Planning

IIT Kharagpur 1

Techniques seen till now

e Search e Probabilistic reasoning
e Most fundamental approach

e Logic augmented with probabilities
e Need to define states, moves, state-

transiton rules, etc. e Temporal logic
e CSP e Logic involving time
e Search through constraint propagation .
- . e Planning
e Propositional logic
e Deduction in a single state, no state e Search involving logic
change e Change of states

IIT Kharagpur 2

Real world planning problems

e Autonomous vehicle navigation
¢ Robotics movement

e Travel planning

e Process control

e Assembly line

e Military operations

¢ Information gathering

e many more...

IIT Kharagpur 3

A simple planning problem

o Get me milk, bananas and a book

e Given

o Initial state - agent is at home without milk, bananas and book
e Goal state - agent is at home with milk, bananas and book
e Actions / Moves - agent can perform on a given state

e Buy(X) - buy item X where X € {milk, bananas, book}

e Steal(X) - steal item X where X € {milk, bananas, book}

e Goto(X) - move to X where X € {market, home}
e ...

IIT Kharagpur 4

The planning problem

e Generate one possible way to achieve a certain goal given an initial situation and a set of
actions

e Similar to search problems
Start state

List of moves

Result of moves

Goal state

IIT Kharagpur 5

Search

buy-tea |:|
Goto-Market m E
7

Goto-School — borrow-book E
"

Goto-Hospital buy-medicine
start] JT I e +[Finish|

Goto-Bookstore ——— buy-book
T >

Have-Bananas e Have-milk
- >

etc. etc

IIT Kharagpur

Planning vs Search

e Actions have requirements and consequences that should constrain applicability in a given
state

e Stronger interaction between actions and states needed

e Most parts of the world are independent of most other parts
e Solve subgoals independently

e Human beings plan goal-directed, they construct important intermediate solutions first
e Flexible sequence for construction of solution

¢ Planning systems do the following

e Unify action and goal representation to allow selection (use logical language for both)
e Divide-and-conquer by subgoaling
e Relax requirement for sequential construction of solutions

IIT Kharagpur 7

STRIPS

e STanford Research Institute Problem Solver
e Many planners today use specification languages that are variants of the one used in STRIPS

IIT Kharagpur 8

Representation

e States - conjunction of propositions

e Example: AT(Home)A— Have(tea)A—Have(bananas)A—Have(book)
e Close world assumption - atoms that are not present are treated as false
e Actions - Serves as names

e Precondition - conjunction of literals

e Effect - conjunction of literals
e Example:

e Action: Goto(Market)
e Precondition: AT(home)
o Effect: AT(Market)

e Plan - Solution for the problem

e A set of plan steps. Each step is one of the operators for the problem.

o A set of step ordering constraints. Each ordering constraint is of the form S; < §;, indicating
Si must occur sometime before S;.

IIT Kharagpur 9

Example - Flight operation

e Flying a plane from one location to another

e Actions - FLY(plane-id, from, to)

e Preconditions - AT(plane-id,from)AAirport(from)AAirport(to)
e Effects - —AT(plane-id,from) AAT(plane-id, to)

IIT Kharagpur

Example - Air Cargo

e Cargo transport involving loading and unloading and flying it from one place to another

IIT Kharagpur

Example - Air Cargo

e Cargo transport involving loading and unloading and flying it from one place to another
e Initial state - AT(C;, CCU) A AT(C,, DEL) A AT(Py, CCU) A AT(P,, DEL)

IIT Kharagpur

Example - Air Cargo

e Cargo transport involving loading and unloading and flying it from one place to another
e Initial state - AT(C;, CCU) A AT(C,, DEL) A AT(Py, CCU) A AT(P,, DEL)
e Goal state - AT(Cy, DEL) A AT(C,, CCU)

IIT Kharagpur

Example - Air Cargo

e Cargo transport involving loading and unloading and flying it from one place to another
e Initial state - AT(C;, CCU) A AT(C,, DEL) A AT(Py, CCU) A AT(P,, DEL)
e Goal state - AT(Cy, DEL) A AT(C,, CCU)

e Action - Load(c, p, a)

IIT Kharagpur

Example - Air Cargo

e Cargo transport involving loading and unloading and flying it from one place to another
e Initial state - AT(C;, CCU) A AT(Cy, DEL) A AT(P;, CCU) A AT(P,, DEL)
e Goal state - AT(Cy, DEL) A AT(C,, CCU)

e Action - Load(c, p, a)
e Precondition - AT(c, a) A AT(p, a)
e Effect - =AT(c, a) A In(c, p)

