
IIT Kharagpur 1

Planning

IIT Kharagpur 2

Techniques seen till now

• Search
• Most fundamental approach
• Need to define states, moves, state-
transiton rules, etc.

• CSP
• Search through constraint propagation

• Propositional logic
• Deduction in a single state, no state
change

• Probabilistic reasoning
• Logic augmented with probabilities

• Temporal logic
• Logic involving time

• Planning
• Search involving logic
• Change of states

IIT Kharagpur 3

Real world planning problems
• Autonomous vehicle navigation
• Robotics movement
• Travel planning
• Process control
• Assembly line
• Military operations
• Information gathering
• many more . . .

IIT Kharagpur 4

A simple planning problem
• Get me milk, bananas and a book

• Given
• Initial state - agent is at home without milk, bananas and book
• Goal state - agent is at home with milk, bananas and book
• Actions / Moves - agent can perform on a given state
• Buy(X) - buy item X where X ∈ {milk, bananas, book}
• Steal(X) - steal item X where X ∈ {milk, bananas, book}
• Goto(X) - move to X where X ∈ {market, home}
• . . .

IIT Kharagpur 5

The planning problem
• Generate one possible way to achieve a certain goal given an initial situation and a set of
actions

• Similar to search problems
• Start state
• List of moves
• Result of moves
• Goal state

start

. . .

Goto-Market

Goto-School

Goto-Hospital

Goto-Bookstore

Have-Bananas

etc. . . .

buy-tea

buy-milk

borrow-book

buy-medicine

buy-book

Have-milk

etc

Finish

IIT Kharagpur 6

Search

IIT Kharagpur 7

Planning vs Search
• Actions have requirements and consequences that should constrain applicability in a given
state
• Stronger interaction between actions and states needed

• Most parts of the world are independent of most other parts
• Solve subgoals independently

• Human beings plan goal-directed, they construct important intermediate solutions first
• Flexible sequence for construction of solution

• Planning systems do the following
• Unify action and goal representation to allow selection (use logical language for both)
• Divide-and-conquer by subgoaling
• Relax requirement for sequential construction of solutions

IIT Kharagpur 8

STRIPS
• STanford Research Institute Problem Solver
• Many planners today use specification languages that are variants of the one used in STRIPS

IIT Kharagpur 9

Representation
• States - conjunction of propositions
• Example: AT(Home)∧¬ Have(tea)∧¬Have(bananas)∧¬Have(book)

• Close world assumption - atoms that are not present are treated as false
• Actions - Serves as names
• Precondition - conjunction of literals
• Effect - conjunction of literals
• Example:
• Action: Goto(Market)
• Precondition: AT(home)
• Effect: AT(Market)

• Plan - Solution for the problem
• A set of plan steps. Each step is one of the operators for the problem.
• A set of step ordering constraints. Each ordering constraint is of the form Si ≺ Sj, indicating
Si must occur sometime before Sj.

IIT Kharagpur 10

Example - Flight operation
• Flying a plane from one location to another

• Actions - FLY(plane-id, from, to)
• Preconditions - AT(plane-id,from)∧Airport(from)∧Airport(to)
• Effects - ¬AT(plane-id,from)∧AT(plane-id, to)

IIT Kharagpur 11

Example - Air Cargo
• Cargo transport involving loading and unloading and flying it from one place to another

• Initial state - AT(C1, CCU) ∧ AT(C2,DEL) ∧ AT(P1, CCU) ∧ AT(P2,DEL)
• Goal state - AT(C1,DEL) ∧ AT(C2, CCU)

• Action - Load(c, p, a)
• Precondition - AT(c, a) ∧ AT(p, a)
• Effect - ¬AT(c, a) ∧ In(c, p)

• Action - Unload(c, p, a)
• Precondition - In(c, p) ∧ AT(P, a)
• Effect - AT(c, a) ∧ ¬In(c, p)

• Action - Fly(p, from, to)
• Precondition - AT(p, from)
• Effect - ¬AT(p, from) ∧ AT(p, to)

• Plan
• Load(C1, P1, CCU)
• Fly(P1, CCU, DEL)
• Unload(C1, P1, DEL)
• Load(C2, P2, DEL)
• Fly(P2, DEL, CCU)
• Unload(C2, P2, CCU)

IIT Kharagpur 11

Example - Air Cargo
• Cargo transport involving loading and unloading and flying it from one place to another
• Initial state - AT(C1, CCU) ∧ AT(C2,DEL) ∧ AT(P1, CCU) ∧ AT(P2,DEL)

• Goal state - AT(C1,DEL) ∧ AT(C2, CCU)

• Action - Load(c, p, a)
• Precondition - AT(c, a) ∧ AT(p, a)
• Effect - ¬AT(c, a) ∧ In(c, p)

• Action - Unload(c, p, a)
• Precondition - In(c, p) ∧ AT(P, a)
• Effect - AT(c, a) ∧ ¬In(c, p)

• Action - Fly(p, from, to)
• Precondition - AT(p, from)
• Effect - ¬AT(p, from) ∧ AT(p, to)

• Plan
• Load(C1, P1, CCU)
• Fly(P1, CCU, DEL)
• Unload(C1, P1, DEL)
• Load(C2, P2, DEL)
• Fly(P2, DEL, CCU)
• Unload(C2, P2, CCU)

IIT Kharagpur 11

Example - Air Cargo
• Cargo transport involving loading and unloading and flying it from one place to another
• Initial state - AT(C1, CCU) ∧ AT(C2,DEL) ∧ AT(P1, CCU) ∧ AT(P2,DEL)
• Goal state - AT(C1,DEL) ∧ AT(C2, CCU)

• Action - Load(c, p, a)
• Precondition - AT(c, a) ∧ AT(p, a)
• Effect - ¬AT(c, a) ∧ In(c, p)

• Action - Unload(c, p, a)
• Precondition - In(c, p) ∧ AT(P, a)
• Effect - AT(c, a) ∧ ¬In(c, p)

• Action - Fly(p, from, to)
• Precondition - AT(p, from)
• Effect - ¬AT(p, from) ∧ AT(p, to)

• Plan
• Load(C1, P1, CCU)
• Fly(P1, CCU, DEL)
• Unload(C1, P1, DEL)
• Load(C2, P2, DEL)
• Fly(P2, DEL, CCU)
• Unload(C2, P2, CCU)

IIT Kharagpur 11

Example - Air Cargo
• Cargo transport involving loading and unloading and flying it from one place to another
• Initial state - AT(C1, CCU) ∧ AT(C2,DEL) ∧ AT(P1, CCU) ∧ AT(P2,DEL)
• Goal state - AT(C1,DEL) ∧ AT(C2, CCU)

• Action - Load(c, p, a)

• Precondition - AT(c, a) ∧ AT(p, a)
• Effect - ¬AT(c, a) ∧ In(c, p)

• Action - Unload(c, p, a)
• Precondition - In(c, p) ∧ AT(P, a)
• Effect - AT(c, a) ∧ ¬In(c, p)

• Action - Fly(p, from, to)
• Precondition - AT(p, from)
• Effect - ¬AT(p, from) ∧ AT(p, to)

• Plan
• Load(C1, P1, CCU)
• Fly(P1, CCU, DEL)
• Unload(C1, P1, DEL)
• Load(C2, P2, DEL)
• Fly(P2, DEL, CCU)
• Unload(C2, P2, CCU)

IIT Kharagpur 11

Example - Air Cargo
• Cargo transport involving loading and unloading and flying it from one place to another
• Initial state - AT(C1, CCU) ∧ AT(C2,DEL) ∧ AT(P1, CCU) ∧ AT(P2,DEL)
• Goal state - AT(C1,DEL) ∧ AT(C2, CCU)

• Action - Load(c, p, a)
• Precondition - AT(c, a) ∧ AT(p, a)
• Effect - ¬AT(c, a) ∧ In(c, p)

• Action - Unload(c, p, a)
• Precondition - In(c, p) ∧ AT(P, a)
• Effect - AT(c, a) ∧ ¬In(c, p)

• Action - Fly(p, from, to)
• Precondition - AT(p, from)
• Effect - ¬AT(p, from) ∧ AT(p, to)

• Plan
• Load(C1, P1, CCU)
• Fly(P1, CCU, DEL)
• Unload(C1, P1, DEL)
• Load(C2, P2, DEL)
• Fly(P2, DEL, CCU)
• Unload(C2, P2, CCU)

IIT Kharagpur 11

Example - Air Cargo
• Cargo transport involving loading and unloading and flying it from one place to another
• Initial state - AT(C1, CCU) ∧ AT(C2,DEL) ∧ AT(P1, CCU) ∧ AT(P2,DEL)
• Goal state - AT(C1,DEL) ∧ AT(C2, CCU)

• Action - Load(c, p, a)
• Precondition - AT(c, a) ∧ AT(p, a)
• Effect - ¬AT(c, a) ∧ In(c, p)

• Action - Unload(c, p, a)

• Precondition - In(c, p) ∧ AT(P, a)
• Effect - AT(c, a) ∧ ¬In(c, p)

• Action - Fly(p, from, to)
• Precondition - AT(p, from)
• Effect - ¬AT(p, from) ∧ AT(p, to)

• Plan
• Load(C1, P1, CCU)
• Fly(P1, CCU, DEL)
• Unload(C1, P1, DEL)
• Load(C2, P2, DEL)
• Fly(P2, DEL, CCU)
• Unload(C2, P2, CCU)

IIT Kharagpur 11

Example - Air Cargo
• Cargo transport involving loading and unloading and flying it from one place to another
• Initial state - AT(C1, CCU) ∧ AT(C2,DEL) ∧ AT(P1, CCU) ∧ AT(P2,DEL)
• Goal state - AT(C1,DEL) ∧ AT(C2, CCU)

• Action - Load(c, p, a)
• Precondition - AT(c, a) ∧ AT(p, a)
• Effect - ¬AT(c, a) ∧ In(c, p)

• Action - Unload(c, p, a)
• Precondition - In(c, p) ∧ AT(P, a)
• Effect - AT(c, a) ∧ ¬In(c, p)

• Action - Fly(p, from, to)
• Precondition - AT(p, from)
• Effect - ¬AT(p, from) ∧ AT(p, to)

• Plan
• Load(C1, P1, CCU)
• Fly(P1, CCU, DEL)
• Unload(C1, P1, DEL)
• Load(C2, P2, DEL)
• Fly(P2, DEL, CCU)
• Unload(C2, P2, CCU)

IIT Kharagpur 11

Example - Air Cargo
• Cargo transport involving loading and unloading and flying it from one place to another
• Initial state - AT(C1, CCU) ∧ AT(C2,DEL) ∧ AT(P1, CCU) ∧ AT(P2,DEL)
• Goal state - AT(C1,DEL) ∧ AT(C2, CCU)

• Action - Load(c, p, a)
• Precondition - AT(c, a) ∧ AT(p, a)
• Effect - ¬AT(c, a) ∧ In(c, p)

• Action - Unload(c, p, a)
• Precondition - In(c, p) ∧ AT(P, a)
• Effect - AT(c, a) ∧ ¬In(c, p)

• Action - Fly(p, from, to)

• Precondition - AT(p, from)
• Effect - ¬AT(p, from) ∧ AT(p, to)

• Plan
• Load(C1, P1, CCU)
• Fly(P1, CCU, DEL)
• Unload(C1, P1, DEL)
• Load(C2, P2, DEL)
• Fly(P2, DEL, CCU)
• Unload(C2, P2, CCU)

IIT Kharagpur 11

Example - Air Cargo
• Cargo transport involving loading and unloading and flying it from one place to another
• Initial state - AT(C1, CCU) ∧ AT(C2,DEL) ∧ AT(P1, CCU) ∧ AT(P2,DEL)
• Goal state - AT(C1,DEL) ∧ AT(C2, CCU)

• Action - Load(c, p, a)
• Precondition - AT(c, a) ∧ AT(p, a)
• Effect - ¬AT(c, a) ∧ In(c, p)

• Action - Unload(c, p, a)
• Precondition - In(c, p) ∧ AT(P, a)
• Effect - AT(c, a) ∧ ¬In(c, p)

• Action - Fly(p, from, to)
• Precondition - AT(p, from)
• Effect - ¬AT(p, from) ∧ AT(p, to)

