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Bounded Model Checking
• Broad methodology
• We construct a Boolean formula that is satisfiable iff the underlying state transition system
can realize a finite sequence of state transitions that satisfy the temporal property we are
trying to validate

• We use powerful SAT solvers to determine the satisfiability of the Boolean formula
• The bound may be increased incrementally until we reach the diameter of the state transi-
tion graph
• Find the shortest path betweeneach pair of vertices. The greatest length of any of these paths is the diameter

of the graph.
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Requirements
• Specification in temporal logic, f
• System as a finite state machine (kripke structure),M
• A bound on path length k
• In bounded model checking, only path of bounded length k or less are considered

• Translation to SAT
• We unfold the property into Boolean clauses over different time steps
• We unfold the state machine into Boolean clauses over the same number of time steps
• We check whether the clauses are together satisfiable
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Unrolling
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Unrolling
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Recap: CTL

• A – for every path
• E – there exist a path

• Xp – p holds in the next time step
• Fp – p holds at some time in the future
• Gp – p holds at every time in the future
• pUq – p holds until q holds

• EF(Started ∧ ¬Ready) – it is possible to get to a state where Started holds but Ready does not
• AG(Req =⇒ AFgr) – if a Req comes then it will eventually be granted
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Symbolic model checking
• We allocate Boolean variables for present state of latches, next state of latches and primary
input variables

• We compute Boolean expression fj for the input function for each latch, j, in the circuit. Let x, i
are the present state vector and the primary input vector respectively

• For each latch, Boolean expression for transition relation is formed, x′j ↔ fj(x, i) where x′j is
the next state variable for the jth latch. Symbol↔means if and only if (i.e., XNOR)

• Transition relation T(s, s′), where s, s′ denote present and next state, can be expressed as

T(s, s′) =
n∧
j=1

x′j ↔ fj(x, i)
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Traversal
• Once the Boolean expression for transition relation is computed, it can be used for traversal
the underlying transition system
• Traversals are done by computing images and preimages of set of states. These denote succes-
sor or predecessor states respectively.

• Let P(s) be the set of states then
ImageP = \s [T(s, s′) ∧ P(s)]

PreimageP = \s′ [T(s, s′) ∧ P(s′)]

• Existential abstraction

\xi [f(x0, . . . , xi, . . . , xn) = f(x0, . . . , 0, . . . , xn) ∨ f(x0, . . . , 1, . . . , xn)
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Algorithm for checking EFp
1. Let Q be Boolean expression that represents the set of states in which p is true. So is R
2. Pre = preimage of Q
3. Union_Reached = Pre ∨ R
4. If Union_Reached = R, go to 8
5. Q = Pre ∧ ¬R
6. R = Union_Reached
7. Go to 2
8. If (R ∧ I) is satisfiable (initial state intersection), EFp holds. Otherwise, it does not hold
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Creation of propositional formulas
• Need to construct propositional formula for ûM, fük

• Unrolled transition relation ûMük := I(s0) ∧
k−1∧
i=0

T(si, si+1)

• Need to find ûfük which is true if the formula f is valid along a path of length k
• Finally we need to form the conjunction of ûMük and ûfük

• Consider CTL formula EFp
• We wish to check whether EFp can be verified in two time steps i.e., k = 2
ûM, fü2 := I(s0) ∧ T(s0, s1) ∧ T(s1, s2) ∧ (p(s0) ∨ p(s1) ∨ p(s2))
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Safety property - EFp
• Let us assume a 2-bit counter with least significant bit represented by Boolean variable a and
most significant by b

• Transition relation of the counter is (a′↔ ¬a) ∧ (b′↔ (a ⊕ b))
• Let us assume initially both bits are at 0 and we wish to check if (a, b) can transition to (1, 1)
• EFp = EF(a ∧ b)

• Unfolding the transition relation and applying reachability check, we get

I(s0) : ( ¬a0 ∧ ¬b0 ) ∧

T(s0, s1) : ( ((a1 ↔ ¬a0) ∧ (b1 ↔ (a0 ⊕ b0)) )∧
T(s1, s2) : ( ((a2 ↔ ¬a1) ∧ (b2 ↔ (a1 ⊕ b1)) )∧

p(s0) : ( a0 ∧ b0 ∨
p(s1) : a1 ∧ b1 ∨
p(s2) : a2 ∧ b2 )
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Liveness property - AFp
• Consider a 2-bit counter with least significant bit represented by Boolean variable a and most
significant by b

• Transition relation is different fromprevious. An extra transition is added from state (1, 0) back
to itself
• Let Ô(s, s′) = (a′↔ ¬a) ∧ (b′↔ (a ⊕ b))
• Hence transition relation will be T(s, s′) = Ô(s, s′) ∧ (b ∧ ¬a ∧ b′ ∧ ¬a′)