IIT Kharagpur

Example - Air Cargo

e Cargo transport involving loading and unloading and flying it from one place to another
e Initial state - AT(C;, CCU) A AT(Cy, DEL) A AT(P;, CCU) A AT(P,, DEL)
e Goal state - AT(Cy, DEL) A AT(C,, CCU)

e Action - Load(c, p, a)
e Precondition - AT(c, a) A AT(p, a)
e Effect - =AT(c, a) A In(c, p)

e Action - Unload(c, p, a)

IIT Kharagpur

Example - Air Cargo

e Cargo transport involving loading and unloading and flying it from one place to another
e Initial state - AT(C;, CCU) A AT(Cy, DEL) A AT(P;, CCU) A AT(P,, DEL)
e Goal state - AT(Cy, DEL) A AT(C,, CCU)

e Action - Load(c, p, a)
e Precondition - AT(c, a) A AT(p, a)
e Effect - =AT(c, a) A In(c, p)

e Action - Unload(c, p, a)
e Precondition - In(c, p) A AT(P, a)
e Effect - AT(c, a) A —In(c, p)

IIT Kharagpur

Example - Air Cargo

e Cargo transport involving loading and unloading and flying it from one place to another
e Initial state - AT(C;, CCU) A AT(Cy, DEL) A AT(P;, CCU) A AT(P,, DEL)
e Goal state - AT(Cy, DEL) A AT(C,, CCU)

e Action - Load(c, p, a)
e Precondition - AT(c, a) A AT(p, a)
e Effect - =AT(c, a) A In(c, p)

e Action - Unload(c, p, a)
e Precondition - In(c, p) A AT(P, a)
e Effect - AT(c, a) A —In(c, p)

e Action - Fly(p, from, to)

IIT Kharagpur

Example - Air Cargo

e Cargo transport involving loading and unloading and flying it from one place to another
e Initial state - AT(C;, CCU) A AT(Cy, DEL) A AT(P;, CCU) A AT(P,, DEL)
e Goal state - AT(Cy, DEL) A AT(C,, CCU)

e Action - Load(c, p, a)
e Precondition - AT(c, a) A AT(p, a)
e Effect - =AT(c, a) A In(c, p)

e Action - Unload(c, p, a)
e Precondition - In(c, p) A AT(P, a)
e Effect - AT(c, a) A =In(c, p)

e Action - Fly(p, from, to)
e Precondition - AT(p, from)
e Effect - —=AT(p, from) A AT(p, to)

IIT Kharagpur

Example - Air Cargo

e Cargo transport involving loading and unloading and flying it from one place to another
e Initial state - AT(C;, CCU) A AT(Cy, DEL) A AT(P;, CCU) A AT(P,, DEL)
e Goal state - AT(Cy, DEL) A AT(C,, CCU)

e Action - Load(c, p, a) e Plan
e Precondition - AT(c, a) A AT(p, a)
e Effect - =AT(c, a) A In(c, p)
e Action - Unload(c, p, a)
e Precondition - In(c, p) A AT(P, a)
e Effect - AT(c, a) A =In(c, p)
e Action - Fly(p, from, to)
e Precondition - AT(p, from)
e Effect - —=AT(p, from) A AT(p, to)

IIT Kharagpur

Example - Air Cargo

e Cargo transport involving loading and unloading and flying it from one place to another
e Initial state - AT(C;, CCU) A AT(Cy, DEL) A AT(P;, CCU) A AT(P,, DEL)
e Goal state - AT(Cy, DEL) A AT(C,, CCU)

e Action - Load(c, p, a) e Plan
e Precondition - AT(c, a) A AT(p, a) e Load(C,, P, CCU)
e Effect - =AT(c, a) A In(c, p)
e Action - Unload(c, p, a)
e Precondition - In(c, p) A AT(P, a)
e Effect - AT(c, a) A =In(c, p)
e Action - Fly(p, from, to)
e Precondition - AT(p, from)
e Effect - —=AT(p, from) A AT(p, to)