• Plan
• Load(C1, P1, CCU)
• Fly(P1, CCU, DEL)
• Unload(C1, P1, DEL)
• Load(C2, P2, DEL)
• Fly(P2, DEL, CCU)
• Unload(C2, P2, CCU)

IIT Kharagpur 11

Example - Air Cargo
• Cargo transport involving loading and unloading and flying it from one place to another
• Initial state - AT(C1, CCU) ∧ AT(C2,DEL) ∧ AT(P1, CCU) ∧ AT(P2,DEL)
• Goal state - AT(C1,DEL) ∧ AT(C2, CCU)

• Action - Load(c, p, a)
• Precondition - AT(c, a) ∧ AT(p, a)
• Effect - ¬AT(c, a) ∧ In(c, p)

• Action - Unload(c, p, a)
• Precondition - In(c, p) ∧ AT(P, a)
• Effect - AT(c, a) ∧ ¬In(c, p)

• Action - Fly(p, from, to)
• Precondition - AT(p, from)
• Effect - ¬AT(p, from) ∧ AT(p, to)

• Plan

• Load(C1, P1, CCU)
• Fly(P1, CCU, DEL)
• Unload(C1, P1, DEL)
• Load(C2, P2, DEL)
• Fly(P2, DEL, CCU)
• Unload(C2, P2, CCU)

IIT Kharagpur 11

Example - Air Cargo
• Cargo transport involving loading and unloading and flying it from one place to another
• Initial state - AT(C1, CCU) ∧ AT(C2,DEL) ∧ AT(P1, CCU) ∧ AT(P2,DEL)
• Goal state - AT(C1,DEL) ∧ AT(C2, CCU)

• Action - Load(c, p, a)
• Precondition - AT(c, a) ∧ AT(p, a)
• Effect - ¬AT(c, a) ∧ In(c, p)

• Action - Unload(c, p, a)
• Precondition - In(c, p) ∧ AT(P, a)
• Effect - AT(c, a) ∧ ¬In(c, p)

• Action - Fly(p, from, to)
• Precondition - AT(p, from)
• Effect - ¬AT(p, from) ∧ AT(p, to)

• Plan
• Load(C1, P1, CCU)

• Fly(P1, CCU, DEL)
• Unload(C1, P1, DEL)
• Load(C2, P2, DEL)
• Fly(P2, DEL, CCU)
• Unload(C2, P2, CCU)

IIT Kharagpur 11

Example - Air Cargo
• Cargo transport involving loading and unloading and flying it from one place to another
• Initial state - AT(C1, CCU) ∧ AT(C2,DEL) ∧ AT(P1, CCU) ∧ AT(P2,DEL)
• Goal state - AT(C1,DEL) ∧ AT(C2, CCU)

• Action - Load(c, p, a)
• Precondition - AT(c, a) ∧ AT(p, a)
• Effect - ¬AT(c, a) ∧ In(c, p)

• Action - Unload(c, p, a)
• Precondition - In(c, p) ∧ AT(P, a)
• Effect - AT(c, a) ∧ ¬In(c, p)

• Action - Fly(p, from, to)
• Precondition - AT(p, from)
• Effect - ¬AT(p, from) ∧ AT(p, to)

• Plan
• Load(C1, P1, CCU)
• Fly(P1, CCU, DEL)

• Unload(C1, P1, DEL)
• Load(C2, P2, DEL)
• Fly(P2, DEL, CCU)
• Unload(C2, P2, CCU)

IIT Kharagpur 11

Example - Air Cargo
• Cargo transport involving loading and unloading and flying it from one place to another
• Initial state - AT(C1, CCU) ∧ AT(C2,DEL) ∧ AT(P1, CCU) ∧ AT(P2,DEL)
• Goal state - AT(C1,DEL) ∧ AT(C2, CCU)

• Action - Load(c, p, a)
• Precondition - AT(c, a) ∧ AT(p, a)
• Effect - ¬AT(c, a) ∧ In(c, p)

• Action - Unload(c, p, a)
• Precondition - In(c, p) ∧ AT(P, a)
• Effect - AT(c, a) ∧ ¬In(c, p)

• Action - Fly(p, from, to)
• Precondition - AT(p, from)
• Effect - ¬AT(p, from) ∧ AT(p, to)

• Plan
• Load(C1, P1, CCU)
• Fly(P1, CCU, DEL)
• Unload(C1, P1, DEL)

• Load(C2, P2, DEL)
• Fly(P2, DEL, CCU)
• Unload(C2, P2, CCU)

IIT Kharagpur 11

Example - Air Cargo
• Cargo transport involving loading and unloading and flying it from one place to another
• Initial state - AT(C1, CCU) ∧ AT(C2,DEL) ∧ AT(P1, CCU) ∧ AT(P2,DEL)
• Goal state - AT(C1,DEL) ∧ AT(C2, CCU)

• Action - Load(c, p, a)
• Precondition - AT(c, a) ∧ AT(p, a)
• Effect - ¬AT(c, a) ∧ In(c, p)

• Action - Unload(c, p, a)
• Precondition - In(c, p) ∧ AT(P, a)
• Effect - AT(c, a) ∧ ¬In(c, p)

• Action - Fly(p, from, to)
• Precondition - AT(p, from)
• Effect - ¬AT(p, from) ∧ AT(p, to)

• Plan
• Load(C1, P1, CCU)
• Fly(P1, CCU, DEL)
• Unload(C1, P1, DEL)
• Load(C2, P2, DEL)
• Fly(P2, DEL, CCU)
• Unload(C2, P2, CCU)

IIT Kharagpur 12

Example - Flat tire
• Change a flat tire with a spare one

• Initial state - Tire(flat) ∧ Tire(Spare) ∧ AT(Flat, Axle) ∧ At(Spare, Trunk)
• Goal state - AT(Spare, Axle)
• Action - Remove(obj, loc)
• Preconditions - AT(obj, loc)
• Effects - ¬AT(obj,loc) ∧ AT(obj, Ground)

• Action - PutOn(t, axle)
• Preconditions - Tire(t) ∧ AT(t, Ground) ∧ ¬AT(Flat, axle)
• Effects - ¬AT(t, Ground) ∧ AT(t, axle)

• Plan
• Remove(Flat, Axle)
• Remove(Spare, Trunk)
• PutOn(Spare, Axle)

IIT Kharagpur 12

Example - Flat tire
• Change a flat tire with a spare one
• Initial state - Tire(flat) ∧ Tire(Spare) ∧ AT(Flat, Axle) ∧ At(Spare, Trunk)

• Goal state - AT(Spare, Axle)
• Action - Remove(obj, loc)
• Preconditions - AT(obj, loc)
• Effects - ¬AT(obj,loc) ∧ AT(obj, Ground)

• Action - PutOn(t, axle)
• Preconditions - Tire(t) ∧ AT(t, Ground) ∧ ¬AT(Flat, axle)
• Effects - ¬AT(t, Ground) ∧ AT(t, axle)

• Plan
• Remove(Flat, Axle)
• Remove(Spare, Trunk)
• PutOn(Spare, Axle)

IIT Kharagpur 12

Example - Flat tire
• Change a flat tire with a spare one
• Initial state - Tire(flat) ∧ Tire(Spare) ∧ AT(Flat, Axle) ∧ At(Spare, Trunk)
• Goal state - AT(Spare, Axle)

• Action - Remove(obj, loc)
• Preconditions - AT(obj, loc)
• Effects - ¬AT(obj,loc) ∧ AT(obj, Ground)

• Action - PutOn(t, axle)
• Preconditions - Tire(t) ∧ AT(t, Ground) ∧ ¬AT(Flat, axle)
• Effects - ¬AT(t, Ground) ∧ AT(t, axle)

• Plan
• Remove(Flat, Axle)
• Remove(Spare, Trunk)
• PutOn(Spare, Axle)

IIT Kharagpur 12

Example - Flat tire
• Change a flat tire with a spare one
• Initial state - Tire(flat) ∧ Tire(Spare) ∧ AT(Flat, Axle) ∧ At(Spare, Trunk)
• Goal state - AT(Spare, Axle)
• Action - Remove(obj, loc)

• Preconditions - AT(obj, loc)
• Effects - ¬AT(obj,loc) ∧ AT(obj, Ground)

• Action - PutOn(t, axle)
• Preconditions - Tire(t) ∧ AT(t, Ground) ∧ ¬AT(Flat, axle)
• Effects - ¬AT(t, Ground) ∧ AT(t, axle)

• Plan
• Remove(Flat, Axle)
• Remove(Spare, Trunk)
• PutOn(Spare, Axle)

IIT Kharagpur 12

Example - Flat tire
• Change a flat tire with a spare one
• Initial state - Tire(flat) ∧ Tire(Spare) ∧ AT(Flat, Axle) ∧ At(Spare, Trunk)
• Goal state - AT(Spare, Axle)
• Action - Remove(obj, loc)
• Preconditions - AT(obj, loc)
• Effects - ¬AT(obj,loc) ∧ AT(obj, Ground)

• Action - PutOn(t, axle)
• Preconditions - Tire(t) ∧ AT(t, Ground) ∧ ¬AT(Flat, axle)
• Effects - ¬AT(t, Ground) ∧ AT(t, axle)

• Plan
• Remove(Flat, Axle)
• Remove(Spare, Trunk)
• PutOn(Spare, Axle)

IIT Kharagpur 12

Example - Flat tire
• Change a flat tire with a spare one
• Initial state - Tire(flat) ∧ Tire(Spare) ∧ AT(Flat, Axle) ∧ At(Spare, Trunk)
• Goal state - AT(Spare, Axle)
• Action - Remove(obj, loc)
• Preconditions - AT(obj, loc)
• Effects - ¬AT(obj,loc) ∧ AT(obj, Ground)

• Action - PutOn(t, axle)

• Preconditions - Tire(t) ∧ AT(t, Ground) ∧ ¬AT(Flat, axle)
• Effects - ¬AT(t, Ground) ∧ AT(t, axle)

• Plan
• Remove(Flat, Axle)
• Remove(Spare, Trunk)
• PutOn(Spare, Axle)

IIT Kharagpur 12

Example - Flat tire
• Change a flat tire with a spare one
• Initial state - Tire(flat) ∧ Tire(Spare) ∧ AT(Flat, Axle) ∧ At(Spare, Trunk)
• Goal state - AT(Spare, Axle)
• Action - Remove(obj, loc)
• Preconditions - AT(obj, loc)
• Effects - ¬AT(obj,loc) ∧ AT(obj, Ground)

• Action - PutOn(t, axle)
• Preconditions - Tire(t) ∧ AT(t, Ground) ∧ ¬AT(Flat, axle)
• Effects - ¬AT(t, Ground) ∧ AT(t, axle)

• Plan
• Remove(Flat, Axle)
• Remove(Spare, Trunk)
• PutOn(Spare, Axle)

IIT Kharagpur 12

Example - Flat tire
• Change a flat tire with a spare one
• Initial state - Tire(flat) ∧ Tire(Spare) ∧ AT(Flat, Axle) ∧ At(Spare, Trunk)
• Goal state - AT(Spare, Axle)
• Action - Remove(obj, loc)
• Preconditions - AT(obj, loc)
• Effects - ¬AT(obj,loc) ∧ AT(obj, Ground)

• Action - PutOn(t, axle)
• Preconditions - Tire(t) ∧ AT(t, Ground) ∧ ¬AT(Flat, axle)
• Effects - ¬AT(t, Ground) ∧ AT(t, axle)

• Plan

• Remove(Flat, Axle)
• Remove(Spare, Trunk)
• PutOn(Spare, Axle)

IIT Kharagpur 12

Example - Flat tire
• Change a flat tire with a spare one
• Initial state - Tire(flat) ∧ Tire(Spare) ∧ AT(Flat, Axle) ∧ At(Spare, Trunk)
• Goal state - AT(Spare, Axle)
• Action - Remove(obj, loc)
• Preconditions - AT(obj, loc)
• Effects - ¬AT(obj,loc) ∧ AT(obj, Ground)

• Action - PutOn(t, axle)
• Preconditions - Tire(t) ∧ AT(t, Ground) ∧ ¬AT(Flat, axle)
• Effects - ¬AT(t, Ground) ∧ AT(t, axle)

• Plan
• Remove(Flat, Axle)
• Remove(Spare, Trunk)
• PutOn(Spare, Axle)

A B
C

A
B
C

IIT Kharagpur 13

Example - Blocks world
• Build a 3-block tower

• Initial state - ON(A,Table) ∧ ON(B,Table) ∧ ON(C,A) ∧ Clear(B) ∧ Clear(C)
• Goal state - ON(A,B) ∧ ON(B,C)

