
IIT Kharagpur 1

Artificial Intelligence: Foundations & Applications

Introduction to Prolog Programming

Prof. Partha P. Chakrabarti & Arijit Mondal
Indian Institute of Technology Kharagpur

IIT Kharagpur 2

What is Prolog?
• Invented early seventies by Alain Colmerauer in France and Robert Kowalski in Britain
• Prolog = Programmation en Logique (Programming in Logic).
• Prolog is a declarative programming language unlike most common programming languages.
• In a declarative language
• The programmer specifies a goal to be achieved
• The Prolog system works out how to achieve it

• In purely declarative languages, the programmer only states what the problem is and leaves the rest to
the language system

IIT Kharagpur 3

Relations
• Prolog programs specify relationships among objects and properties of objects
• When we say, "Ayesha owns the pen", we are declaring the ownership relationship between two ob-

jects: Ayesha and the pen.
• When we ask, "Does Ayesha own the pen?" we are trying to find out about a relationship
• Relationships can also be rules such as:
• Two people are sisters if – they are both female AND they have the same parents.

• In traditional programming relationship may be defined as
• A and B are sisters if – A and B are both female AND they have the same father AND they have the

same mother AND A is not the same as B
• A rule allows us to find out about a relationship even if the relationship is not explicitly stated as a fact

IIT Kharagpur 4

Programming prolog
• Declare facts describing explicit relationships between objects and properties objects might have (e.g.

Subodh likes pizza, sky has_colour blue)
• Declare rules defining implicit relationships between objects and/or rules defining implicit object prop-

erties (e.g. X is a parent if there is a Y such that Y is a child of X).
• Then the system can be used by:
• Asking questions above relationships between objects, and/or about object properties (e.g. does

Subodh like pizza? is Ayesha a parent?)

IIT Kharagpur 5

Prolog & Predicate logic
• Prolog is a programming language based on predicate logic.
• A Prolog program attempts to prove a goal, such as brother(Barney,x), from a set of facts and rules.
• In the process of proving the goal to be true, using substitution and the other rules of inference,

Prolog substitutes values for the variables in the goal, thereby "computing" an answer.
• How does Prolog know which facts and which rules to use in the proof?
• Prolog uses unification to determine when two clauses can be made equivalent by a substitution of

variables.
• The unification procedure is used to instantiate the variables in a goal clause based on the facts and

rules in the database.

male(albert).
male(edward).
female(alice).
female(victoria).
parent(albert,edward).
parent(victoria,edward).
father(X,Y) :- parent(X,Y), male(X). % [X [Y ((parent(X, Y) ∧male(X)) → father(X, Y))
mother(X,Y) :- parent(X,Y), female(X). % [X [Y ((parent(X, Y) ∧ female(X)) → mother(X, Y))

• A fact/rule (statement) ends with "." and white space ignored
• Read ’:-’ after RULE HEAD as "if"
• Read comma in body as "and"
• Comment a line with % or use /* */ for multi-line comments

IIT Kharagpur 6

A simple Prolog program

IIT Kharagpur 7

Facts & Rules
• The Prolog environment maintains a set of facts and rules in its database.
• Facts are axioms; relations between terms that are assumed to be true.
• Rules are theorems that allow new inferences to be made.

• Example facts & rules:
• male(adam).
• female(anne).
• parent(adam,barney).
• son(X,Y) :- parent(Y,X) , male(X)
• daughter(X,Y) :- parent(Y,X) , female(X)

• The first rule is read as follows: for all X and Y, X is the son of Y if there exists X and Y such that Y is the
parent of X and X is male. [X[Y((parent(Y, X) ∧male(X)) → son(X, Y))

• The second rule is read as follows: for all X and Y, X is the daughter of Y if there exists X and Y such that
Y is the parent of X and X is female. [X[Y((parent(Y, X) ∧ female(X)) → daughter(X, Y))

IIT Kharagpur 8

Horn clauses
• To simplify the resolution process in Prolog, statements must be expressed in a simplified form, called

Horn clauses.
• Statements are constructed from terms.
• Each statement (clause) has (at most) one term on the left hand side of an implication symbol (:-).
• Each statement has a conjunction of zero or more terms on the right hand side.

• Prolog has three kinds of statements, corresponding to the structure of the Horn clause used.
• A fact is a clause with an empty right hand side.
• A question (or goal) is a clause with an empty left hand side.
• A rule is a clause with terms on both sides.

male(albert).
male(edward).
female(alice).
female(victoria).
parent(albert,edward).
parent(victoria,edward).
father(X,Y) :- parent(X,Y), male(X).
mother(X,Y) :- parent(X,Y), female(X).

Query:
male(X). % \X male(X)
father(F,edward). % \F father(F, edward)
father(F,C). % \F \C father(F, C)

$> gplc family.pl

$> ./family

?- male(albert).

yes

?- male(victoria).

no

?- male(subodh).

no

?- male(X).

X = albert ? ;

X = edward

?- father(F,C).