IIT Kharagpur

Example - Air Cargo

e Cargo transport involving loading and unloading and flying it from one place to another
e Initial state - AT(C;, CCU) A AT(Cy, DEL) A AT(P;, CCU) A AT(P,, DEL)
e Goal state - AT(Cy, DEL) A AT(C,, CCU)

e Action - Load(c, p, a) e Plan
e Precondition - AT(c, a) A AT(p, a) e Load(C,, P, CCU)
e Effect - =AT(c, a) A In(c, p) e Fly(P,, CCU, DEL)

e Action - Unload(c, p, a)
e Precondition - In(c, p) A AT(P, a)
e Effect - AT(c, a) A =In(c, p)
e Action - Fly(p, from, to)
e Precondition - AT(p, from)
e Effect - —=AT(p, from) A AT(p, to)

IIT Kharagpur

Example - Air Cargo

e Cargo transport involving loading and unloading and flying it from one place to another
e Initial state - AT(C;, CCU) A AT(Cy, DEL) A AT(P;, CCU) A AT(P,, DEL)
e Goal state - AT(Cy, DEL) A AT(C,, CCU)

e Action - Load(c, p, a) e Plan
e Precondition - AT(c, a) A AT(p, a) e Load(C,, P, CCU)
e Effect - =AT(c, a) A In(c, p) e Fly(P,, CCU, DEL)
e Action - Unload(c, p, a) e Unload(C;, P, DEL)

e Precondition - In(c, p) A AT(P, a)
e Effect - AT(c, a) A =In(c, p)
e Action - Fly(p, from, to)
e Precondition - AT(p, from)
e Effect - —=AT(p, from) A AT(p, to)

IIT Kharagpur

Example - Air Cargo

e Cargo transport involving loading and unloading and flying it from one place to another
e Initial state - AT(C;, CCU) A AT(C,, DEL) A AT(Py, CCU) A AT(P,, DEL)

e Goal state - AT(Cy, DEL) A AT(C,, CCU)

e Action - Load(c, p, a) e Plan
e Precondition - AT(c, a) A AT(p, a) e Load(C,, P, CCU)
e Effect - =AT(c, a) A In(c, p) e Fly(P,, CCU, DEL)
e Action - Unload(c, p, a) e Unload(C;, P, DEL)
e Precondition - In(c, p) A AT(P, a) e Load(C,, P,, DEL)
e Effect - AT(c, a) A =In(c, p) e Fly(P,, DEL, CCU)
e Action - Fly(p, from, to) e Unload(C,, Py, CCU)

e Precondition - AT(p, from)
e Effect - —=AT(p, from) A AT(p, to)

IIT Kharagpur

Example - Flat tire

e Change a flat tire with a spare one

IIT Kharagpur

Example - Flat tire

e Change a flat tire with a spare one
e Initial state - Tire(flat) A Tire(Spare) A AT(Flat, Axle) A At(Spare, Trunk)

IIT Kharagpur

Example - Flat tire

e Change a flat tire with a spare one
e Initial state - Tire(flat) A Tire(Spare) A AT(Flat, Axle) A At(Spare, Trunk)
e Goal state - AT(Spare, Axle)

IIT Kharagpur

Example - Flat tire

e Change a flat tire with a spare one
e Initial state - Tire(flat) A Tire(Spare) A AT(Flat, Axle) A At(Spare, Trunk)
e Goal state - AT(Spare, Axle)

e Action - Remove(obj, loc)

IIT Kharagpur

Example - Flat tire

e Change a flat tire with a spare one

e Initial state - Tire(flat) A Tire(Spare) A AT(Flat, Axle) A At(Spare, Trunk)
e Goal state - AT(Spare, Axle)

e Action - Remove(obj, loc)

e Preconditions - AT(obj, loc)
e Effects - —~AT(obj,loc) A AT(obj, Ground)

IIT Kharagpur

Example - Flat tire

e Change a flat tire with a spare one

Initial state - Tire(flat) A Tire(Spare) A AT(Flat, Axle) A At(Spare, Trunk)
Goal state - AT(Spare, Axle)

Action - Remove(obj, loc)

e Preconditions - AT(obj, loc)
e Effects - —~AT(obj,loc) A AT(obj, Ground)

Action - PutOn(t, axle)

IIT Kharagpur

Example - Flat tire

e Change a flat tire with a spare one

e Initial state - Tire(flat) A Tire(Spare) A AT(Flat, Axle) A At(Spare, Trunk)
e Goal state - AT(Spare, Axle)

e Action - Remove(obj, loc)

e Preconditions - AT(obj, loc)
e Effects - —~AT(obj,loc) A AT(obj, Ground)

e Action - PutOn(t, axle)

e Preconditions - Tire(t) A AT(t, Ground) A —AT(Flat, axle)
e Effects - —AT(t, Ground) A AT(t, axle)