• Action - move(x, y)
• Precondition - Clear(x) ∧ Clear(y)
• Effect - ON(x, y)

• Action - moveToTable(x, Table)
• Precondition - Clear(x)
• Effect - ON(x, Table)

• Plan
• moveToTable(C, Table)
• move(B, C)
• move(A, B)

A B
C

A
B
C

IIT Kharagpur 13

Example - Blocks world
• Build a 3-block tower
• Initial state - ON(A,Table) ∧ ON(B,Table) ∧ ON(C,A) ∧ Clear(B) ∧ Clear(C)

• Goal state - ON(A,B) ∧ ON(B,C)

• Action - move(x, y)
• Precondition - Clear(x) ∧ Clear(y)
• Effect - ON(x, y)

• Action - moveToTable(x, Table)
• Precondition - Clear(x)
• Effect - ON(x, Table)

• Plan
• moveToTable(C, Table)
• move(B, C)
• move(A, B)

A B
C

A
B
C

IIT Kharagpur 13

Example - Blocks world
• Build a 3-block tower
• Initial state - ON(A,Table) ∧ ON(B,Table) ∧ ON(C,A) ∧ Clear(B) ∧ Clear(C)
• Goal state - ON(A,B) ∧ ON(B,C)

• Action - move(x, y)
• Precondition - Clear(x) ∧ Clear(y)
• Effect - ON(x, y)

• Action - moveToTable(x, Table)
• Precondition - Clear(x)
• Effect - ON(x, Table)

• Plan
• moveToTable(C, Table)
• move(B, C)
• move(A, B)

A B
C

A
B
C

IIT Kharagpur 13

Example - Blocks world
• Build a 3-block tower
• Initial state - ON(A,Table) ∧ ON(B,Table) ∧ ON(C,A) ∧ Clear(B) ∧ Clear(C)
• Goal state - ON(A,B) ∧ ON(B,C)

• Action - move(x, y)

• Precondition - Clear(x) ∧ Clear(y)
• Effect - ON(x, y)

• Action - moveToTable(x, Table)
• Precondition - Clear(x)
• Effect - ON(x, Table)

• Plan
• moveToTable(C, Table)
• move(B, C)
• move(A, B)

A B
C

A
B
C

IIT Kharagpur 13

Example - Blocks world
• Build a 3-block tower
• Initial state - ON(A,Table) ∧ ON(B,Table) ∧ ON(C,A) ∧ Clear(B) ∧ Clear(C)
• Goal state - ON(A,B) ∧ ON(B,C)

• Action - move(x, y)
• Precondition - Clear(x) ∧ Clear(y)
• Effect - ON(x, y)

• Action - moveToTable(x, Table)
• Precondition - Clear(x)
• Effect - ON(x, Table)

• Plan
• moveToTable(C, Table)
• move(B, C)
• move(A, B)

A B
C

A
B
C

IIT Kharagpur 13

Example - Blocks world
• Build a 3-block tower
• Initial state - ON(A,Table) ∧ ON(B,Table) ∧ ON(C,A) ∧ Clear(B) ∧ Clear(C)
• Goal state - ON(A,B) ∧ ON(B,C)

• Action - move(x, y)
• Precondition - Clear(x) ∧ Clear(y)
• Effect - ON(x, y)

• Action - moveToTable(x, Table)

• Precondition - Clear(x)
• Effect - ON(x, Table)

• Plan
• moveToTable(C, Table)
• move(B, C)
• move(A, B)

A B
C

A
B
C

IIT Kharagpur 13

Example - Blocks world
• Build a 3-block tower
• Initial state - ON(A,Table) ∧ ON(B,Table) ∧ ON(C,A) ∧ Clear(B) ∧ Clear(C)
• Goal state - ON(A,B) ∧ ON(B,C)

• Action - move(x, y)
• Precondition - Clear(x) ∧ Clear(y)
• Effect - ON(x, y)

• Action - moveToTable(x, Table)
• Precondition - Clear(x)
• Effect - ON(x, Table)

• Plan
• moveToTable(C, Table)
• move(B, C)
• move(A, B)

A B
C

A
B
C

IIT Kharagpur 13

Example - Blocks world
• Build a 3-block tower
• Initial state - ON(A,Table) ∧ ON(B,Table) ∧ ON(C,A) ∧ Clear(B) ∧ Clear(C)
• Goal state - ON(A,B) ∧ ON(B,C)

• Action - move(x, y)
• Precondition - Clear(x) ∧ Clear(y)
• Effect - ON(x, y)

• Action - moveToTable(x, Table)
• Precondition - Clear(x)
• Effect - ON(x, Table)

• Plan

• moveToTable(C, Table)
• move(B, C)
• move(A, B)

A B
C

A
B
C

IIT Kharagpur 13

Example - Blocks world
• Build a 3-block tower
• Initial state - ON(A,Table) ∧ ON(B,Table) ∧ ON(C,A) ∧ Clear(B) ∧ Clear(C)
• Goal state - ON(A,B) ∧ ON(B,C)

• Action - move(x, y)
• Precondition - Clear(x) ∧ Clear(y)
• Effect - ON(x, y)

• Action - moveToTable(x, Table)
• Precondition - Clear(x)
• Effect - ON(x, Table)

• Plan
• moveToTable(C, Table)
• move(B, C)
• move(A, B)

A B
C

A
B
C

Action: Move(X,Y)
Precondition: Clear(X)∧ Clear(Y)
Effect: On(X,Y)

Action: MoveTT(X)
Precondition: Clear(X)
Effect: On(X,Table)On(C,A) ∧ On(A,Table) ∧ On(B,Table) ∧ Clear(C) ∧ Clear(B)

On(A,B) ∧ On(B,C)

• Move C to the table
• It achieves none of the goal predicates

• Move C to top of B
• It achieves none of the goal predicates

• Move B to top of C
• It achieves On(B,C)

IIT Kharagpur 14

Blocks world - I

A B
C

A
B
C

Action: Move(X,Y)
Precondition: Clear(X)∧ Clear(Y)
Effect: On(X,Y)

Action: MoveTT(X)
Precondition: Clear(X)
Effect: On(X,Table)On(C,A) ∧ On(A,Table) ∧ On(B,Table) ∧ Clear(C) ∧ Clear(B)

On(A,B) ∧ On(B,C)

Move(B,C)
Clear(C) ∧ Clear(B)

We obtain the following

A

B
C

IIT Kharagpur 15

Blocks world - I

A B
C

A
B
C

On(C,A) ∧ On(A,Table) ∧ On(B,Table) ∧ Clear(C) ∧ Clear(B)

On(A,B) ∧ On(B,C)

Action: Move(X,Y)
Precondition: Clear(X)∧ Clear(Y)
Effect: On(X,Y)

Action: MoveTT(X)
Precondition: Clear(X)
Effect: On(X,Table)

Move(A,B)

MoveTT(C)
Clear(C)

Clear(A) ∧ On(C,Table)

Clear(A) ∧ Clear(B)

¬Clear(B)

Move(B,C)
Clear(C) ∧ Clear(B)

¬Clear(C)

• Total ordering is
• MoveTT(C)
• Move(B,C)
• Move(A,B)

IIT Kharagpur 16

Blocks world - II

A B
C

A
B
C

On(C,A) ∧ On(A,Table) ∧ On(B,Table) ∧ Clear(C) ∧ Clear(B)

On(A,B) ∧ On(B,C)

Action: Move(X,Y)
Precondition: Clear(X)∧ Clear(Y)
Effect: On(X,Y)

Action: MoveTT(X)
Precondition: Clear(X)
Effect: On(X,Table)

Move(A,B)

MoveTT(C)
Clear(C)

Clear(A) ∧ On(C,Table)

Clear(A) ∧ Clear(B)

¬Clear(B)

Move(B,C)
Clear(C) ∧ Clear(B)

¬Clear(C)

• Total ordering is
• MoveTT(C)
• Move(B,C)
• Move(A,B)

IIT Kharagpur 16

Blocks world - II

A B
C

A
B
C

On(C,A) ∧ On(A,Table) ∧ On(B,Table) ∧ Clear(C) ∧ Clear(B)

On(A,B) ∧ On(B,C)

Action: Move(X,Y)
Precondition: Clear(X)∧ Clear(Y)
Effect: On(X,Y)

Action: MoveTT(X)
Precondition: Clear(X)
Effect: On(X,Table)

Move(A,B)

MoveTT(C)
Clear(C)

Clear(A) ∧ On(C,Table)

Clear(A) ∧ Clear(B)

¬Clear(B)

Move(B,C)
Clear(C) ∧ Clear(B)

¬Clear(C)

• Total ordering is
• MoveTT(C)
• Move(B,C)
• Move(A,B)

IIT Kharagpur 16

Blocks world - II

A B
C

A
B
C

On(C,A) ∧ On(A,Table) ∧ On(B,Table) ∧ Clear(C) ∧ Clear(B)

On(A,B) ∧ On(B,C)

Action: Move(X,Y)
Precondition: Clear(X)∧ Clear(Y)
Effect: On(X,Y)

Action: MoveTT(X)
Precondition: Clear(X)
Effect: On(X,Table)

Move(A,B)

MoveTT(C)

Clear(C)

Clear(A) ∧ On(C,Table)

Clear(A) ∧ Clear(B)

¬Clear(B)

Move(B,C)
Clear(C) ∧ Clear(B)

¬Clear(C)

• Total ordering is
• MoveTT(C)
• Move(B,C)
• Move(A,B)

IIT Kharagpur 16

Blocks world - II

A B
C

A
B
C

On(C,A) ∧ On(A,Table) ∧ On(B,Table) ∧ Clear(C) ∧ Clear(B)

On(A,B) ∧ On(B,C)

Action: Move(X,Y)
Precondition: Clear(X)∧ Clear(Y)
Effect: On(X,Y)

Action: MoveTT(X)
Precondition: Clear(X)
Effect: On(X,Table)

Move(A,B)

MoveTT(C)
Clear(C)

Clear(A) ∧ On(C,Table)

Clear(A) ∧ Clear(B)

¬Clear(B)

Move(B,C)
Clear(C) ∧ Clear(B)

¬Clear(C)

• Total ordering is
• MoveTT(C)
• Move(B,C)
• Move(A,B)

IIT Kharagpur 16

Blocks world - II

A B
C

A
B
C

On(C,A) ∧ On(A,Table) ∧ On(B,Table) ∧ Clear(C) ∧ Clear(B)

On(A,B) ∧ On(B,C)

Action: Move(X,Y)
Precondition: Clear(X)∧ Clear(Y)
Effect: On(X,Y)

Action: MoveTT(X)
Precondition: Clear(X)
Effect: On(X,Table)

Move(A,B)

MoveTT(C)
Clear(C)

Clear(A) ∧ On(C,Table)

Clear(A) ∧ Clear(B)

¬Clear(B)

Move(B,C)
Clear(C) ∧ Clear(B)

¬Clear(C)

• Total ordering is
• MoveTT(C)
• Move(B,C)
• Move(A,B)

IIT Kharagpur 16

Blocks world - II

A B
C

A
B
C

On(C,A) ∧ On(A,Table) ∧ On(B,Table) ∧ Clear(C) ∧ Clear(B)

On(A,B) ∧ On(B,C)

Action: Move(X,Y)
Precondition: Clear(X)∧ Clear(Y)
Effect: On(X,Y)

Action: MoveTT(X)
Precondition: Clear(X)
Effect: On(X,Table)

Move(A,B)

MoveTT(C)
Clear(C)

Clear(A) ∧ On(C,Table)

Clear(A) ∧ Clear(B)

¬Clear(B)

Move(B,C)
Clear(C) ∧ Clear(B)

¬Clear(C)

• Total ordering is
• MoveTT(C)
• Move(B,C)
• Move(A,B)

IIT Kharagpur 16

Blocks world - II

A B
C

A
B
C

On(C,A) ∧ On(A,Table) ∧ On(B,Table) ∧ Clear(C) ∧ Clear(B)

On(A,B) ∧ On(B,C)

Action: Move(X,Y)
Precondition: Clear(X)∧ Clear(Y)
Effect: On(X,Y)

Action: MoveTT(X)
Precondition: Clear(X)
Effect: On(X,Table)

Move(A,B)

