- If Rajat is the Director then Rajat is well known. Rajat is the Director. So, Rajat is well known.
- **Propositions:** *a* : **Rajat is the Director**, *b* : **Rajat is well known**.

- If Rajat is the Director then Rajat is well known. Rajat is the Director. So, Rajat is well known.
- **Propositions:** *a* : **Rajat is the Director**, *b* : **Rajat is well known**.
- Formula $(\mathcal{F}): a \implies b, a$

- If Rajat is the Director then Rajat is well known. Rajat is the Director. So, Rajat is well known.
- Propositions: *a* : Rajat is the Director, *b* : Rajat is well known.
- Formula (\mathcal{F}): $a \implies b, a |$
- Goal (\mathcal{G}) : *b*. That is $\mathcal{M} = (\mathcal{F} \implies \mathcal{G}) \equiv ((a \implies b) \land a) \implies b$

- If Rajat is the Director then Rajat is well known. Rajat is the Director. So, Rajat is well known.
- **Propositions:** *a* : **Rajat is the Director**, *b* : **Rajat is well known**.
- Formula (\mathcal{F}) : $a \implies b, a$
- Goal (\mathcal{G}): b. That is $\mathcal{M} = (\mathcal{F} \implies \mathcal{G}) \equiv ((a \implies b) \land a) \implies b$
 - If \mathcal{M} is tautology then $\mathcal{F} \land \overline{\mathcal{G}}$ will be false ie. $\mathcal{F} \land \mathcal{G} = \emptyset$
 - If \mathcal{M} is satisfiable then so is $\mathcal{F} \wedge \overline{\mathcal{G}}$

- If Rajat is the Director then Rajat is well known. Rajat is the Director. So, Rajat is well known.
- **Propositions:** *a* : **Rajat is the Director**, *b* : **Rajat is well known**.
- Formula (\mathcal{F}) : $a \implies b, a$
- Goal (\mathcal{G}): b. That is $\mathcal{M} = (\mathcal{F} \implies \mathcal{G}) \equiv ((a \implies b) \land a) \implies b$
 - If \mathcal{M} is tautology then $\mathcal{F} \wedge \overline{\mathcal{G}}$ will be false ie. $\mathcal{F} \wedge \mathcal{G} = \emptyset$
 - If $\mathcal M$ is satisfiable then so is $\mathcal F\wedge \bar{\mathcal G}$
- SAT modeling

- If Rajat is the Director then Rajat is well known. Rajat is the Director. So, Rajat is well known.
- **Propositions:** *a* : **Rajat is the Director**, *b* : **Rajat is well known**.
- Formula $(\mathcal{F}): a \implies b, a$
- Goal (\mathcal{G}): **b** That is $\mathcal{M} = (\mathcal{F} \implies \mathcal{G}) \equiv ((a \implies b) \land a) \implies b$
 - If \mathcal{M} is tautology then $\underline{\mathcal{F}} \wedge \underline{\overline{\mathcal{G}}}$ will be false ie. $\mathcal{F} \wedge \mathcal{G} = \emptyset$
 - If $\mathcal M$ is satisfiable then so is $\mathcal F\wedge \bar{\mathcal G}$
- SAT modeling
 - p cnf 2 3

- If Rajat is the Director then Rajat is well known. Rajat is the Director. So, Rajat is well known.
- **Propositions:** *a* : Raiat is the Director. *b* : Raiat is well known.
- Formula $(\mathcal{F}): a \implies b, a$ Goal $(\mathcal{G}): b$. That is $\mathcal{M} = (\mathcal{F} \implies \mathcal{G}) \equiv ((a \implies b) \land a) \implies b$
 - If \mathcal{M} is tautology then $\mathcal{F} \wedge \overline{\mathcal{G}}$ will be false ie. $\mathcal{F} \wedge \mathcal{G} = \emptyset$
 - If \mathcal{M} is satisfiable then so is $\mathcal{F} \wedge \bar{\mathcal{G}}$
- SAT modeling
 - p cnf 2 3 -120

- If Rajat is the Director then Rajat is well known. Rajat is the Director. So, Rajat is well known.
- **Propositions:** *a* : **Rajat is the Director**, *b* : **Rajat is well known**.
- Formula (\mathcal{F}) : $a \implies b, a$
- Goal (\mathcal{G}): b. That is $\mathcal{M} = (\mathcal{F} \implies \mathcal{G}) \equiv ((a \implies b) \land a) \implies b$
 - If \mathcal{M} is tautology then $\mathcal{F} \wedge \overline{\mathcal{G}}$ will be false ie. $\mathcal{F} \wedge \mathcal{G} = \emptyset$
 - If ${\mathcal M}$ is satisfiable then so is ${\mathcal F}\wedge \bar{{\mathcal G}}$
- SAT modeling

```
p cnf 2 3
-1 2 0
1 0
```

- If Rajat is the Director then Rajat is well known. Rajat is the Director. So, Rajat is well known.
- **Propositions:** *a* : **Rajat is the Director**, *b* : **Rajat is well known**.
- Formula (\mathcal{F}) : $a \implies b, a$
- Goal (\mathcal{G}): b. That is $\mathcal{M} = (\mathcal{F} \implies \mathcal{G}) \equiv ((a \implies b) \land a) \implies b$
 - If \mathcal{M} is tautology then $\mathcal{F} \land \overline{\mathcal{G}}$ will be false ie. $\mathcal{F} \land \mathcal{G} = \emptyset$
 - If $\mathcal M$ is satisfiable then so is $\mathcal F\wedge ar {\mathcal G}$
- SAT modeling

```
    \int_{-1}^{p \text{ cnf } 2 \text{ 3}} \frac{1}{2} 0 \\
    1 0 \\
    -2 0
```