IIT Kharagpur

Example - Flat tire

e Change a flat tire with a spare one

e Initial state - Tire(flat) A Tire(Spare) A AT(Flat, Axle) A At(Spare, Trunk)
e Goal state - AT(Spare, Axle)

e Action - Remove(obj, loc)

e Preconditions - AT(obj, loc)
e Effects - —~AT(obj,loc) A AT(obj, Ground)

e Action - PutOn(t, axle)

e Preconditions - Tire(t) A AT(t, Ground) A —AT(Flat, axle)
e Effects - —AT(t, Ground) A AT(t, axle)

e Plan

IIT Kharagpur

Example - Flat tire

e Change a flat tire with a spare one

e Initial state - Tire(flat) A Tire(Spare) A AT(Flat, Axle) A At(Spare, Trunk)
e Goal state - AT(Spare, Axle)

e Action - Remove(obj, loc)

e Preconditions - AT(obj, loc)
e Effects - —~AT(obj,loc) A AT(obj, Ground)

e Action - PutOn(t, axle)

e Preconditions - Tire(t) A AT(t, Ground) A —AT(Flat, axle)
e Effects - —AT(t, Ground) A AT(t, axle)

e Plan

e Remove(Flat, Axle)
e Remove(Spare, Trunk)
e PutOn(Spare, Axle)

IIT Kharagpur

Example - Blocks world

e Build a 3-block tower

IIT Kharagpur

Example - Blocks world

e Build a 3-block tower
e |nitial state - ON(A,Table) A ON(B,Table) A ON(C,A) A Clear(B) A Clear(C)

IIT Kharagpur

Example - Blocks world

e Build a 3-block tower
e |nitial state - ON(A,Table) A ON(B,Table) A ON(C,A) A Clear(B) A Clear(C)
e Goal state - ON(A,B) A ON(B,C)

IIT Kharagpur

Example - Blocks world

e Build a 3-block tower
e |nitial state - ON(A,Table) A ON(B,Table) A ON(C,A) A Clear(B) A Clear(C)
e Goal state - ON(A,B) A ON(B,C)

e Action - move(x, y)

IIT Kharagpur

Example - Blocks world

e Build a 3-block tower
e |nitial state - ON(A,Table) A ON(B,Table) A ON(C,A) A Clear(B) A Clear(C)
e Goal state - ON(A,B) A ON(B,C)

e Action - move(x, y)

e Precondition - Clear(x) A Clear(y)
e Effect - ON(x, y)

IIT Kharagpur

Example - Blocks world

e Build a 3-block tower
e |nitial state - ON(A,Table) A ON(B,Table) A ON(C,A) A Clear(B) A Clear(C)
e Goal state - ON(A,B) A ON(B,C)

e Action - move(x, y)
e Precondition - Clear(x) A Clear(y)
o Effect - ON(x, y)

e Action - moveToTable(x, Table)

IIT Kharagpur

Example - Blocks world

e Build a 3-block tower
e |nitial state - ON(A,Table) A ON(B,Table) A ON(C,A) A Clear(B) A Clear(C)
e Goal state - ON(A,B) A ON(B,C)

e Action - move(x, y)
e Precondition - Clear(x) A Clear(y)
o Effect - ON(x, y)
e Action - moveToTable(x, Table)
e Precondition - Clear(x)
e Effect - ON(x, Table)

IIT Kharagpur

Example - Blocks world

e Build a 3-block tower
e |nitial state - ON(A,Table) A ON(B,Table) A ON(C,A) A Clear(B) A Clear(C)
e Goal state - ON(A,B) A ON(B,C)

e Action - move(x, y) e Plan
e Precondition - Clear(x) A Clear(y)
e Effect - ON(x, y)

e Action - moveToTable(x, Table)
e Precondition - Clear(x)
e Effect - ON(x, Table)

IIT Kharagpur

Example - Blocks world

e Build a 3-block tower
e |nitial state - ON(A,Table) A ON(B,Table) A ON(C,A) A Clear(B) A Clear(C)
e Goal state - ON(A,B) A ON(B,C)

e Action - move(x, y) e Plan
e Precondition - Clear(x) A Clear(y) e moveToTable(C, Table)
e Effect - ON(x, y) e move(B, C)

e Action - moveToTable(x, Table) e move(A, B)

e Precondition - Clear(x)
e Effect - ON(x, Table)