MoveTT(C)
Clear(C)

Clear(A) ∧ On(C,Table)

Clear(A) ∧ Clear(B)

¬Clear(B)

Move(B,C)
Clear(C) ∧ Clear(B)

¬Clear(C)

• Total ordering is
• MoveTT(C)
• Move(B,C)
• Move(A,B)

IIT Kharagpur 16

Blocks world - II

A B
C

A
B
C

On(C,A) ∧ On(A,Table) ∧ On(B,Table) ∧ Clear(C) ∧ Clear(B)

On(A,B) ∧ On(B,C)

Action: Move(X,Y)
Precondition: Clear(X)∧ Clear(Y)
Effect: On(X,Y)

Action: MoveTT(X)
Precondition: Clear(X)
Effect: On(X,Table)

Move(A,B)

MoveTT(C)
Clear(C)

Clear(A) ∧ On(C,Table)

Clear(A) ∧ Clear(B)

¬Clear(B)

Move(B,C)
Clear(C) ∧ Clear(B)

¬Clear(C)

• Total ordering is
• MoveTT(C)
• Move(B,C)
• Move(A,B)

IIT Kharagpur 16

Blocks world - II

A B
C

A
B
C

On(C,A) ∧ On(A,Table) ∧ On(B,Table) ∧ Clear(C) ∧ Clear(B)

On(A,B) ∧ On(B,C)

Action: Move(X,Y)
Precondition: Clear(X)∧ Clear(Y)
Effect: On(X,Y)

Action: MoveTT(X)
Precondition: Clear(X)
Effect: On(X,Table)

Move(A,B)

MoveTT(C)
Clear(C)

Clear(A) ∧ On(C,Table)

Clear(A) ∧ Clear(B)

¬Clear(B)

Move(B,C)
Clear(C) ∧ Clear(B)

¬Clear(C)

• Total ordering is
• MoveTT(C)
• Move(B,C)
• Move(A,B)

IIT Kharagpur 16

Blocks world - II

• Initial state : ∅
• Goal state: LeftShoeOn ∧ RightShoeOn
• Action - LeftSock
• Precondition: ∅
• Effect: LeftSockOn

• Action - RightSock
• Precondition: ∅
• Effect: RightSockOn

• Action - LeftShoe
• Precondition: LeftSockOn
• Effect: LeftShoeOn

• Action - RightSock
• Precondition: RightSockOn
• Effect: RightShoeOn

Start

Finish

LeftShoe ∧ RightShoe

RightShoe
RightSockOn

LeftShoe
LeftSockOn

LeftSock RightSock

IIT Kharagpur 17

Shocks

• Initial state : ∅
• Goal state: LeftShoeOn ∧ RightShoeOn
• Action - LeftSock
• Precondition: ∅
• Effect: LeftSockOn

• Action - RightSock
• Precondition: ∅
• Effect: RightSockOn

• Action - LeftShoe
• Precondition: LeftSockOn
• Effect: LeftShoeOn

• Action - RightSock
• Precondition: RightSockOn
• Effect: RightShoeOn

Start

Finish

LeftShoe ∧ RightShoe

RightShoe
RightSockOn

LeftShoe
LeftSockOn

LeftSock RightSock

IIT Kharagpur 17

Shocks

• Initial state : ∅
• Goal state: LeftShoeOn ∧ RightShoeOn
• Action - LeftSock
• Precondition: ∅
• Effect: LeftSockOn

• Action - RightSock
• Precondition: ∅
• Effect: RightSockOn

• Action - LeftShoe
• Precondition: LeftSockOn
• Effect: LeftShoeOn

• Action - RightSock
• Precondition: RightSockOn
• Effect: RightShoeOn

Start

Finish

LeftShoe ∧ RightShoe

RightShoe
RightSockOn

LeftShoe
LeftSockOn

LeftSock RightSock

IIT Kharagpur 17

Shocks

• Initial state : ∅
• Goal state: LeftShoeOn ∧ RightShoeOn
• Action - LeftSock
• Precondition: ∅
• Effect: LeftSockOn

• Action - RightSock
• Precondition: ∅
• Effect: RightSockOn

• Action - LeftShoe
• Precondition: LeftSockOn
• Effect: LeftShoeOn

• Action - RightSock
• Precondition: RightSockOn
• Effect: RightShoeOn

Start

Finish

LeftShoe ∧ RightShoe

RightShoe

RightSockOn

LeftShoe
LeftSockOn

LeftSock RightSock

IIT Kharagpur 17

Shocks

• Initial state : ∅
• Goal state: LeftShoeOn ∧ RightShoeOn
• Action - LeftSock
• Precondition: ∅
• Effect: LeftSockOn

• Action - RightSock
• Precondition: ∅
• Effect: RightSockOn

• Action - LeftShoe
• Precondition: LeftSockOn
• Effect: LeftShoeOn

• Action - RightSock
• Precondition: RightSockOn
• Effect: RightShoeOn

Start

Finish

LeftShoe ∧ RightShoe

RightShoe
RightSockOn

LeftShoe
LeftSockOn

LeftSock RightSock

IIT Kharagpur 17

Shocks

• Initial state : ∅
• Goal state: LeftShoeOn ∧ RightShoeOn
• Action - LeftSock
• Precondition: ∅
• Effect: LeftSockOn

• Action - RightSock
• Precondition: ∅
• Effect: RightSockOn

• Action - LeftShoe
• Precondition: LeftSockOn
• Effect: LeftShoeOn

• Action - RightSock
• Precondition: RightSockOn
• Effect: RightShoeOn

Start

Finish

LeftShoe ∧ RightShoe

RightShoe
RightSockOn

LeftShoe

LeftSockOn

LeftSock RightSock

IIT Kharagpur 17

Shocks

• Initial state : ∅
• Goal state: LeftShoeOn ∧ RightShoeOn
• Action - LeftSock
• Precondition: ∅
• Effect: LeftSockOn

• Action - RightSock
• Precondition: ∅
• Effect: RightSockOn

• Action - LeftShoe
• Precondition: LeftSockOn
• Effect: LeftShoeOn

• Action - RightSock
• Precondition: RightSockOn
• Effect: RightShoeOn

Start

Finish

LeftShoe ∧ RightShoe

RightShoe
RightSockOn

LeftShoe
LeftSockOn

LeftSock RightSock

IIT Kharagpur 17

Shocks

• Initial state : ∅
• Goal state: LeftShoeOn ∧ RightShoeOn
• Action - LeftSock
• Precondition: ∅
• Effect: LeftSockOn

• Action - RightSock
• Precondition: ∅
• Effect: RightSockOn

• Action - LeftShoe
• Precondition: LeftSockOn
• Effect: LeftShoeOn

• Action - RightSock
• Precondition: RightSockOn
• Effect: RightShoeOn

Start

Finish

LeftShoe ∧ RightShoe

RightShoe
RightSockOn

LeftShoe
LeftSockOn

LeftSock

RightSock

IIT Kharagpur 17

Shocks

• Initial state : ∅
• Goal state: LeftShoeOn ∧ RightShoeOn
• Action - LeftSock
• Precondition: ∅
• Effect: LeftSockOn

• Action - RightSock
• Precondition: ∅
• Effect: RightSockOn

• Action - LeftShoe
• Precondition: LeftSockOn
• Effect: LeftShoeOn

• Action - RightSock
• Precondition: RightSockOn
• Effect: RightShoeOn

Start

Finish

LeftShoe ∧ RightShoe

RightShoe
RightSockOn

LeftShoe
LeftSockOn

LeftSock RightSock

IIT Kharagpur 17

Shocks

• Initial state : ∅
• Goal state: LeftShoeOn ∧ RightShoeOn
• Action - LeftSock
• Precondition: ∅
• Effect: LeftSockOn

• Action - RightSock
• Precondition: ∅
• Effect: RightSockOn

• Action - LeftShoe
• Precondition: LeftSockOn
• Effect: LeftShoeOn

• Action - RightSock
• Precondition: RightSockOn
• Effect: RightShoeOn

Start

Finish

LeftShoe ∧ RightShoe

RightShoe
RightSockOn

LeftShoe
LeftSockOn

LeftSock RightSock

IIT Kharagpur 17

Shocks

IIT Kharagpur 18

Partial order planning
• Basic idea: Make choices only that are relevant for solving the current part of the problem
• Least commitment choices
• Ordering - Leave actions unordered, unless they must be sequential
• Binding - Leave variable unbound, unless needed to unify with conditions being achieved
• Actions - Usually not subjected to least commitment

Initial State:
Action: Start
Effect: At(Home) ∧ Sells(BS,Book) ∧ Sells(M,Milk) ∧ Sells(M,Bananas)

Goal State:
Action: Finish
Precondition: Have(Book) ∧ Have(Milk) ∧ Have(Bananas) ∧ At(Home)

Action: Go(y)
Precondition: At(x)
Effect: At(y) ∧ ¬At(x)

Action: Buy(x)
Precondition: At(y) ∧ Sells(y,x)
Effect: Have(x)

IIT Kharagpur 19

Milk, Bananas, Book

Start
At(Home) ∧ Sells(BS,Book) ∧ Sells(M,Milk) ∧ Sells(M,Bananas)

Finish
Have(Book) ∧ Have(Milk) ∧ Have(Bananas) ∧ At(Home)

Buy(book)
At(BS) ∧ Sells(BS,Book)

Buy(Milk)
At(M) ∧ Sells(M,Milk)

Buy(Bananas)
At(M) ∧ Sells(M,Bananas)

Go(BS)
At(Home)

¬At(Home)
Go(M)

At(Home)

¬At(Home)

At(BS)

¬At(BS) Go(Home)
At(M)

¬At(M)

IIT Kharagpur 20

Milk, Bananas, Book

Start
At(Home) ∧ Sells(BS,Book) ∧ Sells(M,Milk) ∧ Sells(M,Bananas)

Finish
Have(Book) ∧ Have(Milk) ∧ Have(Bananas) ∧ At(Home)

Buy(book)
At(BS) ∧ Sells(BS,Book)

Buy(Milk)
At(M) ∧ Sells(M,Milk)

Buy(Bananas)
At(M) ∧ Sells(M,Bananas)

Go(BS)
At(Home)

¬At(Home)
Go(M)

At(Home)

¬At(Home)

At(BS)

¬At(BS) Go(Home)
At(M)

¬At(M)

IIT Kharagpur 20

Milk, Bananas, Book

Start
At(Home) ∧ Sells(BS,Book) ∧ Sells(M,Milk) ∧ Sells(M,Bananas)

Finish
Have(Book) ∧ Have(Milk) ∧ Have(Bananas) ∧ At(Home)

Buy(book)
At(BS) ∧ Sells(BS,Book)

Buy(Milk)
At(M) ∧ Sells(M,Milk)

Buy(Bananas)
At(M) ∧ Sells(M,Bananas)

Go(BS)
At(Home)

¬At(Home)
Go(M)

At(Home)

¬At(Home)

At(BS)

¬At(BS) Go(Home)
At(M)

¬At(M)

IIT Kharagpur 20

Milk, Bananas, Book

Start
At(Home) ∧ Sells(BS,Book) ∧ Sells(M,Milk) ∧ Sells(M,Bananas)

Finish
Have(Book) ∧ Have(Milk) ∧ Have(Bananas) ∧ At(Home)

Buy(book)
At(BS) ∧ Sells(BS,Book)

Buy(Milk)
At(M) ∧ Sells(M,Milk)

Buy(Bananas)
At(M) ∧ Sells(M,Bananas)

Go(BS)
At(Home)

¬At(Home)
Go(M)

At(Home)

¬At(Home)

At(BS)

¬At(BS) Go(Home)
At(M)

¬At(M)

IIT Kharagpur 20

Milk, Bananas, Book

Start
At(Home) ∧ Sells(BS,Book) ∧ Sells(M,Milk) ∧ Sells(M,Bananas)

Finish
Have(Book) ∧ Have(Milk) ∧ Have(Bananas) ∧ At(Home)

Buy(book)
At(BS) ∧ Sells(BS,Book)

Buy(Milk)
At(M) ∧ Sells(M,Milk)

Buy(Bananas)
At(M) ∧ Sells(M,Bananas)

Go(BS)
At(Home)

¬At(Home)
Go(M)

At(Home)

¬At(Home)

At(BS)

¬At(BS) Go(Home)
At(M)

¬At(M)