UNSATISFIABLE

$$(\neg a \lor b) \land a \land \neg b$$

 $b \land a \land \neg b = \phi$

- If Rajat is the Director then Rajat is well known. Rajat is not the Director. So, Rajat is not well known.
- **Propositions:** *a* : **Rajat is the Director**, *b* : **Rajat is well known**.
- Formula $(\mathcal{F}): a \implies b, \neg a$
- Goal (*G*): ¬*b*

- If Rajat is the Director then Rajat is well known. Rajat is not the Director. So, Rajat is not well known.
- **Propositions:** *a* : **Rajat is the Director**, *b* : **Rajat is well known**.
- Formula (\mathcal{F}) : $a \implies b, \neg a$
- Goal (*G*): ¬b
- SAT modeling

- If Rajat is the Director then Rajat is well known. Rajat is not the Director. So, Rajat is not well known.
- **Propositions:** *a* : **Rajat is the Director**, *b* : **Rajat is well known**.
- Formula (\mathcal{F}) : $a \implies b, \neg a$
- Goal (*G*): ¬*b*
- SAT modeling
 - p cnf 2 3 -1 2 0 -1 0

- If Rajat is the Director then Rajat is well known. Rajat is not the Director. So, Rajat is not well known.
- **Propositions:** *a* : **Rajat is the Director**, *b* : **Rajat is well known**.
- Formula (\mathcal{F}) : $a \implies b, \neg a$
- Goal (*G*): ¬b
- SAT modeling
 - p cnf 2 3 -1 2 0 -1 0 2 0

SATISFIABLE

- Knowledge base: If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned
- Target: Can we prove that the unicorn is mythical? Magical? Horned?
- Propositions: *a*-mythical, *b*-mortal, *c*-mammal, *d*-horned, *e*-magical

- Knowledge base: If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned
- Target: Can we prove that the unicorn is mythical? Magical? Horned?
- Propositions: *a*-mythical, *b*-mortal, *c*-mammal, *d*-horned, *e*-magical
- Formula (\mathcal{F}) :

- Knowledge base: If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned
- Target: Can we prove that the unicorn is mythical? Magical? Horned?
- Propositions: *a*-mythical, *b*-mortal, *c*-mammal, *d*-horned, *e*-magical
- Formula (\mathcal{F}) :
 - $a \implies \neg b$

- Knowledge base: If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned
- Target: Can we prove that the unicorn is mythical? Magical? Horned?
- Propositions: *a*-mythical, *b*-mortal, *c*-mammal, *d*-horned, *e*-magical
- Formula (\mathcal{F}) :
 - $a \implies \neg b \equiv \neg a \lor \neg b$

- Knowledge base: If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned
- Target: Can we prove that the unicorn is mythical? Magical? Horned?
- Propositions: *a*-mythical, *b*-mortal, *c*-mammal, *d*-horned, *e*-magical
- Formula (\mathcal{F}) :
 - $a \implies \neg b \equiv \neg a \lor \neg b$
 - $\neg a \implies (b \land c)$

- Knowledge base: If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned
- Target: Can we prove that the unicorn is mythical? Magical? Horned?
- Propositions: *a*-mythical, *b*-mortal, *c*-mammal, *d*-horned, *e*-magical
- Formula (\mathcal{F}) :
 - $a \implies \neg b \equiv \neg a \lor \neg b$
 - $\neg a \implies (b \land c) \equiv (a \lor b) \land (a \lor c)$

- Knowledge base: If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned
- Target: Can we prove that the unicorn is mythical? Magical? Horned?
- Propositions: *a*-mythical, *b*-mortal, *c*-mammal, *d*-horned, *e*-magical
- Formula (\mathcal{F}) :
 - $a \implies \neg b \equiv \neg a \lor \neg b$
 - $\neg a \implies (b \land c) \equiv (a \lor b) \land (a \lor c)$
 - $(\neg b \lor c) \implies d$

- Knowledge base: If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned
- Target: Can we prove that the unicorn is mythical? Magical? Horned?
- Propositions: *a*-mythical, *b*-mortal, *c*-mammal, *d*-horned, *e*-magical
- Formula (\mathcal{F}) :
 - $a \implies \neg b \equiv \neg a \lor \neg b$
 - $\neg a \implies (b \land c) \equiv (a \lor b) \land (a \lor c)$
 - $(\neg b \lor c) \implies d \equiv (b \lor d) \land (\neg c \lor d)$

- Knowledge base: If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned
- Target: Can we prove that the unicorn is mythical? Magical? Horned?
- Propositions: *a*-mythical, *b*-mortal, *c*-mammal, *d*-horned, *e*-magical
- Formula (\mathcal{F}) :
 - $a \implies \neg b \equiv \neg a \lor \neg b$
 - $\neg a \implies (b \land c) \equiv (a \lor b) \land (a \lor c)$
 - $(\neg b \lor c) \implies d \equiv (b \lor d) \land (\neg c \lor d)$
 - $d \implies e$

- Knowledge base: If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned
- Target: Can we prove that the unicorn is mythical? Magical? Horned?
- Propositions: *a*-mythical, *b*-mortal, *c*-mammal, *d*-horned, *e*-magical
- Formula (\mathcal{F}) :
 - $a \implies \neg b \equiv \neg a \lor \neg b$
 - $\neg a \implies (b \land c) \equiv (a \lor b) \land (a \lor c)$
 - $(\neg b \lor c) \implies d \equiv (b \lor d) \land (\neg c \lor d)$
 - $d \implies e \equiv (\neg d \lor e)$

- Knowledge base: If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned
- Target: Can we prove that the unicorn is mythical? Magical? Horned?
- Propositions: *a*-mythical, *b*-mortal, *c*-mammal, *d*-horned, *e*-magical
- Formula (\mathcal{F}) :
 - $a \implies \neg b \equiv \neg a \lor \neg b$
 - $\neg a \implies (b \land c) \equiv (a \lor b) \land (a \lor c)$
 - $(\neg b \lor c) \implies d \equiv (b \lor d) \land (\neg c \lor d)$
 - $d \implies e \equiv (\neg d \lor e)$
- **Goal** (*G*): *a*, *e*, *d*