IIT Kharagpur

Blocks world - |

Action: Move(X,Y) Action: MoveTT(X)
Precondition: Clear(X) A Clear(Y) Precondition: Clear(X)
0On(C,A) A On(A,Table) A On(B,Table) A Clear(C) A Clear(B) Effect: On(XY) Effect: On(X,Table)

e Move C to the table

e |t achieves none of the goal predicates
e Move Ctotop of B

e It achieves none of the goal predicates
e Move B to top of C

| o [t achieves On(B,C)
On(A,B) A On(B,C)

IIT Kharagpur

Blocks world - |

On(C,A) A On(A,Table) A On(B,Table) A Clear(C) A Clear(B)

Clear(C) A Clear(B)

Move(B,C)

On(A,B) A On(B,C)

IIT Kharagpur

Action: Move(X,Y) Action: MoveTT(X)
Precondition: Clear(X) A Clear(Y) Precondition: Clear(X)
Effect: On(X,Y) Effect: On(X,Table)

We obtain the following

Blocks world - 1I

IIT Kharagpur

Blocks world - 1I

On(C,A) A On(A,Table) A On(B,Table) A Clear(C) A Clear(B)

On(A,B) A On(B,C)

IIT Kharagpur

Blocks world - 1I

On(C,A) A On(A,Table) A On(B,Table) A Clear(C) A Clear(B)

On(A,B) A On(B,C)

IIT Kharagpur

Action: Move(X,Y)
Precondition: Clear(X) A Clear(Y)
Effect: On(X.,Y)

Action: MoveTT(X)
Precondition: Clear(X)
Effect: On(X,Table)

Blocks world - 1I

On(C,A) A On(A,Table) A On(B,Table) A Clear(C) A Clear(B)

MoveTT(C)

Move(A,B)

On(A,B) A On(B,C)

IIT Kharagpur

Action: Move(X,Y)
Precondition: Clear(X) A Clear(Y)
Effect: On(X.,Y)

Action: MoveTT(X)
Precondition: Clear(X)
Effect: On(X,Table)

Blocks world - 1I

On(C,A) A On(A,Table) A On(B,Table) A Clear(C) A Clear(B)

Clear(C)

MoveTT(C)

Clear(A) A On(C,Table)

Move(A,B)

On(A,B) A On(B,C)

IIT Kharagpur

Action: Move(X,Y)
Precondition: Clear(X) A Clear(Y)
Effect: On(X.,Y)

Action: MoveTT(X)
Precondition: Clear(X)
Effect: On(X,Table)

Blocks world - 1I

On(C,A) A On(A,Table) A On(B,Table) A Clear(C) A Clear(B)

Clear(C)

MoveTT(C)

Clear(A) A On(C,Table)

Clear(A) A Clear(B)

—Clear(B)

On(A,B) A On(B,C)

IIT Kharagpur

Action: Move(X,Y)
Precondition: Clear(X) A Clear(Y)
Effect: On(X.,Y)

Action: MoveTT(X)
Precondition: Clear(X)
Effect: On(X,Table)

Blocks world - 1I

On(C,A) A On(A,Table) A On(B,Table) A Clear(C) A Clear(B)

Clear(C)

MoveTT(C)

Clear(A) A On(C,Table)

Clear(A) A Clear(B)

Move(A,B)

—Clear(B)

\

On(A,B) A On(B,C)

IIT Kharagpur

Action: Move(X,Y)
Precondition: Clear(X) A Clear(Y)
Effect: On(X.,Y)

Action: MoveTT(X)
Precondition: Clear(X)
Effect: On(X,Table)

Blocks world - 1I

On(C,A) A On(A,Table) A On(B,Table) A Clear(C) A Clear(B)
Clear(C) \

MoveTT(C)

Clear(A) A On(C,Table)
Clear(C) A Clear(B)

—Clear(C)

Clear(A) A Clear(B)
—Clear(B)
\

On(A,B) A On(B,C)

IIT Kharagpur

Action: Move(X,Y)
Precondition: Clear(X) A Clear(Y)
Effect: On(X.,Y)

Action: MoveTT(X)
Precondition: Clear(X)
Effect: On(X,Table)

Blocks world - 1I

On(C,A) A On(A,Table) A On(B,Table) A Clear(C) A Clear(B)

/

Clear(C) P
Clear(A) A On(C,Table) L7 ’ X
AR e Clear(C) A Clear(B)
/,,47‘/" —Clear(C)
Clear(A) A Clear(B) <~ ~
—Clear(B)