IIT Kharagpur 20

Milk, Bananas, Book

Start
At(Home) ∧ Sells(BS,Book) ∧ Sells(M,Milk) ∧ Sells(M,Bananas)

Finish
Have(Book) ∧ Have(Milk) ∧ Have(Bananas) ∧ At(Home)

Buy(book)
At(BS) ∧ Sells(BS,Book)

Buy(Milk)
At(M) ∧ Sells(M,Milk)

Buy(Bananas)
At(M) ∧ Sells(M,Bananas)

Go(BS)
At(Home)

¬At(Home)

Go(M)
At(Home)

¬At(Home)

At(BS)

¬At(BS) Go(Home)
At(M)

¬At(M)

IIT Kharagpur 20

Milk, Bananas, Book

Start
At(Home) ∧ Sells(BS,Book) ∧ Sells(M,Milk) ∧ Sells(M,Bananas)

Finish
Have(Book) ∧ Have(Milk) ∧ Have(Bananas) ∧ At(Home)

Buy(book)
At(BS) ∧ Sells(BS,Book)

Buy(Milk)
At(M) ∧ Sells(M,Milk)

Buy(Bananas)
At(M) ∧ Sells(M,Bananas)

Go(BS)
At(Home)

¬At(Home)
Go(M)

At(Home)

¬At(Home)

At(BS)

¬At(BS) Go(Home)
At(M)

¬At(M)

IIT Kharagpur 20

Milk, Bananas, Book

Start
At(Home) ∧ Sells(BS,Book) ∧ Sells(M,Milk) ∧ Sells(M,Bananas)

Finish
Have(Book) ∧ Have(Milk) ∧ Have(Bananas) ∧ At(Home)

Buy(book)
At(BS) ∧ Sells(BS,Book)

Buy(Milk)
At(M) ∧ Sells(M,Milk)

Buy(Bananas)
At(M) ∧ Sells(M,Bananas)

Go(BS)
At(Home)

¬At(Home)
Go(M)

At(Home)

¬At(Home)

At(BS)

¬At(BS) Go(Home)
At(M)

¬At(M)

IIT Kharagpur 20

Milk, Bananas, Book

Start
At(Home) ∧ Sells(BS,Book) ∧ Sells(M,Milk) ∧ Sells(M,Bananas)

Finish
Have(Book) ∧ Have(Milk) ∧ Have(Bananas) ∧ At(Home)

Buy(book)
At(BS) ∧ Sells(BS,Book)

Buy(Milk)
At(M) ∧ Sells(M,Milk)

Buy(Bananas)
At(M) ∧ Sells(M,Bananas)

Go(BS)
At(Home)

¬At(Home)
Go(M)

At(Home)

¬At(Home)

At(BS)

¬At(BS)

Go(Home)
At(M)

¬At(M)

IIT Kharagpur 20

Milk, Bananas, Book

Start
At(Home) ∧ Sells(BS,Book) ∧ Sells(M,Milk) ∧ Sells(M,Bananas)

Finish
Have(Book) ∧ Have(Milk) ∧ Have(Bananas) ∧ At(Home)

Buy(book)
At(BS) ∧ Sells(BS,Book)

Buy(Milk)
At(M) ∧ Sells(M,Milk)

Buy(Bananas)
At(M) ∧ Sells(M,Bananas)

Go(BS)
At(Home)

¬At(Home)
Go(M)

At(Home)

¬At(Home)

At(BS)

¬At(BS)

Go(Home)
At(M)

¬At(M)

IIT Kharagpur 20

Milk, Bananas, Book

Start
At(Home) ∧ Sells(BS,Book) ∧ Sells(M,Milk) ∧ Sells(M,Bananas)

Finish
Have(Book) ∧ Have(Milk) ∧ Have(Bananas) ∧ At(Home)

Buy(book)
At(BS) ∧ Sells(BS,Book)

Buy(Milk)
At(M) ∧ Sells(M,Milk)

Buy(Bananas)
At(M) ∧ Sells(M,Bananas)

Go(BS)
At(Home)

¬At(Home)
Go(M)

At(Home)

¬At(Home)

At(BS)

¬At(BS) Go(Home)
At(M)

¬At(M)

IIT Kharagpur 20

Milk, Bananas, Book

Start
At(Home) ∧ Sells(BS,Book) ∧ Sells(M,Milk) ∧ Sells(M,Bananas)

Finish
Have(Book) ∧ Have(Milk) ∧ Have(Bananas) ∧ At(Home)

Buy(book)
At(BS) ∧ Sells(BS,Book)

Buy(Milk)
At(M) ∧ Sells(M,Milk)

Buy(Bananas)
At(M) ∧ Sells(M,Bananas)

Go(BS)
At(Home)

¬At(Home)
Go(M)

At(Home)

¬At(Home)

At(BS)

¬At(BS) Go(Home)
At(M)

¬At(M)

IIT Kharagpur 20

Milk, Bananas, Book

Start
At(Home) ∧ Sells(BS,Book) ∧ Sells(M,Milk) ∧ Sells(M,Bananas)

Finish
Have(Book) ∧ Have(Milk) ∧ Have(Bananas) ∧ At(Home)

Buy(book)
At(BS) ∧ Sells(BS,Book)

Buy(Milk)
At(M) ∧ Sells(M,Milk)

Buy(Bananas)
At(M) ∧ Sells(M,Bananas)

Go(BS)
At(Home)

¬At(Home)
Go(M)

At(Home)

¬At(Home)

At(BS)

¬At(BS) Go(Home)
At(M)

¬At(M)

IIT Kharagpur 20

Milk, Bananas, Book

IIT Kharagpur 21

Planning Graphs
• Consists of a sequence of levels that correspond to time steps in the plan
• Each level contains a set of actions and a set of literals that could be true at that time step
depending on the actions taken in previous time steps
• For every +ve and -ve literal C, we add a persistence action with precondition C and effect C

Start: Have(Cake)
Finish: Have(Cake) ∧ Eaten(Cake)

Action: Eat(Cake)
Precondition: Have(Cake)
Effect: Eaten(Cake) ∧ ¬Have(Cake)

Action: Bake(Cake)
Precondition: ¬Have(Cake)
Effect: Have(Cake)

S0

Have(Cake)

¬Eaten(Cake)

A0

Eat(Cake)

S1

¬Have(Cake)

Eaten(Cake)

Have(Cake)

¬Eaten(Cake)

A1

Bake(Cake)

Eat(Cake)

S2

Have(Cake)

¬Have(Cake)

Eaten(Cake)

¬Eaten(Cake)

IIT Kharagpur 22

Planning Graph

Start: Have(Cake)
Finish: Have(Cake) ∧ Eaten(Cake)

Action: Eat(Cake)
Precondition: Have(Cake)
Effect: Eaten(Cake) ∧ ¬Have(Cake)

Action: Bake(Cake)
Precondition: ¬Have(Cake)
Effect: Have(Cake)

S0

Have(Cake)

¬Eaten(Cake)

A0

Eat(Cake)

S1

¬Have(Cake)

Eaten(Cake)

Have(Cake)

¬Eaten(Cake)

A1

Bake(Cake)

Eat(Cake)

S2

Have(Cake)

¬Have(Cake)

Eaten(Cake)

¬Eaten(Cake)

IIT Kharagpur 22

Planning Graph

Start: Have(Cake)
Finish: Have(Cake) ∧ Eaten(Cake)

Action: Eat(Cake)
Precondition: Have(Cake)
Effect: Eaten(Cake) ∧ ¬Have(Cake)

Action: Bake(Cake)
Precondition: ¬Have(Cake)
Effect: Have(Cake)

S0

Have(Cake)

¬Eaten(Cake)

A0

Eat(Cake)

S1

¬Have(Cake)

Eaten(Cake)

Have(Cake)

¬Eaten(Cake)

A1

Bake(Cake)

Eat(Cake)

S2

Have(Cake)

¬Have(Cake)

Eaten(Cake)

¬Eaten(Cake)

IIT Kharagpur 22

Planning Graph

Start: Have(Cake)
Finish: Have(Cake) ∧ Eaten(Cake)

Action: Eat(Cake)
Precondition: Have(Cake)
Effect: Eaten(Cake) ∧ ¬Have(Cake)

Action: Bake(Cake)
Precondition: ¬Have(Cake)
Effect: Have(Cake)

S0

Have(Cake)

¬Eaten(Cake)

A0

Eat(Cake)

S1

¬Have(Cake)

Eaten(Cake)

Have(Cake)

¬Eaten(Cake)

A1

Bake(Cake)

Eat(Cake)

S2

Have(Cake)

¬Have(Cake)

Eaten(Cake)

¬Eaten(Cake)

IIT Kharagpur 22

Planning Graph

Start: Have(Cake)
Finish: Have(Cake) ∧ Eaten(Cake)

Action: Eat(Cake)
Precondition: Have(Cake)
Effect: Eaten(Cake) ∧ ¬Have(Cake)

Action: Bake(Cake)
Precondition: ¬Have(Cake)
Effect: Have(Cake)

S0

Have(Cake)

¬Eaten(Cake)

A0

Eat(Cake)

S1

¬Have(Cake)

Eaten(Cake)

Have(Cake)

¬Eaten(Cake)

A1

Bake(Cake)

Eat(Cake)

S2

Have(Cake)

¬Have(Cake)

Eaten(Cake)

¬Eaten(Cake)

IIT Kharagpur 22

Planning Graph

Start: Have(Cake)
Finish: Have(Cake) ∧ Eaten(Cake)

Action: Eat(Cake)
Precondition: Have(Cake)
Effect: Eaten(Cake) ∧ ¬Have(Cake)

Action: Bake(Cake)
Precondition: ¬Have(Cake)
Effect: Have(Cake)

S0

Have(Cake)

¬Eaten(Cake)

A0

Eat(Cake)

S1

¬Have(Cake)

Eaten(Cake)

Have(Cake)

¬Eaten(Cake)

A1

Bake(Cake)

Eat(Cake)

S2

Have(Cake)

¬Have(Cake)

Eaten(Cake)

¬Eaten(Cake)

IIT Kharagpur 22

Planning Graph

Start: Have(Cake)
Finish: Have(Cake) ∧ Eaten(Cake)

Action: Eat(Cake)
Precondition: Have(Cake)
Effect: Eaten(Cake) ∧ ¬Have(Cake)

Action: Bake(Cake)
Precondition: ¬Have(Cake)
Effect: Have(Cake)

S0

Have(Cake)

¬Eaten(Cake)

A0

Eat(Cake)

S1

¬Have(Cake)

Eaten(Cake)

Have(Cake)

¬Eaten(Cake)

A1

Bake(Cake)

Eat(Cake)

S2

Have(Cake)

¬Have(Cake)

Eaten(Cake)

¬Eaten(Cake)

IIT Kharagpur 22

Planning Graph

Start: Have(Cake)
Finish: Have(Cake) ∧ Eaten(Cake)

Action: Eat(Cake)
Precondition: Have(Cake)
Effect: Eaten(Cake) ∧ ¬Have(Cake)

Action: Bake(Cake)
Precondition: ¬Have(Cake)
Effect: Have(Cake)

S0

Have(Cake)

¬Eaten(Cake)

A0

Eat(Cake)

S1

¬Have(Cake)

Eaten(Cake)

Have(Cake)

¬Eaten(Cake)

A1

Bake(Cake)

Eat(Cake)

S2

Have(Cake)

¬Have(Cake)

Eaten(Cake)

¬Eaten(Cake)

IIT Kharagpur 22

Planning Graph

Start: Have(Cake)
Finish: Have(Cake) ∧ Eaten(Cake)

Action: Eat(Cake)
Precondition: Have(Cake)
Effect: Eaten(Cake) ∧ ¬Have(Cake)

Action: Bake(Cake)
Precondition: ¬Have(Cake)
Effect: Have(Cake)

S0

Have(Cake)

¬Eaten(Cake)

A0

Eat(Cake)

S1

¬Have(Cake)

Eaten(Cake)

Have(Cake)

¬Eaten(Cake)

A1

Bake(Cake)

Eat(Cake)

S2

Have(Cake)

¬Have(Cake)

Eaten(Cake)

¬Eaten(Cake)

IIT Kharagpur 22

Planning Graph

Start: Have(Cake)
Finish: Have(Cake) ∧ Eaten(Cake)

Action: Eat(Cake)
Precondition: Have(Cake)
Effect: Eaten(Cake) ∧ ¬Have(Cake)