- Knowledge base: If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned
- Target: Can we prove that the unicorn is mythical? Magical? Horned?
- Propositions: *a*-mythical, *b*-mortal, *c*-mammal, *d*-horned, *e*-magical
- Formula (\mathcal{F}) :
 - $a \implies \neg b \equiv \neg a \lor \neg b$
 - $\neg a \implies (b \land c) \equiv (a \lor b) \land (a \lor c)$
 - $(\neg b \lor c) \implies d \equiv (b \lor d) \land (\neg c \lor d)$
 - $d \implies e \equiv (\neg d \lor e)$
- Goal (*G*): *a*, *e*, *d*
- SAT modeling

- Knowledge base: If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned
- Target: Can we prove that the unicorn is mythical? Magical? Horned?
- **Propositions:** *a*-mythical. *b*-mortal. *c*-mammal. *d*-horned. *e*-magical
- Formula (\mathcal{F}) :

 - $a \implies \neg b \equiv \neg a \lor \neg b$ $\neg a \implies (b \land c) \equiv (a \lor b) \land (a \lor c)$ $(\neg b \lor c) \implies d \equiv (b \lor d) \land (\neg c \lor d)$

 - $d \implies e \equiv (\neg d \lor e)$
- Goal (*G*): (*d*), *e*, *d*
- SAT modeling

p cnf 5 7	240
-1 -2 0	-3 4 0
$ \begin{array}{cccc} -1 & -2 & 0 \\ 1 & 2 & 0 \\ 1 & 3 & 0 \end{array} $	2 4 0 -3 4 0 -4 5 0
1 3 0	

- Knowledge base: If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned
- Target: Can we prove that the unicorn is mythical? Magical? Horned?
- Propositions: *a*-mythical, *b*-mortal, *c*-mammal, *d*-horned, *e*-magical
- Formula (\mathcal{F}) :
 - $a \implies \neg b \equiv \neg a \lor \neg b$
 - $\neg a \implies (b \land c) \equiv (a \lor b) \land (a \lor c)$
 - $(\neg b \lor c) \implies d \equiv (b \lor d) \land (\neg c \lor d)$
 - $d \implies e \equiv (\neg d \lor e)$
- Goal (*G*): *a*, *e*, *d*
- SAT modeling

p cnf 5 7	2 4 0
-1 -2 0	-3 4 0
1 2 0	-4 5 0
1 3 0	-1 0 // a ·

- Knowledge base: If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned
- Target: Can we prove that the unicorn is mythical? Magical? Horned?
- Propositions: *a*-mythical, *b*-mortal, *c*-mammal, *d*-horned, *e*-magical
- Formula (\mathcal{F}) :
 - $a \implies \neg b \equiv \neg a \lor \neg b$
 - $\neg a \implies (b \land c) \equiv (a \lor b) \land (a \lor c)$
 - $(\neg b \lor c) \implies d \equiv (b \lor d) \land (\neg c \lor d)$
 - $d \implies e \equiv (\neg d \lor e)$
- Goal (*G*): *a*, *e*, *d*
- SAT modeling

p cnf 5 7	2 4 0
-1 -2 0	-3 4 0
1 2 0	-4 5 0
1 3 0	-1 0 // a - SAT

- Knowledge base: If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned
- Target: Can we prove that the unicorn is mythical? Magical? Horned?
- Propositions: *a*-mythical, *b*-mortal, *c*-mammal, *d*-horned, *e*-magical
- Formula (\mathcal{F}) :
 - $a \implies \neg b \equiv \neg a \lor \neg b$
 - $\neg a \implies (b \land c) \equiv (a \lor b) \land (a \lor c)$
 - $(\neg b \lor c) \implies d \equiv (b \lor d) \land (\neg c \lor d)$
 - $d \implies e \equiv (\neg d \lor e)$
- Goal (*G*): *a*, *e*, *d*
- SAT modeling

p cnf 5 7	2 4 0
-1 -2 0	-3 4 0
1 2 0	-4 5 0
1 3 0	-1 0 // a - SAT

- Knowledge base: If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned
- Target: Can we prove that the unicorn is mythical? Magical? Horned?
- Propositions: *a*-mythical, *b*-mortal, *c*-mammal, *d*-horned, *e*-magical
- Formula (\mathcal{F}) :
 - $a \implies \neg b \equiv \neg a \lor \neg b$
 - $\neg a \implies (b \land c) \equiv (a \lor b) \land (a \lor c)$
 - $(\neg b \lor c) \implies d \equiv (b \lor d) \land (\neg c \lor d)$
 - $d \implies e \equiv (\neg d \lor e)$
- Goal (*G*): *a*, *e*, *d*
- SAT modeling

p cnf 5 7	2 4 0
-1 -2 0	-3 4 0
1 2 0	-4 5 0
1 3 0	-1 0 // a - SAT

- Knowledge base: If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned
- Target: Can we prove that the unicorn is mythical? Magical? Horned?
- Propositions: *a*-mythical, *b*-mortal, *c*-mammal, *d*-horned, *e*-magical
- Formula (\mathcal{F}) :
 - $a \implies \neg b \equiv \neg a \lor \neg b$
 - $\neg a \implies (b \land c) \equiv (a \lor b) \land (a \lor c)$
 - $(\neg b \lor c) \implies d \equiv (b \lor d) \land (\neg c \lor d)$
 - $d \implies e \equiv (\neg d \lor e)$
- Goal (*G*): *a*, *e*, *d*
- SAT modeling