F=albert, C=edward ? ;

no

IIT Kharagpur 9

Execution of Prolog program

IIT Kharagpur 10

Observation about Prolog rules
• The implication is from right to left
• The scope of a variable is the clause in which it appears.
• Variables whose first appearance is on the left hand side of the clause have implicit universal quanti-

fiers.
• Variables whose first appearance is on the right hand side of the clause have implicit existential quan-

tifiers.

IIT Kharagpur 11

Basic syntax of Prolog: Terms
• Constants:
• Identifiers - sequences of letters, digits, or underscore "_" that start with lower case letters.
• Numbers - 1.001
• Strings enclosed in single quotes
• Can start with upper case letter or can be a number now treated as a string

• Variables:
• Sequence of letters digits or underscore that start with an upper case letter or the underscore
• Undescore by itself is the special "anonymous" variable

• Structures (like function applications)
• <identifier>(Term-1,. . . ,Term-k)
• date(20,April,2020), point(X,Y,Z)

• Definition can be recursive, so each term can itself be a structure
• date(+(5,15),April,+(2000,−(140,120)))

• Structures can be represented as tree

IIT Kharagpur 12

Syntax of Prolog: Lists
• Lists are a very useful data structure in Prolog
• Lists are structured terms represented in a special way - [a, b, c, d]
• This is actually structured term - [a | [b | [c | [d | []]]]]
• In the above [] denotes empty list
• Each list is thus of the form [<head> | <tail>]
• <head> is an element of the list (not necessary a list itself)
• <tail> is a list / sublist
• Also, [a,b,c,d] = [a | [b,c,d]] = [a,b | [c,d]] = [a,b,c | [d]]

• This structure has important implications when it comes to matching variables against lists!

IIT Kharagpur 13

Syntax of Prolog: Predicates
• Predicates are syntactically identical to structured items – <identifier>(Term-1,. . . ,Term-k)
• male(edward)
• parent(edward,albert)
• taller_than(subodh,shyam)
• likes(X)
• Note that X is a variable. X can take on any term as value so that this fact asserts

• Facts make assertion

IIT Kharagpur 14

Syntax of Prolog: Facts and Rules
• Rules: PredicateH :- predicate-1, . . . , predicate-k.
• First predicate is rule head. Terminated by a period
• Rules encode ways of deriving or computing a new fact
• animal(X) :- elephant(X). - X can be concluded to be animal if it shown that X is elephant
• taller_than(X,Y) :- height(X,H1), height(Y,H2), H1 > H2.
• father(X,Y) :- parent(X,Y), male(X).

IIT Kharagpur 15

Operation of Prolog
• A query is a sequence of predicates: predicate-1, predicate-2, . . . , predicate-k
• Prolog tries to prove that this sequence of predicates is true using the facts and rules in the Prolog

Program.
• In proving the sequence it performs the computation you want.
• Example:
• elephant(fred).
• elephant(mary).
• elephant(joe).
• animal(fred) :- elephant(fred).
• animal(mary) :- elephant(mary).
• animal(joe) :- elephant(joe).
• QUERY: animal(fred), animal(mary), animal(joe).

IIT Kharagpur 16

Operation
• Starting with the first predicate P1 of the query Prolog examines the program from TOP to BOTTOM.
• It finds the first RULE HEAD or FACT that matches P1
• Then it replaces P1 with the RULE BODY.
• If P1 is matched a FACT, we can think of FACTs as having empty bodies (so P1 is simply removed).
• The result is a new query.
• Example
• P1 :- Q1, Q2, Q3.
• QUERY: P1, P2, P3.
• P1 matches with the rule, therefore, new QUERY: Q1, Q2, Q3, P2, P3.

elephant(fred).
elephant(mary).
elephant(joe).
animal(fred) :- elephant(fred).
animal(mary) :- elephant(mary).
animal(joe) :- elephant(joe).
QUERY: animal(fred), animal(mary), animal(joe).

1. elephant(fred), animal(mary), animal(joe).

2. animal(mary), animal(joe).

3. elephant(mary), animal(joe).

4. animal(joe).

5. elephant(joe).

6. EMPTY QUERY

IIT Kharagpur 17

Execution of Prolog program

IIT Kharagpur 18

Operation
• If this process reduces the query to the empty query, Prolog returns "yes".
• However, during this process each predicate in the query might matchmore than one fact or rule head.

• Prolog always choose the first match it finds. Then if the resulting query reduction did not succeed
(i.e., we hit a predicate in the query that does not match any rule head of fact), Prolog backtracks
and tries a new match.

ant_eater(fred).
animal(fred) :- elephant(fred).
animal(fred) :- ant_eater(fred).
QUERY: animal(fred)

1. elephant(fred).

2. FAIL BACKTRACK

3. ant_eater(fred).