• Suppose we claim this new counter must eventually reach state (1, 1)
• The property can be expressed as AF(b ∧ a)
• This can expressed as EGp where p = ¬b ∨ ¬a
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Liveness property - I
• Let us assume k = 2 for checking EGp
• All candidate paths will have 3 states, initial state (s0) and two other states {s1, s2} reached
upon successive transition
• Unrolled transition relation is ûMü2 = I(s0) ∧ T(s0, s1) ∧ T(s1, s2)
• For a valid path s0, s1, s2 must be part of a loop
• There must be a transition from the last state, s2, back to either s0, s1, or itself
• This is T(s2, s3) ∧ (s3 = s0 ∨ s3 = s1 ∨ s3 = s2)

• We need to further constrain that the pmust hold on every state of the path



IIT Kharagpur 13

Liveness property - II
• Set of constraints

I(s0) : ( ¬a0 ∧ ¬b0 )∧

T(s0, s1) : ( ((a1 ↔ ¬a0) ∧ (b1 ↔ (a0 ⊕ b0)) ∨ b1 ∧ ¬a1 ∧ b0 ∧ ¬a0 )∧

T(s1, s2) : ( ((a2 ↔ ¬a1) ∧ (b2 ↔ (a1 ⊕ b1)) ∨ b2 ∧ ¬a2 ∧ b1 ∧ ¬a1 )∧

T(s2, s3) : ( ((a3 ↔ ¬a2) ∧ (b3 ↔ (a2 ⊕ b2)) ∨ b3 ∧ ¬a3 ∧ b2 ∧ ¬a2 )∧
s3 = s0 : ( (a3 ↔ a0) ∧ (b3 ↔ b0) ∨
s3 = s1 : (a3 ↔ a1) ∧ (b3 ↔ b1) ∨
s3 = s2 : (a3 ↔ a2) ∧ (b3 ↔ b2) )∧

p(s0) : ( a0 ∨ b0 )∧

p(s1) : ( a1 ∨ b1 )∧

p(s2) : ( a2 ∨ b2 )

• The SAT instance is satisfiable. Satisfying assignment corresponds to a path from initial state
(0, 0) to (0, 1) and then to (1, 0), followed by self-loop at (1, 0)
• This is a counterexample to AF(b ∧ a)
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Recap: SAT
• A formula f in CNF is represented as a set of clauses
• Each clause is a set of literals and each literal is either +ve or -ve propositional variable
• A formula is a conjunction of clauses and clause is a disjunction of literals
• Example
• ((a ∨ ¬b ∨ c) ∧ (d ∨ ¬e)) is represented as {{a,¬b, c}, {d,¬e}}
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Conversion to CNF
• Given a Boolean formula f, Boolean operators in f may be replaced with ¬,∨,∧ and apply the
distributive rule and De Morgan’s law to convert f in CNF

• Brute force approach
• Build the truth table of the formula
• For each row that gives F, generate a conjunction of literals and then negate it, obtain a
clause
• Take the conjunction of all clauses generated in the previous step

• Complexity – exponential
• There exist better approach
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Equisatisfiability
• It preserves satisfiability of the original formula by adding extra variables
• It results in equisatisfiable formula

• Example
• ab ∨ cd { (a ∨ c) ∧ (a ∨ d) ∧ (b ∨ c) ∧ (b ∨ d) – standard translation, logically equivalent

• Using additional variables
(a ∧ b) ∨ (c ∧ d) { (e↔ a ∧ b) ∧ (f ↔ c ∧ d) ∧ (e ∨ f)

= (e ∨ f) ∧ (e→ a ∧ b) ∧ (a ∧ b→ e)(f → c ∧ d) ∧ (c ∧ d→ f)
= (e ∨ f) ∧ (ē ∨ a) ∧ (ē ∨ b) ∧ (ā ∨ b̄ ∨ e) ∧ (f̄ ∨ c) ∧ (f̄ ∨ d) ∧ (c̄ ∨ d̄ ∨ f)
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Advantages of BMC
• Able to handle larger state spaces as compared to Binary Decision Diagrams
• Takes advantage of several decades of research on efficient SAT solvers.
• The witness/counterexample produced are usually of minimum possible length, making them
easier to understand and analyze
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Limitations
• Sound but not complete
• Works for a bounded depth
• In order to have a complete procedure, we need to run it at least up to the diameter (un-
known) of the transition system

• For larger depths the number of clauses can grow rapidly, thereby raising capacity issues
• Nevertheless, SAT-based FPV tools can handle much larger designs as compared to BDD-based
tools
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