p cnf 5 7	2 4 0
-1 -2 0	-3 4 0
1 2 0	-4 5 0
1 3 0	-1 0 // a - SAT

-5 0 // e - UNSAT -4 0 // d -

- Knowledge base: If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned
- Target: Can we prove that the unicorn is mythical? Magical? Horned?
- Propositions: *a*-mythical, *b*-mortal, *c*-mammal, *d*-horned, *e*-magical
- Formula (\mathcal{F}) :
 - $a \implies \neg b \equiv \neg a \lor \neg b$
 - $\neg a \implies (b \land c) \equiv (a \lor b) \land (a \lor c)$
 - $(\neg b \lor c) \implies d \equiv (b \lor d) \land (\neg c \lor d)$
 - $d \implies e \equiv (\neg d \lor e)$
- Goal (*G*): *a*, *e*, *d*
- SAT modeling

p cnf 5 7	2 4 0
-1 -2 0	-3 4 0
1 2 0	-4 5 0
1 3 0	-1 0 // a - SAT

-5 0 // e - UNSAT -4 0 // d - UNSAT

- Knowledge base: Holmes owns two suits: one black and one tweed. He always wears either a tweed suit or sandals. Whenever he wears his tweed suit and a purple shirt, he chooses to not wear a tie. He never wears the tweed suit unless he is also wearing either a purple shirt or sandals. Whenever he wears sandals, he also wears a purple shirt. Yesterday, Holmes wore a bow tie.
- Target: What else did he wear?
- Propositions: 1-bs-black suit, 2-ts-tweed suit, 3-s-sandals, 4-ps-purple shirt, 5-t-tie

- Knowledge base: Holmes owns two suits: one black and one tweed. He always wears either a tweed suit or sandals. Whenever he wears his tweed suit and a purple shirt, he chooses to not wear a tie. He never wears the tweed suit unless he is also wearing either a purple shirt or sandals. Whenever he wears sandals, he also wears a purple shirt. Yesterday, Holmes wore a bow tie.
- Target: What else did he wear?
- Propositions: 1-bs-black suit, 2-ts-tweed suit, 3-s-sandals, 4-ps-purple shirt, 5-t-tie
- Formula (\mathcal{F}) :

- Knowledge base: Holmes owns two suits: one black and one tweed. He always wears either a tweed suit or sandals. Whenever he wears his tweed suit and a purple shirt, he chooses to not wear a tie. He never wears the tweed suit unless he is also wearing either a purple shirt or sandals. Whenever he wears sandals, he also wears a purple shirt. Yesterday, Holmes wore a bow tie.
- Target: What else did he wear?
- Propositions: 1-bs-black suit, 2-ts-tweed suit, 3-s-sandals, 4-ps-purple shirt, 5-t-tie
- Formula (\mathcal{F}) :
 - ¬bs ∨ ¬ts

- Knowledge base: Holmes owns two suits: one black and one tweed. He always wears either a tweed suit or sandals. Whenever he wears his tweed suit and a purple shirt, he chooses to not wear a tie. He never wears the tweed suit unless he is also wearing either a purple shirt or sandals. Whenever he wears sandals, he also wears a purple shirt. Yesterday, Holmes wore a bow tie.
- Target: What else did he wear?
- Propositions: 1-bs-black suit, 2-ts-tweed suit, 3-s-sandals, 4-ps-purple shirt, 5-t-tie
- Formula (\mathcal{F}) :
 - $\neg bs \lor \neg ts$ $ts \lor s$

- Knowledge base: Holmes owns two suits: one black and one tweed. He always wears either a tweed suit or sandals. Whenever he wears his tweed suit and a purple shirt, he chooses to not wear a tie. He never wears the tweed suit unless he is also wearing either a purple shirt or sandals. Whenever he wears sandals, he also wears a purple shirt. Yesterday, Holmes wore a bow tie.
- Target: What else did he wear?
- Propositions: 1-bs-black suit, 2-ts-tweed suit, 3-s-sandals, 4-ps-purple shirt, 5-t-tie
- Formula (\mathcal{F}) :
 - $\neg bs \lor \neg ts$ $ts \lor s$ $(ts \land ps) \Longrightarrow \neg t$

- Knowledge base: Holmes owns two suits: one black and one tweed. He always wears either a tweed suit or sandals. Whenever he wears his tweed suit and a purple shirt, he chooses to not wear a tie. He never wears the tweed suit unless he is also wearing either a purple shirt or sandals. Whenever he wears sandals, he also wears a purple shirt. Yesterday, Holmes wore a bow tie.
- Target: What else did he wear?
- Propositions: 1-bs-black suit, 2-ts-tweed suit, 3-s-sandals, 4-ps-purple shirt, 5-t-tie
- Formula (\mathcal{F}) :
 - $\neg bs \lor \neg ts$ $ts \lor s$ $(ts \land ps) \implies \neg t \equiv (\neg ts \lor \neg ps \lor \neg t)$

- Knowledge base: Holmes owns two suits: one black and one tweed. He always wears either a tweed suit or sandals. Whenever he wears his tweed suit and a purple shirt, he chooses to not wear a tie. He never wears the tweed suit unless he is also wearing either a purple shirt or sandals. Whenever he wears sandals, he also wears a purple shirt. Yesterday, Holmes wore a bow tie.
- Target: What else did he wear?
- Propositions: 1-bs-black suit, 2-ts-tweed suit, 3-s-sandals, 4-ps-purple shirt, 5-t-tie
- Formula (\mathcal{F}) :
 - $\neg bs \lor \neg ts$ $ts \lor s$ $(ts \land ps) \implies \neg t \equiv (\neg ts \lor \neg ps \lor \neg t)$
 - $ts \implies (ps \lor s)$