Action: Bake(Cake)
Precondition: ¬Have(Cake)
Effect: Have(Cake)

S0

Have(Cake)

¬Eaten(Cake)

A0

Eat(Cake)

S1

¬Have(Cake)

Eaten(Cake)

Have(Cake)

¬Eaten(Cake)

A1

Bake(Cake)

Eat(Cake)

S2

Have(Cake)

¬Have(Cake)

Eaten(Cake)

¬Eaten(Cake)

IIT Kharagpur 22

Planning Graph

Start: Have(Cake)
Finish: Have(Cake) ∧ Eaten(Cake)

Action: Eat(Cake)
Precondition: Have(Cake)
Effect: Eaten(Cake) ∧ ¬Have(Cake)

Action: Bake(Cake)
Precondition: ¬Have(Cake)
Effect: Have(Cake)

S0

Have(Cake)

¬Eaten(Cake)

A0

Eat(Cake)

S1

¬Have(Cake)

Eaten(Cake)

Have(Cake)

¬Eaten(Cake)

A1

Bake(Cake)

Eat(Cake)

S2

Have(Cake)

¬Have(Cake)

Eaten(Cake)

¬Eaten(Cake)

IIT Kharagpur 22

Planning Graph

Start: Have(Cake)
Finish: Have(Cake) ∧ Eaten(Cake)

Action: Eat(Cake)
Precondition: Have(Cake)
Effect: Eaten(Cake) ∧ ¬Have(Cake)

Action: Bake(Cake)
Precondition: ¬Have(Cake)
Effect: Have(Cake)

S0

Have(Cake)

¬Eaten(Cake)

A0

Eat(Cake)

S1

¬Have(Cake)

Eaten(Cake)

Have(Cake)

¬Eaten(Cake)

A1

Bake(Cake)

Eat(Cake)

S2

Have(Cake)

¬Have(Cake)

Eaten(Cake)

¬Eaten(Cake)

IIT Kharagpur 22

Planning Graph

Start: Have(Cake)
Finish: Have(Cake) ∧ Eaten(Cake)

Action: Eat(Cake)
Precondition: Have(Cake)
Effect: Eaten(Cake) ∧ ¬Have(Cake)

Action: Bake(Cake)
Precondition: ¬Have(Cake)
Effect: Have(Cake)

S0

Have(Cake)

¬Eaten(Cake)

A0

Eat(Cake)

S1

¬Have(Cake)

Eaten(Cake)

Have(Cake)

¬Eaten(Cake)

A1

Bake(Cake)

Eat(Cake)

S2

Have(Cake)

¬Have(Cake)

Eaten(Cake)

¬Eaten(Cake)

IIT Kharagpur 22

Planning Graph

Start: Have(Cake)
Finish: Have(Cake) ∧ Eaten(Cake)

Action: Eat(Cake)
Precondition: Have(Cake)
Effect: Eaten(Cake) ∧ ¬Have(Cake)

Action: Bake(Cake)
Precondition: ¬Have(Cake)
Effect: Have(Cake)

S0

Have(Cake)

¬Eaten(Cake)

A0

Eat(Cake)

S1

¬Have(Cake)

Eaten(Cake)

Have(Cake)

¬Eaten(Cake)

A1

Bake(Cake)

Eat(Cake)

S2

Have(Cake)

¬Have(Cake)

Eaten(Cake)

¬Eaten(Cake)

IIT Kharagpur 22

Planning Graph

Start: Have(Cake)
Finish: Have(Cake) ∧ Eaten(Cake)

Action: Eat(Cake)
Precondition: Have(Cake)
Effect: Eaten(Cake) ∧ ¬Have(Cake)

Action: Bake(Cake)
Precondition: ¬Have(Cake)
Effect: Have(Cake)

S0

Have(Cake)

¬Eaten(Cake)

A0

Eat(Cake)

S1

¬Have(Cake)

Eaten(Cake)

Have(Cake)

¬Eaten(Cake)

A1

Bake(Cake)

Eat(Cake)

S2

Have(Cake)

¬Have(Cake)

Eaten(Cake)

¬Eaten(Cake)

IIT Kharagpur 22

Planning Graph

Start: Have(Cake)
Finish: Have(Cake) ∧ Eaten(Cake)

Action: Eat(Cake)
Precondition: Have(Cake)
Effect: Eaten(Cake) ∧ ¬Have(Cake)

Action: Bake(Cake)
Precondition: ¬Have(Cake)
Effect: Have(Cake)

S0

Have(Cake)

¬Eaten(Cake)

A0

Eat(Cake)

S1

¬Have(Cake)

Eaten(Cake)

Have(Cake)

¬Eaten(Cake)

A1

Bake(Cake)

Eat(Cake)

S2

Have(Cake)

¬Have(Cake)

Eaten(Cake)

¬Eaten(Cake)

IIT Kharagpur 22

Planning Graph

Start: Have(Cake)
Finish: Have(Cake) ∧ Eaten(Cake)

Action: Eat(Cake)
Precondition: Have(Cake)
Effect: Eaten(Cake) ∧ ¬Have(Cake)

Action: Bake(Cake)
Precondition: ¬Have(Cake)
Effect: Have(Cake)

S0

Have(Cake)

¬Eaten(Cake)

A0

Eat(Cake)

S1

¬Have(Cake)

Eaten(Cake)

Have(Cake)

¬Eaten(Cake)

A1

Bake(Cake)

Eat(Cake)

S2

Have(Cake)

¬Have(Cake)

Eaten(Cake)

¬Eaten(Cake)

IIT Kharagpur 22

Planning Graph

Start: Have(Cake)
Finish: Have(Cake) ∧ Eaten(Cake)

Action: Eat(Cake)
Precondition: Have(Cake)
Effect: Eaten(Cake) ∧ ¬Have(Cake)

Action: Bake(Cake)
Precondition: ¬Have(Cake)
Effect: Have(Cake)

S0

Have(Cake)

¬Eaten(Cake)

A0

Eat(Cake)

S1

¬Have(Cake)

Eaten(Cake)

Have(Cake)

¬Eaten(Cake)

A1

Bake(Cake)

Eat(Cake)

S2

Have(Cake)

¬Have(Cake)

Eaten(Cake)

¬Eaten(Cake)

IIT Kharagpur 22

Planning Graph

Start: Have(Cake)
Finish: Have(Cake) ∧ Eaten(Cake)

Action: Eat(Cake)
Precondition: Have(Cake)
Effect: Eaten(Cake) ∧ ¬Have(Cake)

Action: Bake(Cake)
Precondition: ¬Have(Cake)
Effect: Have(Cake)

S0

Have(Cake)

¬Eaten(Cake)

A0

Eat(Cake)

S1

¬Have(Cake)

Eaten(Cake)

Have(Cake)

¬Eaten(Cake)

A1

Bake(Cake)

Eat(Cake)

S2

Have(Cake)

¬Have(Cake)

Eaten(Cake)

¬Eaten(Cake)

IIT Kharagpur 22

Planning Graph

Start: Have(Cake)
Finish: Have(Cake) ∧ Eaten(Cake)

Action: Eat(Cake)
Precondition: Have(Cake)
Effect: Eaten(Cake) ∧ ¬Have(Cake)

Action: Bake(Cake)
Precondition: ¬Have(Cake)
Effect: Have(Cake)

S0

Have(Cake)

¬Eaten(Cake)

A0

Eat(Cake)

S1

¬Have(Cake)

Eaten(Cake)

Have(Cake)

¬Eaten(Cake)

A1

Bake(Cake)

Eat(Cake)

S2

Have(Cake)

¬Have(Cake)

Eaten(Cake)

¬Eaten(Cake)

IIT Kharagpur 22

Planning Graph

Start: Have(Cake)
Finish: Have(Cake) ∧ Eaten(Cake)

Action: Eat(Cake)
Precondition: Have(Cake)
Effect: Eaten(Cake) ∧ ¬Have(Cake)

Action: Bake(Cake)
Precondition: ¬Have(Cake)
Effect: Have(Cake)

S0

Have(Cake)

¬Eaten(Cake)

A0

Eat(Cake)

S1

¬Have(Cake)

Eaten(Cake)

Have(Cake)

¬Eaten(Cake)

A1

Bake(Cake)

Eat(Cake)

S2

Have(Cake)

¬Have(Cake)

Eaten(Cake)

¬Eaten(Cake)

IIT Kharagpur 22

Planning Graph

Start: Have(Cake)
Finish: Have(Cake) ∧ Eaten(Cake)

Action: Eat(Cake)
Precondition: Have(Cake)
Effect: Eaten(Cake) ∧ ¬Have(Cake)

Action: Bake(Cake)
Precondition: ¬Have(Cake)
Effect: Have(Cake)

S0

Have(Cake)

¬Eaten(Cake)

A0

Eat(Cake)

S1

¬Have(Cake)

Eaten(Cake)

Have(Cake)

¬Eaten(Cake)

A1

Bake(Cake)

Eat(Cake)

S2

Have(Cake)

¬Have(Cake)

Eaten(Cake)

¬Eaten(Cake)

IIT Kharagpur 22

Planning Graph

Start: Have(Cake)
Finish: Have(Cake) ∧ Eaten(Cake)

Action: Eat(Cake)
Precondition: Have(Cake)
Effect: Eaten(Cake) ∧ ¬Have(Cake)

Action: Bake(Cake)
Precondition: ¬Have(Cake)
Effect: Have(Cake)

S0

Have(Cake)

¬Eaten(Cake)

A0

Eat(Cake)

S1

¬Have(Cake)

Eaten(Cake)

Have(Cake)

¬Eaten(Cake)

A1

Bake(Cake)

Eat(Cake)

S2

Have(Cake)

¬Have(Cake)

Eaten(Cake)

¬Eaten(Cake)

IIT Kharagpur 22

Planning Graph

Start: Have(Cake)
Finish: Have(Cake) ∧ Eaten(Cake)

Action: Eat(Cake)
Precondition: Have(Cake)
Effect: Eaten(Cake) ∧ ¬Have(Cake)

Action: Bake(Cake)
Precondition: ¬Have(Cake)
Effect: Have(Cake)

S0

Have(Cake)

¬Eaten(Cake)

A0

Eat(Cake)

S1

¬Have(Cake)

Eaten(Cake)

Have(Cake)

¬Eaten(Cake)

A1

Bake(Cake)

Eat(Cake)

S2

Have(Cake)

¬Have(Cake)

Eaten(Cake)

¬Eaten(Cake)

IIT Kharagpur 22

Planning Graph

S0

Have(Cake)

¬Eaten(Cake)

A1

Eat(Cake)

S1

¬Have(Cake)

Eaten(Cake)

Have(Cake)

¬Eaten(Cake)

A2
Bake(Cake)

Eat(Cake)

S2

Have(Cake)
¬Have(Cake)

Eaten(Cake)
¬Eaten(Cake)

IIT Kharagpur 23

Mutex actions
• Mutual exclusion relation exists between two actions if
• Inconsistent effects - once action negates an effect of the other
• Eat(Cake) causes ¬Have(Cake) and Bake(Cake) causes Have(Cake)

• Interference - one of the effects of one action is the negation of a precondition of the other
• Eat(Cake) causes ¬Have(Cake) and the persistence of Have(Cake) needs Have(Cake)

• Competing needs - one of the preconditions of one action is mutually exclusive with a pre-
condition of the other
• Bake(Cake) needs ¬Have(Cake) and Eat(Cake) needs Have(Cake)

S0

Have(Cake)

¬Eaten(Cake)

A1

Eat(Cake)

S1

¬Have(Cake)

Eaten(Cake)

Have(Cake)

¬Eaten(Cake)

A2
Bake(Cake)

Eat(Cake)

S2

Have(Cake)
¬Have(Cake)

Eaten(Cake)
¬Eaten(Cake)

IIT Kharagpur 24

Mutex literals
• Mutual exclusion relation exists between two literals if
• One is the negation of the other, OR
• Each possible pair of actions that could achieve the two literals is mutually exclusive (incon-
sistent support)

Function GraphPlan
graph← Initial-Planning-Graph(problem)
goals← Goals[problem]
do

if goals are all non-mutex in last level of graph then do
solution← Extract-Solution(graph)
if solution← failure then return solution
else if No-Solution-Possible (graph)
then return failure

graph← Expand-Graph(graph, problem)

IIT Kharagpur 25

GraphPLAN algorithm

IIT Kharagpur 26

Termination
• Termination when no plan exists
• Literals increase monotonically
• Actions increase monotonically
• Mutexes decrease monotonically

S0

Have(Cake)

¬Eaten(Cake)

A1

Eat(Cake)

S1

¬Have(Cake)

Eaten(Cake)

Have(Cake)

¬Eaten(Cake)

A2

Bake(Cake)

Eat(Cake)

S2

Have(Cake)

¬Have(Cake)

Eaten(Cake)

¬Eaten(Cake)

Have(Cake)

Eaten(Cake)

Bake(Cake)

¬Have(Cake)

Eaten(Cake)

Eat(Cake)

Have(Cake)

IIT Kharagpur 27

Finding the plan
• Once a world is found having all goal predicates without mutexes, the plan can be extracted
by solving a constraint satisfaction problem (CSP) for resolving the mutexes
• Creating the planning graph can be done in polynomial time, but planning is known to be a
PSPACE-complete problem. The hardness is in the CSP.