4. EMPTY QUERY

IIT Kharagpur 19

Execution of Prolog program

• Backtracking can occur at every stage as the query is processed

p(1) :- a(1).
p(1) :- b(1).
a(1) :- c(1).
c(1) :- d(1).
c(1) :- d(2).
b(1) :- e(1).
e(1).
d(3).
QUERY: p(1)

p(1)

a(1)

c(1)

d(1)

×
d(2)

×

b(1)

e(1)

X

d(3)

IIT Kharagpur 20

Operation

• With backtracking we can get more answers by using ";"

p(1) :- a(1).
p(1) :- b(1).
a(1) :- c(1).
c(1) :- d(1).
c(1) :- d(2).
b(1) :- e(1).
b(1) :- d(3).
e(1).
d(3).
QUERY: p(1)

p(1)

a(1)

c(1)

d(1)

×
d(2)

×

b(1)

e(1)

X

d(3)

X

IIT Kharagpur 21

Operation

IIT Kharagpur 22

Variables and Matching
• Variables allow us to
• Compute more than yes/no answer, compress the program

• Example:
• elephant(fred).
• elephant(mary).
• elephant(joe).
• animal(fred) :- elephant(fred).
• animal(mary) :- elephant(mary).
• animal(joe) :- elephant(joe).

• The three rules can be replaced by the single rule animal(X) :- elephant(X).
• When matching queries against rule heads (of facts) variables allow many additional matches.

elephant(fred).
elephant(mary).
elephant(joe).
animal(X) :- elephant(X).
QUERY: animal(fred), animal(mary), animal(joe)

1. X=fred, elephant(X), animal(mary), animal(joe)
2. animal(mary), animal(joe)
3. X=mary, elephant(X), animal(joe)
4. animal(joe)
5. X=joe, elephant(X)
6. EMPTY QUERY

IIT Kharagpur 23

Example

IIT Kharagpur 24

Operation with Variables
• Queries are processed as before (via rule and fact matching and backtracking), but now we can use

variables to help us match rule heads or facts.
• A query predicate matches a rule head or fact (either one with variables) if
• The predicate name must match. So elephant(X) can match elephant(joe), but can never match

ant_eater(joe).
• Once the predicates names the arity of the predicates match (number of terms). So foo(X,Y) can

match foo(joe,mary), but cannot match foo(joe) or foo(joe,mary,fred).
• If the predicate names and arities match then each of the k-terms match. So for foo(t1, t2, t3) to

match foo(s1, s2, s3) we must have that t1 matches s1, t2 matches s2, and t3 matches t3.
• During this matching process we might have to "bind" some of the variables to make the terms

match.
• These bindings are then passed on into the new query (consisting of the rule body and the left over

query predicates).

IIT Kharagpur 25

Variable matching (Unification)
• Two terms with variables match if :
• If both are constants (identifiers, numbers, or strings) and are identical
• If one or both are bound variables then they match if what the variables are bound to match
• X and mary where X is bound to the value mary will match
• X and Y where X is bound to mary and Y is bound to mary will match
• X and ann where X is bound to mary will not match

• If one of the terms is an unbound variable then they match AND we bind the variable to the term.

• X and mary where X is unbound match and make X bound to mary.
• X and Y where X is unbound and Y is bound to mary match and make X bound to mary.
• X and Y where both X and Y are unbound match and make X bound to Y (or vice versa).

IIT Kharagpur 26

Solving queries
• Prolog work as follows
• Unification
• Goal directed reasoning
• Rule ordering
• DFS and backtracking

IIT Kharagpur 27

List processing in Prolog
• Much of prolog’s computation is organized around lists. Two key things we do with a list is iterate over

them and build new ones.
• Checking membership: member(X,Y) - X is a member of list Y
• member(X,[X|_]).
• member(X,[_|T]) :- member(X,T).

• Building a list of integers in range [i,j] (build(from, to, NewList))
• build(I,J,[]) :- I>J.
• build(I,J,[I | Rest]) :- I =< J, N is I+1, build(N,J,Rest).

IIT Kharagpur 28

List examples
• Concatenation:
• concatenation([], L, L).
• concatenation([X|L1], L2, [X|L3]) :- concatenation(L1, L2, L3).

• Example:
• concatenation([a,b],[c,d],Y).

• X=a, concatenation([X|b],[c,d],[X|Y1]).
• concatenation([b],[c,d], Y1).
• X=b, concatenation([X|[]],[c,d],[X|Y2]).
• concatenation([],[c,d], Y2).

IIT Kharagpur 29

List examples
• Adding in front:
• add(X, L, [X|L]).

• Deletion:
• del(X, [X|Tail], Tail).
• del(X, [Y|Tail], [Y|Tail1]) :- del(X, Tail, Tail1).

• Sublist:
• sublist(S,L) :- concatenation(L1, L2, L), concatenation(S, L3, L2).

IIT Kharagpur 30

List examples
• Permutation:
• permutation([], []).
• permutation([X|L], P) :- permutation(L, L1), insert(X, L1, P).

IIT Kharagpur 31

Than«� y¯�µ�!