- Knowledge base: Holmes owns two suits: one black and one tweed. He always wears either a tweed suit or sandals. Whenever he wears his tweed suit and a purple shirt, he chooses to not wear a tie. He never wears the tweed suit unless he is also wearing either a purple shirt or sandals. Whenever he wears sandals, he also wears a purple shirt. Yesterday, Holmes wore a bow tie.
- Target: What else did he wear?
- Propositions: 1-bs-black suit, 2-ts-tweed suit, 3-s-sandals, 4-ps-purple shirt, 5-t-tie
- Formula (\mathcal{F}) :
 - $\neg bs \lor \neg ts$ $ts \lor s$ $(ts \land ps) \implies \neg t \equiv (\neg ts \lor \neg ps \lor \neg t)$
 - $ts \implies (ps \lor s) \equiv (\neg ts \lor ps \lor s)$

- Knowledge base: Holmes owns two suits: one black and one tweed. He always wears either a tweed suit or sandals. Whenever he wears his tweed suit and a purple shirt, he chooses to not wear a tie. He never wears the tweed suit unless he is also wearing either a purple shirt or sandals. Whenever he wears sandals, he also wears a purple shirt. Yesterday, Holmes wore a bow tie.
- Target: What else did he wear?
- Propositions: 1-bs-black suit, 2-ts-tweed suit, 3-s-sandals, 4-ps-purple shirt, 5-t-tie
- Formula (\mathcal{F}) :
 - $\neg bs \lor \neg ts$ $ts \lor s$ $(ts \land ps) \implies \neg t \equiv (\neg ts \lor \neg ps \lor \neg t)$
 - $ts \implies (ps \lor s) \equiv (\neg ts \lor ps \lor s)$ $s \implies ps$

- Knowledge base: Holmes owns two suits: one black and one tweed. He always wears either a tweed suit or sandals. Whenever he wears his tweed suit and a purple shirt, he chooses to not wear a tie. He never wears the tweed suit unless he is also wearing either a purple shirt or sandals. Whenever he wears sandals, he also wears a purple shirt. Yesterday, Holmes wore a bow tie.
- Target: What else did he wear?
- Propositions: 1-bs-black suit, 2-ts-tweed suit, 3-s-sandals, 4-ps-purple shirt, 5-t-tie
- Formula (\mathcal{F}) :
 - $\neg bs \lor \neg ts$ $ts \lor s$ $(ts \land ps) \implies \neg t \equiv (\neg ts \lor \neg ps \lor \neg t)$
 - ts \implies (ps \lor s) \equiv (\neg ts \lor ps \lor s) • s \implies ps \equiv (\neg s \lor ps)

- Knowledge base: Holmes owns two suits: one black and one tweed. He always wears either a tweed suit or sandals. Whenever he wears his tweed suit and a purple shirt, he chooses to not wear a tie. He never wears the tweed suit unless he is also wearing either a purple shirt or sandals. Whenever he wears sandals, he also wears a purple shirt. Yesterday, Holmes wore a bow tie.
- Target: What else did he wear?
- Propositions: 1-bs-black suit, 2-ts-tweed suit, 3-s-sandals, 4-ps-purple shirt, 5-t-tie
- Formula (\mathcal{F}) :
 - $\neg bs \lor \neg ts$ $ts \lor s$ $(ts \land ps) \implies \neg t \equiv (\neg ts \lor \neg ps \lor \neg t)$
 - $ts \implies (ps \lor s) \equiv (\neg ts \lor ps \lor s)$ $s \implies ps \equiv (\neg s \lor ps)$ t

- Knowledge base: Holmes owns two suits: one black and one tweed. He always wears either a tweed suit or sandals. Whenever he wears his tweed suit and a purple shirt, he chooses to not wear a tie. He never wears the tweed suit unless he is also wearing either a purple shirt or sandals. Whenever he wears sandals, he also wears a purple shirt. Yesterday, Holmes wore a bow tie.
- Target: What else did he wear?
- Propositions: 1-bs-black suit, 2-ts-tweed suit, 3-s-sandals, 4-ps-purple shirt, 5-t-tie
- Formula (\mathcal{F}) :
 - $\neg bs \lor \neg ts$ $ts \lor s$ $(ts \land ps) \implies \neg t \equiv (\neg ts \lor \neg ps \lor \neg t)$
 - $ts \implies (ps \lor s) \equiv (\neg ts \lor ps \lor s)$ $s \implies ps \equiv (\neg s \lor ps)$ t
- Goal (\mathcal{G}) : All satisfying solutions

- Knowledge base: Holmes owns two suits: one black and one tweed. He always wears either a tweed suit or sandals. Whenever he wears his tweed suit and a purple shirt, he chooses to not wear a tie. He never wears the tweed suit unless he is also wearing either a purple shirt or sandals. Whenever he wears sandals, he also wears a purple shirt. Yesterday, Holmes wore a bow tie.
- Target: What else did he wear?
- Propositions: 1-bs-black suit, 2-ts-tweed suit, 3-s-sandals, 4-ps-purple shirt, 5-t-tie
- Formula (\mathcal{F}) :
 - $\neg bs \lor \neg ts$ $ts \lor s$ $(ts \land ps) \implies \neg t \equiv (\neg ts \lor \neg ps \lor \neg t)$
 - $ts \implies (ps \lor s) \equiv (\neg ts \lor ps \lor s)$ $s \implies ps \equiv (\neg s \lor ps)$ t
- Goal (*G*): All satisfying solutions
- SAT modeling

- Knowledge base: Holmes owns two suits: one black and one tweed. He always wears either a tweed suit or sandals. Whenever he wears his tweed suit and a purple shirt, he chooses to not wear a tie. He never wears the tweed suit unless he is also wearing either a purple shirt or sandals. Whenever he wears sandals, he also wears a purple shirt. Yesterday, Holmes wore a bow tie.
- Target: What else did he wear?
- Propositions: 1-bs-black suit, 2-ts-tweed suit, 3-s-sandals, 4-ps-purple shirt, 5-t-tie
- Formula (\mathcal{F}) :
 - $\neg bs \lor \neg ts$ $ts \lor s$ $(ts \land ps) \implies \neg t \equiv (\neg ts \lor \neg ps \lor \neg t)$
 - $ts \implies (ps \lor s) \equiv (\neg ts \lor ps \lor s)$ $s \implies ps \equiv (\neg s \lor ps)$ t
- Goal (*G*): All satisfying solutions
- SAT modeling