S0

Have(Cake)

¬Eaten(Cake)

A1

Eat(Cake)

S1

¬Have(Cake)

Eaten(Cake)

Have(Cake)

¬Eaten(Cake)

A2

Bake(Cake)

Eat(Cake)

S2

Have(Cake)

¬Have(Cake)

Eaten(Cake)

¬Eaten(Cake)

Have(Cake)

Eaten(Cake)

Bake(Cake)

¬Have(Cake)

Eaten(Cake)

Eat(Cake)

Have(Cake)

IIT Kharagpur 27

Finding the plan
• Once a world is found having all goal predicates without mutexes, the plan can be extracted
by solving a constraint satisfaction problem (CSP) for resolving the mutexes
• Creating the planning graph can be done in polynomial time, but planning is known to be a
PSPACE-complete problem. The hardness is in the CSP.

S0

Have(Cake)

¬Eaten(Cake)

A1

Eat(Cake)

S1

¬Have(Cake)

Eaten(Cake)

Have(Cake)

¬Eaten(Cake)

A2

Bake(Cake)

Eat(Cake)

S2

Have(Cake)

¬Have(Cake)

Eaten(Cake)

¬Eaten(Cake)

Have(Cake)

Eaten(Cake)

Bake(Cake)

¬Have(Cake)

Eaten(Cake)

Eat(Cake)

Have(Cake)

IIT Kharagpur 27

Finding the plan
• Once a world is found having all goal predicates without mutexes, the plan can be extracted
by solving a constraint satisfaction problem (CSP) for resolving the mutexes
• Creating the planning graph can be done in polynomial time, but planning is known to be a
PSPACE-complete problem. The hardness is in the CSP.

S0

Have(Cake)

¬Eaten(Cake)

A1

Eat(Cake)

S1

¬Have(Cake)

Eaten(Cake)

Have(Cake)

¬Eaten(Cake)

A2

Bake(Cake)

Eat(Cake)

S2

Have(Cake)

¬Have(Cake)

Eaten(Cake)

¬Eaten(Cake)

Have(Cake)

Eaten(Cake)

Bake(Cake)

¬Have(Cake)

Eaten(Cake)

Eat(Cake)

Have(Cake)

IIT Kharagpur 27

Finding the plan
• Once a world is found having all goal predicates without mutexes, the plan can be extracted
by solving a constraint satisfaction problem (CSP) for resolving the mutexes
• Creating the planning graph can be done in polynomial time, but planning is known to be a
PSPACE-complete problem. The hardness is in the CSP.

S0

Have(Cake)

¬Eaten(Cake)

A1

Eat(Cake)

S1

¬Have(Cake)

Eaten(Cake)

Have(Cake)

¬Eaten(Cake)

A2

Bake(Cake)

Eat(Cake)

S2

Have(Cake)

¬Have(Cake)

Eaten(Cake)

¬Eaten(Cake)

Have(Cake)

Eaten(Cake)

Bake(Cake)

¬Have(Cake)

Eaten(Cake)

Eat(Cake)

Have(Cake)

IIT Kharagpur 27

Finding the plan
• Once a world is found having all goal predicates without mutexes, the plan can be extracted
by solving a constraint satisfaction problem (CSP) for resolving the mutexes
• Creating the planning graph can be done in polynomial time, but planning is known to be a
PSPACE-complete problem. The hardness is in the CSP.

S0

Have(Cake)

¬Eaten(Cake)

A1

Eat(Cake)

S1

¬Have(Cake)

Eaten(Cake)

Have(Cake)

¬Eaten(Cake)

A2

Bake(Cake)

Eat(Cake)

S2

Have(Cake)

¬Have(Cake)

Eaten(Cake)

¬Eaten(Cake)

Have(Cake)

Eaten(Cake)

Bake(Cake)

¬Have(Cake)

Eaten(Cake)

Eat(Cake)

Have(Cake)

IIT Kharagpur 27

Finding the plan
• Once a world is found having all goal predicates without mutexes, the plan can be extracted
by solving a constraint satisfaction problem (CSP) for resolving the mutexes
• Creating the planning graph can be done in polynomial time, but planning is known to be a
PSPACE-complete problem. The hardness is in the CSP.

S0

Have(Cake)

¬Eaten(Cake)

A1

Eat(Cake)

S1

¬Have(Cake)

Eaten(Cake)

Have(Cake)

¬Eaten(Cake)

A2

Bake(Cake)

Eat(Cake)

S2

Have(Cake)

¬Have(Cake)

Eaten(Cake)

¬Eaten(Cake)

Have(Cake)

Eaten(Cake)

Bake(Cake)

¬Have(Cake)

Eaten(Cake)

Eat(Cake)

Have(Cake)

IIT Kharagpur 27

Finding the plan
• Once a world is found having all goal predicates without mutexes, the plan can be extracted
by solving a constraint satisfaction problem (CSP) for resolving the mutexes
• Creating the planning graph can be done in polynomial time, but planning is known to be a
PSPACE-complete problem. The hardness is in the CSP.

S0

Have(Cake)

¬Eaten(Cake)

A1

Eat(Cake)

S1

¬Have(Cake)

Eaten(Cake)

Have(Cake)

¬Eaten(Cake)

A2

Bake(Cake)

Eat(Cake)

S2

Have(Cake)

¬Have(Cake)

Eaten(Cake)

¬Eaten(Cake)

Have(Cake)

Eaten(Cake)

Bake(Cake)

¬Have(Cake)

Eaten(Cake)

Eat(Cake)

Have(Cake)

IIT Kharagpur 27

Finding the plan
• Once a world is found having all goal predicates without mutexes, the plan can be extracted
by solving a constraint satisfaction problem (CSP) for resolving the mutexes
• Creating the planning graph can be done in polynomial time, but planning is known to be a
PSPACE-complete problem. The hardness is in the CSP.

S0

Have(Cake)

¬Eaten(Cake)

A1

Eat(Cake)

S1

¬Have(Cake)

Eaten(Cake)

Have(Cake)

¬Eaten(Cake)

A2

Bake(Cake)

Eat(Cake)

S2

Have(Cake)

¬Have(Cake)

Eaten(Cake)

¬Eaten(Cake)

Have(Cake)

Eaten(Cake)

Bake(Cake)

¬Have(Cake)

Eaten(Cake)

Eat(Cake)

Have(Cake)

IIT Kharagpur 27

Finding the plan
• Once a world is found having all goal predicates without mutexes, the plan can be extracted
by solving a constraint satisfaction problem (CSP) for resolving the mutexes
• Creating the planning graph can be done in polynomial time, but planning is known to be a
PSPACE-complete problem. The hardness is in the CSP.

S0

Have(Cake)

¬Eaten(Cake)

A1

Eat(Cake)

S1

¬Have(Cake)

Eaten(Cake)

Have(Cake)

¬Eaten(Cake)

A2

Bake(Cake)

Eat(Cake)

S2

Have(Cake)

¬Have(Cake)

Eaten(Cake)

¬Eaten(Cake)

Have(Cake)

Eaten(Cake)

Bake(Cake)

¬Have(Cake)

Eaten(Cake)

Eat(Cake)

Have(Cake)

IIT Kharagpur 27

Finding the plan
• Once a world is found having all goal predicates without mutexes, the plan can be extracted
by solving a constraint satisfaction problem (CSP) for resolving the mutexes
• Creating the planning graph can be done in polynomial time, but planning is known to be a
PSPACE-complete problem. The hardness is in the CSP.

S0

Have(Cake)

¬Eaten(Cake)

A1

Eat(Cake)

S1

¬Have(Cake)

Eaten(Cake)

Have(Cake)

¬Eaten(Cake)

A2

Bake(Cake)

Eat(Cake)

S2

Have(Cake)

¬Have(Cake)

Eaten(Cake)

¬Eaten(Cake)

Have(Cake)

Eaten(Cake)

Bake(Cake)

¬Have(Cake)

Eaten(Cake)

Eat(Cake)

Have(Cake)

IIT Kharagpur 27

Finding the plan
• Once a world is found having all goal predicates without mutexes, the plan can be extracted
by solving a constraint satisfaction problem (CSP) for resolving the mutexes
• Creating the planning graph can be done in polynomial time, but planning is known to be a
PSPACE-complete problem. The hardness is in the CSP.

S0

Have(Cake)

¬Eaten(Cake)

A1

Eat(Cake)

S1

¬Have(Cake)

Eaten(Cake)

Have(Cake)

¬Eaten(Cake)

A2

Bake(Cake)

Eat(Cake)

S2

Have(Cake)

¬Have(Cake)

Eaten(Cake)

¬Eaten(Cake)

Have(Cake)

Eaten(Cake)

Bake(Cake)

¬Have(Cake)

Eaten(Cake)

Eat(Cake)

Have(Cake)

IIT Kharagpur 27

Finding the plan
• Once a world is found having all goal predicates without mutexes, the plan can be extracted
by solving a constraint satisfaction problem (CSP) for resolving the mutexes
• Creating the planning graph can be done in polynomial time, but planning is known to be a
PSPACE-complete problem. The hardness is in the CSP.

IIT Kharagpur 28

Planning with Propositional Logic
• The planning problem is translated into a CNF satisfiability problem
• The goal is asserted to hold at a time step T, and clauses are included for each time step up to
T.
• If the clauses are satisfiable, then a plan is extracted by examining the actions that are true.
• Otherwise, we increment T and repeat

• Constructing formulas to encode bounded planning problems into satisfiability problems
• If f is a fluent At(M), we write At(M, i) as fi, i denotes time stamp
• If a is an actionMove(A, B), we writeMove(A, B, i) as ai.

• Notations: PC - precondition, E - effects, E+ - effects in the +ve form, E− - effect in the -ve
form, s0 - start state, g - goal state, g+ - literals in +ve form in goal state, g− - literals in -ve
form in goal state, A - set of actions

IIT Kharagpur 29

SAT encoding
• Formula is built with these five kinds of sets of formulas:

• Initial state:

• C1 :
©­«
∧
f∈s0

f0
ª®¬ ∧ ©­«

∧
f<s0

¬f0
ª®¬

• Goal state:

• C2 :
©­«
∧
f∈g+

fT
ª®¬ ∧ ©­«

∧
f∈g−

fT
ª®¬

• Action

• C3 : ai =⇒
©­«

∧
p∈PC(a)

pi ∧
∧

e∈E(a)
ei+1

ª®¬

• An action changes only the fluents that are in its
effects.
• C4 :

(
¬fi ∧ fi+1 =⇒

(∨
{a∈A |fi∈E+(ai)} ai

))
∧(

fi ∧ ¬fi+1 =⇒
(∨
{a∈A |fi∈E−(ai)} ai

))
• Explanatory frame axioms - set of propositions that

enumerate the set of actions that could have occurred in
order to account for a state change.

• Complete exclusion axiom - only one action occurs at
each step.
• C5 : ¬ai ∨ ¬bi

• Need to check satisfiability of C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5

IIT Kharagpur 29

SAT encoding
• Formula is built with these five kinds of sets of formulas:

• Initial state:

• C1 :
©­«
∧
f∈s0

f0
ª®¬ ∧ ©­«

∧
f<s0

¬f0
ª®¬

• Goal state:

• C2 :
©­«
∧
f∈g+

fT
ª®¬ ∧ ©­«

∧
f∈g−

fT
ª®¬

• Action

• C3 : ai =⇒
©­«

∧
p∈PC(a)

pi ∧
∧

e∈E(a)
ei+1

ª®¬

• An action changes only the fluents that are in its
effects.
• C4 :

(
¬fi ∧ fi+1 =⇒

(∨
{a∈A |fi∈E+(ai)} ai

))
∧(

fi ∧ ¬fi+1 =⇒
(∨
{a∈A |fi∈E−(ai)} ai

))
• Explanatory frame axioms - set of propositions that

enumerate the set of actions that could have occurred in
order to account for a state change.