- Knowledge base: Holmes owns two suits: one black and one tweed. He always wears either a tweed suit or sandals. Whenever he wears his tweed suit and a purple shirt, he chooses to not wear a tie. He never wears the tweed suit unless he is also wearing either a purple shirt or sandals. Whenever he wears sandals, he also wears a purple shirt. Yesterday, Holmes wore a bow tie.
- Target: What else did he wear?
- Propositions: 1-bs-black suit, 2-ts-tweed suit, 3-s-sandals, 4-ps-purple shirt, 5-t-tie
- Formula (\mathcal{F}) :
 - $\neg bs \lor \neg ts$ $ts \lor s$ $(ts \land ps) \implies \neg t \equiv (\neg ts \lor \neg ps \lor \neg t)$
 - $ts \implies (ps \lor s) \equiv (\neg ts \lor ps \lor s)$ $s \implies ps \equiv (\neg s \lor ps)$ t
- Goal (*G*): All satisfying solutions
- SAT modeling

p cnf 5 6	-2 4 3 0
-1 -2 0	-3 4 0
2 3 0	5 0
-2 -4 -5 0	SAT: -1 -2 3 4 5 0

- Knowledge base: Holmes owns two suits: one black and one tweed. He always wears either a tweed suit or sandals. Whenever he wears his tweed suit and a purple shirt, he chooses to not wear a tie. He never wears the tweed suit unless he is also wearing either a purple shirt or sandals. Whenever he wears sandals, he also wears a purple shirt. Yesterday, Holmes wore a bow tie.
- Target: What else did he wear?
- Propositions: 1-bs-black suit, 2-ts-tweed suit, 3-s-sandals, 4-ps-purple shirt, 5-t-tie
- Formula (\mathcal{F}) :
 - $\neg bs \lor \neg ts$ $ts \lor s$ $(ts \land ps) \implies \neg t \equiv (\neg ts \lor \neg ps \lor \neg t)$
 - $ts \implies (ps \lor s) \equiv (\neg ts \lor ps \lor s)$ $s \implies ps \equiv (\neg s \lor ps)$ t
- Goal (*G*): All satisfying solutions
- SAT modeling

p cnf 5 6	-2 4 3 0	Add:	1 2 -3 -4 -5 0
-1 -2 0	-3 4 0		
230	5 0		
-2 -4 -5 0	SAT: -1 -2 3 4 5 0		

- Knowledge base: Holmes owns two suits: one black and one tweed. He always wears either a tweed suit or sandals. Whenever he wears his tweed suit and a purple shirt, he chooses to not wear a tie. He never wears the tweed suit unless he is also wearing either a purple shirt or sandals. Whenever he wears sandals, he also wears a purple shirt. Yesterday, Holmes wore a bow tie.
- Target: What else did he wear?
- Propositions: 1-bs-black suit, 2-ts-tweed suit, 3-s-sandals, 4-ps-purple shirt, 5-t-tie
- Formula (\mathcal{F}) :
 - $\neg bs \lor \neg ts$ $ts \lor s$ $(ts \land ps) \implies \neg t \equiv (\neg ts \lor \neg ps \lor \neg t)$
 - $ts \implies (ps \lor s) \equiv (\neg ts \lor ps \lor s)$ $s \implies ps \equiv (\neg s \lor ps)$ t
- Goal (*G*): All satisfying solutions
- SAT modeling

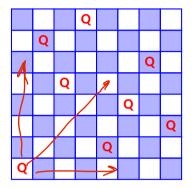
$$\begin{array}{ccccc} p \ cnf \ 5 \ 6 \\ -1 \ -2 \ 0 \\ 2 \ 3 \ 0 \\ -2 \ -4 \ -5 \ 0 \end{array} \qquad \left(\begin{array}{c} -2 \ 4 \ 3 \ 0 \\ -3 \ 4 \ 0 \\ 5 \ 0 \\ 5 \ 0 \\ SAT: \ -1 \ -2 \ 3 \ 4 \ 5 \ 0 \end{array}\right)$$

- Knowledge base: Holmes owns two suits: one black and one tweed. He always wears either a tweed suit or sandals. Whenever he wears his tweed suit and a purple shirt, he chooses to not wear a tie. He never wears the tweed suit unless he is also wearing either a purple shirt or sandals. Whenever he wears sandals, he also wears a purple shirt. Yesterday, Holmes wore a bow tie.
- Target: What else did he wear?
- Propositions: 1-bs-black suit, 2-ts-tweed suit, 3-s-sandals, 4-ps-purple shirt, 5-t-tie
- Formula (\mathcal{F}) :
 - $\neg bs \lor \neg ts$ $ts \lor s$ $(ts \land ps) \implies \neg t \equiv (\neg ts \lor \neg ps \lor \neg t)$
 - $ts \implies (ps \lor s) \equiv (\neg ts \lor ps \lor s)$ $s \implies ps \equiv (\neg s \lor ps)$ t
- Goal (*G*): All satisfying solutions
- SAT modeling

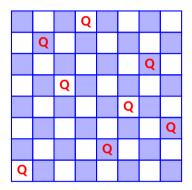
p cnf 5 6	-2 4 3 0	Add: 1 2 -3 -4 -5 0
-1 -2 0	-3 4 0	SAT: 1 -2 3 4 5 0
2 3 0	5 0	Add: -1 2 -3 -4 -5 0
-2 -4 -5 0	SAT: -1 -2 3 4 5 0	

- Knowledge base: Holmes owns two suits: one black and one tweed. He always wears either a tweed suit or sandals. Whenever he wears his tweed suit and a purple shirt, he chooses to not wear a tie. He never wears the tweed suit unless he is also wearing either a purple shirt or sandals. Whenever he wears sandals, he also wears a purple shirt. Yesterday, Holmes wore a bow tie.
- Target: What else did he wear?
- **Propositions:** 1-bs-black suit, 2-ts-tweed suit, 3-s-sandals, 4-ps-purple shirt, 5-t-tie
- Formula (\mathcal{F}) :
 - $\neg bs \lor \neg ts$ $ts \lor s$ $(ts \land ps) \implies \neg t \equiv (\neg ts \lor \neg ps \lor \neg t)$ $ts \implies (ps \lor s) \equiv (\neg ts \lor ps \lor s)$ $s \implies ps \equiv (\neg s \lor ps)$ t
- Goal (G): All satisfying solutions
- SAT modeling

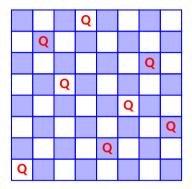
$$p cnf 5 6$$
 $-2 4 3 0$
 $-1 - 2 0$
 $-3 4 0$
 $2 3 0$
 $5 0$
 $-2 - 4 - 5 0$
 SAT: $-1 - 2 3 4 5 0$



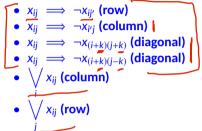
• Define x_{ij} as (i, j)th cell contains a queen

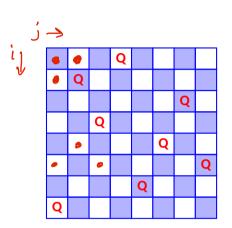


- Define x_{ii} as (i, j)th cell contains a queen
- Constraints



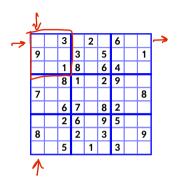
- Define x_{ij} as (i, j)th cell contains a queen
- Constraints





	3		2		6	
9		3		5		1
	1	8		6	4	
	8	1		2	9	
7						8
	6	7		8	2	
	2	6		9	5	
8		2		3		9
	5		1		3	

• Define *x_{ijk}* as (*i*, *j*)th cell contains *k*



- Define *x_{ijk}* as (*i*, *j*)th cell contains *k*
- Constraints:

	3		2		6	
9		3		5		1
	1	8		6	4	
	8	1		2	9	
7						8
	6	7		8	2	
	2	6		9	5	
8		2		3		9
	5		1		3	

- Define *x_{ijk}* as (*i*, *j*)th cell contains *k*
- Constraints:
 - $x_{ijk} \implies \neg x_{ij'k} \quad \forall i, k, j \neq j' \text{ (same row)}$

•	٠	3		2		6	
9			3		5		1
		1	8		6	4	
		8	1		2	9	
7							8
		6	7		8	2	
		2	6		9	5	
8			2		3		9
		5		1		3	

- Define *x_{ijk}* as (*i*, *j*)th cell contains *k*
- Constraints:
 - $x_{ijk} \implies \neg x_{ij'k} \quad \forall i, k, j \neq j' \text{ (same row)}$
 - $x_{ijk} \implies \neg x_{i'jk} \quad \forall j, k, i \neq i' \text{ (same column)}$

	3		2		6	
9		3		5		1
	1	8		6	4	
	8	1		2	9	
7						8
	6	7		8	2	
	2	6		9	5	
8		2		3		9
	5		1		3	

- Define *x_{ijk}* as (*i*, *j*)th cell contains *k*
- Constraints:
 - $x_{ijk} \implies \neg x_{ij'k} \quad \forall i, k, j \neq j' \text{ (same row)}$
 - $x_{ijk} \implies \neg x_{i'jk} \quad \forall j, k, i \neq i'$ (same column)
 - $x_{ijk} \implies \neg x_{i'j'k} \quad \forall k, i \neq i', j \neq j', 1 \leq i, i', j, j' \leq 3$ every block

	3		2		6	
9		3		5		1
	1	8		6	4	
	8	1		2	9	
7						8
	6	7		8	2	
	2	6		9	5	
8		2		3		9
	5		1		3	

- Define *x_{ijk}* as (*i*, *j*)th cell contains *k*
- Constraints:
 - $x_{ijk} \implies \neg x_{ij'k} \quad \forall i, k, j \neq j' \text{ (same row)}$
 - $x_{ijk} \implies \neg x_{i'jk} \quad \forall j, k, i \neq i' \text{ (same column)}$
 - $x_{ijk} \implies \neg x_{i'j'k} \quad \forall k, i \neq i', j \neq j', 1 \leq i, i', j, j' \leq 3$ every block
 - $\bigvee x_{ijk} \quad \forall i, k \text{ (row)}$

2		3		2		6	
	9		3		5		1
		1	8		6	4	
		8	1		2	9	
	7						8
		6	7		8	2	
		2	6		9	5	
	8		2		3		9
		5		1		3	

- Define *x*_{ijk} as (*i*, *j*)th cell contains *k*
- Constraints:
 - $x_{ijk} \implies \neg x_{ij'k} \quad \forall i, k, j \neq j' \text{ (same row)}$
 - $x_{ijk} \implies \neg x_{i'jk} \quad \forall j, k, i \neq i' \text{ (same column)}$
 - $x_{ijk} \implies \neg x_{i'j'k} \quad \forall k, i \neq i', j \neq j', 1 \leq i, i', j, j' \leq 3$ every block
 - $\bigvee x_{ijk} \quad \forall i, k \text{ (row)}$
 - $\bigvee x_{ijk} \quad \forall j, k \text{ (column)}$

	3		2		6	
9		3		5		1
	1	8		6	4	
	8	1		2	9	
7						8
	6	7		8	2	
	2	6		9	5	
8		2		3		9
	5		1		3	