• Complete exclusion axiom - only one action occurs at
each step.
• C5 : ¬ai ∨ ¬bi

• Need to check satisfiability of C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5

IIT Kharagpur 29

SAT encoding
• Formula is built with these five kinds of sets of formulas:

• Initial state:

• C1 :
©­«
∧
f∈s0

f0
ª®¬ ∧ ©­«

∧
f<s0

¬f0
ª®¬

• Goal state:

• C2 :
©­«
∧
f∈g+

fT
ª®¬ ∧ ©­«

∧
f∈g−

fT
ª®¬

• Action

• C3 : ai =⇒
©­«

∧
p∈PC(a)

pi ∧
∧

e∈E(a)
ei+1

ª®¬

• An action changes only the fluents that are in its
effects.
• C4 :

(
¬fi ∧ fi+1 =⇒

(∨
{a∈A |fi∈E+(ai)} ai

))
∧(

fi ∧ ¬fi+1 =⇒
(∨
{a∈A |fi∈E−(ai)} ai

))
• Explanatory frame axioms - set of propositions that

enumerate the set of actions that could have occurred in
order to account for a state change.

• Complete exclusion axiom - only one action occurs at
each step.
• C5 : ¬ai ∨ ¬bi

• Need to check satisfiability of C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5

IIT Kharagpur 29

SAT encoding
• Formula is built with these five kinds of sets of formulas:

• Initial state:

• C1 :
©­«
∧
f∈s0

f0
ª®¬ ∧ ©­«

∧
f<s0

¬f0
ª®¬

• Goal state:

• C2 :
©­«
∧
f∈g+

fT
ª®¬ ∧ ©­«

∧
f∈g−

fT
ª®¬

• Action

• C3 : ai =⇒
©­«

∧
p∈PC(a)

pi ∧
∧

e∈E(a)
ei+1

ª®¬

• An action changes only the fluents that are in its
effects.
• C4 :

(
¬fi ∧ fi+1 =⇒

(∨
{a∈A |fi∈E+(ai)} ai

))
∧(

fi ∧ ¬fi+1 =⇒
(∨
{a∈A |fi∈E−(ai)} ai

))
• Explanatory frame axioms - set of propositions that

enumerate the set of actions that could have occurred in
order to account for a state change.

• Complete exclusion axiom - only one action occurs at
each step.
• C5 : ¬ai ∨ ¬bi

• Need to check satisfiability of C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5

IIT Kharagpur 29

SAT encoding
• Formula is built with these five kinds of sets of formulas:

• Initial state:

• C1 :
©­«
∧
f∈s0

f0
ª®¬ ∧ ©­«

∧
f<s0

¬f0
ª®¬

• Goal state:

• C2 :
©­«
∧
f∈g+

fT
ª®¬ ∧ ©­«

∧
f∈g−

fT
ª®¬

• Action

• C3 : ai =⇒
©­«

∧
p∈PC(a)

pi ∧
∧

e∈E(a)
ei+1

ª®¬

• An action changes only the fluents that are in its
effects.
• C4 :

(
¬fi ∧ fi+1 =⇒

(∨
{a∈A |fi∈E+(ai)} ai

))
∧(

fi ∧ ¬fi+1 =⇒
(∨
{a∈A |fi∈E−(ai)} ai

))
• Explanatory frame axioms - set of propositions that

enumerate the set of actions that could have occurred in
order to account for a state change.

• Complete exclusion axiom - only one action occurs at
each step.
• C5 : ¬ai ∨ ¬bi

• Need to check satisfiability of C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5

IIT Kharagpur 29

SAT encoding
• Formula is built with these five kinds of sets of formulas:

• Initial state:

• C1 :
©­«
∧
f∈s0

f0
ª®¬ ∧ ©­«

∧
f<s0

¬f0
ª®¬

• Goal state:

• C2 :
©­«
∧
f∈g+

fT
ª®¬ ∧ ©­«

∧
f∈g−

fT
ª®¬

• Action

• C3 : ai =⇒
©­«

∧
p∈PC(a)

pi ∧
∧

e∈E(a)
ei+1

ª®¬

• An action changes only the fluents that are in its
effects.
• C4 :

(
¬fi ∧ fi+1 =⇒

(∨
{a∈A |fi∈E+(ai)} ai

))
∧(

fi ∧ ¬fi+1 =⇒
(∨
{a∈A |fi∈E−(ai)} ai

))
• Explanatory frame axioms - set of propositions that

enumerate the set of actions that could have occurred in
order to account for a state change.

• Complete exclusion axiom - only one action occurs at
each step.
• C5 : ¬ai ∨ ¬bi

• Need to check satisfiability of C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5

IIT Kharagpur 29

SAT encoding
• Formula is built with these five kinds of sets of formulas:

• Initial state:

• C1 :
©­«
∧
f∈s0

f0
ª®¬ ∧ ©­«

∧
f<s0

¬f0
ª®¬

• Goal state:

• C2 :
©­«
∧
f∈g+

fT
ª®¬ ∧ ©­«

∧
f∈g−

fT
ª®¬

• Action

• C3 : ai =⇒
©­«

∧
p∈PC(a)

pi ∧
∧

e∈E(a)
ei+1

ª®¬

• An action changes only the fluents that are in its
effects.
• C4 :

(
¬fi ∧ fi+1 =⇒

(∨
{a∈A |fi∈E+(ai)} ai

))
∧(

fi ∧ ¬fi+1 =⇒
(∨
{a∈A |fi∈E−(ai)} ai

))
• Explanatory frame axioms - set of propositions that

enumerate the set of actions that could have occurred in
order to account for a state change.

• Complete exclusion axiom - only one action occurs at
each step.
• C5 : ¬ai ∨ ¬bi

• Need to check satisfiability of C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5

IIT Kharagpur 29

SAT encoding
• Formula is built with these five kinds of sets of formulas:

• Initial state:

• C1 :
©­«
∧
f∈s0

f0
ª®¬ ∧ ©­«

∧
f<s0

¬f0
ª®¬

• Goal state:

• C2 :
©­«
∧
f∈g+

fT
ª®¬ ∧ ©­«

∧
f∈g−

fT
ª®¬

• Action

• C3 : ai =⇒
©­«

∧
p∈PC(a)

pi ∧
∧

e∈E(a)
ei+1

ª®¬

• An action changes only the fluents that are in its
effects.

• C4 :
(
¬fi ∧ fi+1 =⇒

(∨
{a∈A |fi∈E+(ai)} ai

))
∧(

fi ∧ ¬fi+1 =⇒
(∨
{a∈A |fi∈E−(ai)} ai

))
• Explanatory frame axioms - set of propositions that

enumerate the set of actions that could have occurred in
order to account for a state change.

• Complete exclusion axiom - only one action occurs at
each step.
• C5 : ¬ai ∨ ¬bi

• Need to check satisfiability of C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5

IIT Kharagpur 29

SAT encoding
• Formula is built with these five kinds of sets of formulas:

• Initial state:

• C1 :
©­«
∧
f∈s0

f0
ª®¬ ∧ ©­«

∧
f<s0

¬f0
ª®¬

• Goal state:

• C2 :
©­«
∧
f∈g+

fT
ª®¬ ∧ ©­«

∧
f∈g−

fT
ª®¬

• Action

• C3 : ai =⇒
©­«

∧
p∈PC(a)

pi ∧
∧

e∈E(a)
ei+1

ª®¬

• An action changes only the fluents that are in its
effects.
• C4 :

(
¬fi ∧ fi+1 =⇒

(∨
{a∈A |fi∈E+(ai)} ai

))
∧(

fi ∧ ¬fi+1 =⇒
(∨
{a∈A |fi∈E−(ai)} ai

))
• Explanatory frame axioms - set of propositions that

enumerate the set of actions that could have occurred in
order to account for a state change.

• Complete exclusion axiom - only one action occurs at
each step.
• C5 : ¬ai ∨ ¬bi

• Need to check satisfiability of C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5

IIT Kharagpur 29

SAT encoding
• Formula is built with these five kinds of sets of formulas:

• Initial state:

• C1 :
©­«
∧
f∈s0

f0
ª®¬ ∧ ©­«

∧
f<s0

¬f0
ª®¬

• Goal state:

• C2 :
©­«
∧
f∈g+

fT
ª®¬ ∧ ©­«

∧
f∈g−

fT
ª®¬

• Action

• C3 : ai =⇒
©­«

∧
p∈PC(a)

pi ∧
∧

e∈E(a)
ei+1

ª®¬

• An action changes only the fluents that are in its
effects.
• C4 :

(
¬fi ∧ fi+1 =⇒

(∨
{a∈A |fi∈E+(ai)} ai

))
∧(

fi ∧ ¬fi+1 =⇒
(∨
{a∈A |fi∈E−(ai)} ai

))
• Explanatory frame axioms - set of propositions that

enumerate the set of actions that could have occurred in
order to account for a state change.

• Complete exclusion axiom - only one action occurs at
each step.

• C5 : ¬ai ∨ ¬bi

• Need to check satisfiability of C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5

IIT Kharagpur 29

SAT encoding
• Formula is built with these five kinds of sets of formulas:

• Initial state:

• C1 :
©­«
∧
f∈s0

f0
ª®¬ ∧ ©­«

∧
f<s0

¬f0
ª®¬

• Goal state:

• C2 :
©­«
∧
f∈g+

fT
ª®¬ ∧ ©­«

∧
f∈g−

fT
ª®¬

• Action

• C3 : ai =⇒
©­«

∧
p∈PC(a)

pi ∧
∧

e∈E(a)
ei+1

ª®¬

• An action changes only the fluents that are in its
effects.
• C4 :

(
¬fi ∧ fi+1 =⇒

(∨
{a∈A |fi∈E+(ai)} ai

))
∧(

fi ∧ ¬fi+1 =⇒
(∨
{a∈A |fi∈E−(ai)} ai

))
• Explanatory frame axioms - set of propositions that

enumerate the set of actions that could have occurred in
order to account for a state change.

• Complete exclusion axiom - only one action occurs at
each step.
• C5 : ¬ai ∨ ¬bi

• Need to check satisfiability of C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5

IIT Kharagpur 29

SAT encoding
• Formula is built with these five kinds of sets of formulas:

• Initial state:

• C1 :
©­«
∧
f∈s0

f0
ª®¬ ∧ ©­«

∧
f<s0

¬f0
ª®¬

• Goal state:

• C2 :
©­«
∧
f∈g+

fT
ª®¬ ∧ ©­«

∧
f∈g−

fT
ª®¬

• Action

• C3 : ai =⇒
©­«

∧
p∈PC(a)

pi ∧
∧

e∈E(a)
ei+1

ª®¬

• An action changes only the fluents that are in its
effects.
• C4 :

(
¬fi ∧ fi+1 =⇒

(∨
{a∈A |fi∈E+(ai)} ai

))
∧(

fi ∧ ¬fi+1 =⇒
(∨
{a∈A |fi∈E−(ai)} ai

))
• Explanatory frame axioms - set of propositions that

enumerate the set of actions that could have occurred in
order to account for a state change.

• Complete exclusion axiom - only one action occurs at
each step.
• C5 : ¬ai ∨ ¬bi

• Need to check satisfiability of C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5

IIT Kharagpur 30

Excercise
• Consider a simple example where we have one robot r and two locations l1 and l2. Let us
suppose that the robot can move between the two locations. In the initial state, the robot is
at l1; in the goal state, it is at l2. The operator that moves the robot is: Action: move(r, l, l′),
Precond: At(r, l), Effects: At(r, l′),¬At(r, l). In this planning problem, a plan of length 1 is enough
to reach the goal state. Write the constraints.

IIT Kharagpur 31

Summary
• Search involving logic along with change of state
• We looked into planning problem where the environment is fully observable, deterministic
and static
• We looked into planning graph and SAT based planning
• Application domains - robotics, autonomous systems, etc.

IIT Kharagpur 32

Than«� y¯�µ�!