- Define *x*_{ijk} as (*i*, *j*)th cell contains *k*
- Constraints:
 - $x_{ijk} \implies \neg x_{ij'k} \quad \forall i, k, j \neq j' \text{ (same row)}$
 - $x_{ijk} \implies \neg x_{i'jk} \quad \forall j, k, i \neq i' \text{ (same column)}$
 - $x_{ijk} \implies \neg x_{i'j'k} \quad \forall k, i \neq i', j \neq j', 1 \leq i, i', j, j' \leq 3$ every block
 - $\bigvee x_{ijk} \quad \forall i, k \text{ (row)}$
 - $\bigvee x_{ijk} \quad \forall j, k \text{ (column)}$
 - $\bigvee_{ii} x_{ijk} \quad \forall k \text{ every block}$

	3		2		6	
9		3		5		1
	1	8		6	4	
	8	1		2	9	
7						8
	6	7		8	2	
	2	6		9	5	
8		2		3		9
	5		1		3	

- Define *x*_{ijk} as (*i*, *j*)th cell contains *k*
- Constraints:
 - $x_{ijk} \implies \neg x_{ij'k} \quad \forall i, k, j \neq j'$ (same row)
 - $x_{ijk} \implies \neg x_{i'jk} \quad \forall j, k, i \neq i'$ (same column)
 - $x_{ijk} \implies \neg x_{i'j'k} \quad \forall k, i \neq i', j \neq j', 1 \leq i, i', j, j' \leq 3$ every block
 - $\bigvee x_{ijk} \quad \forall i, k \text{ (row)}$
 - $\bigvee x_{ijk} \quad \forall j, k \text{ (column)}$
 - $\bigvee x_{ijk} \quad \forall k \text{ every block}$
 - $x_{ijk} \implies \neg x_{ijk'} \quad \forall i, j, k \neq k' \text{ (same cell)}$

L						
	3		2		6	
9		3		5		1
	1	8		6	4	
	8	1		2	9	
7						8
	6	7		8	2	
	2	6		9	5	
8		2		3		9
	5		1		3	

- Define *x*_{ijk} as (*i*, *j*)th cell contains *k*
- Constraints:
 - $x_{ijk} \implies \neg x_{ij'k} \quad \forall i, k, j \neq j' \text{ (same row)}$
 - $x_{ijk} \implies \neg x_{i'jk} \quad \forall j, k, i \neq i'$ (same column)
 - $x_{ijk} \implies \neg x_{i'j'k} \quad \forall k, i \neq i', j \neq j', 1 \leq i, i', j, j' \leq 3$ every block
 - $\bigvee x_{ijk} \quad \forall i, k \text{ (row)}$
 - $\bigvee x_{ijk} \quad \forall j, k \text{ (column)}$
 - $\bigvee x_{ijk} \quad \forall k \text{ every block}$
 - $x_{ijk} \implies \neg x_{ijk'} \quad \forall i, j, k \neq k'$ (same cell) • $\bigvee x_{ijk} \quad \forall i, j$ (every cell)

	3		2		6	
9		3		5		1
	1	8		6	4	
	8	1		2	9	
7						8
	6	7		8	2	
	2	6		9	5	
8		2		3		9
	5		1		3	

- Define *x*_{ijk} as (*i*, *j*)th cell contains *k*
- Constraints:
 - $x_{ijk} \implies \neg x_{ij'k} \quad \forall i, k, j \neq j'$ (same row)
 - $x_{ijk} \implies \neg x_{i'jk} \quad \forall j, k, i \neq i'$ (same column)
 - $x_{ijk} \implies \neg x_{i'j'k} \quad \forall k, i \neq i', j \neq j', 1 \leq i, i', j, j' \leq 3$ every block
 - $\bigvee x_{ijk} \quad \forall i, k \text{ (row)}$
 - $\bigvee x_{ijk} \quad \forall j, k \text{ (column)}$
 - $\bigvee_{ij} x_{ijk} \quad \forall k \text{ every block}$
 - $x_{ijk} \implies \neg x_{ijk'} \quad \forall i, j, k \neq k' \text{ (same cell)}$
 - $\bigvee x_{ijk} \quad \forall i, j \text{ (every cell)}$
 - x_{133}, x_{176}, \ldots

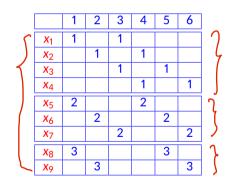
	3		2		6	
9		3		5		1
	1	8		6	4	
	8	1		2	9	
7						8
	6	7		8	2	
	2	6		9	5	
8		2		3		9
	5		1		3	

SAT modeling: Langford sequence

- Given the bag of numbers $\{1, 1, 2, 2, 3, 3, \dots, n, n\}$, can they be arranged in a sequence L(n) such that for 1 < i < n there are *i* numbers between the two occurrences of *i*?
 - L(4) = 41312432
 L(3) = ?

SAT modeling: Langford sequence

- Given the bag of numbers $\{1, 1, 2, 2, 3, 3, ..., n, n\}$, can they be arranged in a sequence L(n) such that for $1 \le i \le n$ there are *i* numbers between the two occurrences of *i*?
 - L(4) = 41312432
 - L(3) = ?

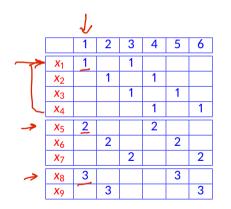


SAT modeling: Langford sequence

- Given the bag of numbers $\{1, 1, 2, 2, 3, 3, \dots, n, n\}$, can they be arranged in a sequence L(n) such that for 1 < i < n there are *i* numbers between the two occurrences of *i*?
 - L(4) = 41312432
 - L(3) = ?
- Constraints:

- $x_1 \lor x_2 \lor x_3 \lor x_4$ $x_k \implies \neg x_{k'}$ $1 \le k < k' \le 4$ Similarly for the other numbers

- $x_1 \lor x_5 \lor x_8$ $x_1 \implies \neg x_5, \dots$ Similarly for the other columns



Thank you!