On(A,B) A On(B,C)

IIT Kharagpur

Action: Move(X,Y)
Precondition: Clear(X) A Clear(Y)
Effect: On(X.,Y)

Action: MoveTT(X)
Precondition: Clear(X)
Effect: On(X,Table)

Blocks world - 1I

Action: Move(X,Y) Action: MoveTT(X)
Precondition: Clear(X) A Clear(Y) Precondition: Clear(X)

0n(C,A) A On(A,Table) A On(B,Table) A Clear(C) A Clear(B) Effect: On(XY) Effect: On(X,Table)
Clear(C) P

Clear(A) A On(C,Tabl L 3 T

ear(A) A On(C, 25 f) P Claar(C) A Clear(B) o Total ordering is

o e MoveTT(C)
T ~Clear(C
Clear(A) A Clear(B) <« ~~ car(€) e Move(B,C)
* Move(A,B)
—Clear(B)
—

On(A,B) A On(B,C)

IIT Kharagpur

Shocks

o Initial state : @
e Goal state: LeftShoeOn A RightShoeOn

e Action - LeftSock
e Precondition: @
o Effect: LeftSockOn
e Action - RightSock
e Precondition: @
o Effect: RightSockOn
e Action - LeftShoe
e Precondition: LeftSockOn
o Effect: LeftShoeOn
e Action - RightSock

e Precondition: RightSockOn
e Effect: RightShoeOn

IIT Kharagpur

Shocks

e Initial state : @

e Goal state: LeftShoeOn A RightShoeOn Start

e Action - LeftSock

e Precondition: @
o Effect: LeftSockOn

e Action - RightSock

e Precondition: @
o Effect: RightSockOn

e Action - LeftShoe

e Precondition: LeftSockOn
o Effect: LeftShoeOn

e Action - RightSock

e Precondition: RightSockOn Finish

e Effect: RightShoeOn

IIT Kharagpur

Shocks

o Initial state : @
e Goal state: LeftShoeOn A RightShoeOn Start
e Action - LeftSock
e Precondition: @
o Effect: LeftSockOn
e Action - RightSock
e Precondition: @
o Effect: RightSockOn
e Action - LeftShoe
e Precondition: LeftSockOn
o Effect: LeftShoeOn
e Action - RightSock

e Precondition: RightSockOn Finish
e Effect: RightShoeOn

IIT Kharagpur

LeftShoe A RightShoe

Shocks

o Initial state : @
e Goal state: LeftShoeOn A RightShoeOn Start

e Action - LeftSock

e Precondition: @
o Effect: LeftSockOn

e Action - RightSock

e Precondition: @
o Effect: RightSockOn

e Action - LeftShoe RightShoe
e Precondition: LeftSockOn /
o Effect: LeftShoeOn

e Action - RightSock LeftShoe A RightShoe

e Precondition: RightSockOn Finish
e Effect: RightShoeOn

IIT Kharagpur

Shocks

o Initial state : @
e Goal state: LeftShoeOn A RightShoeOn Start

e Action - LeftSock

e Precondition: @
o Effect: LeftSockOn

e Action - RightSock
e Precondition: @

o Effect: RightSockOn RightSockOn
e Action - LeftShoe RightShoe

e Precondition: LeftSockOn /

o Effect: LeftShoeOn

e Action - RightSock LeftShoe A RightShoe

e Precondition: RightSockOn Finish
e Effect: RightShoeOn

IIT Kharagpur

Shocks

o Initial state : @
e Goal state: LeftShoeOn A RightShoeOn Start

e Action - LeftSock

e Precondition: @
o Effect: LeftSockOn

e Action - RightSock
e Precondition: @

o Effect: RightSockOn RightSockOn
e Action - LeftShoe LeftShoe RightShoe
e Precondition: LeftSockOn \ /
o Effect: LeftShoeOn
e Action - RightSock LeftShoe A RightShoe
¢ Precondition: RightSockOn Finish

e Effect: RightShoeOn

IIT Kharagpur

Shocks

o Initial state : @
e Goal state: LeftShoeOn A RightShoeOn Start

e Action - LeftSock

e Precondition: @
o Effect: LeftSockOn

e Action - RightSock
e Precondition: @

o Effect: RightSockOn LeftSockOn RightSockOn
e Action - LeftShoe LeftShoe RightShoe
e Precondition: LeftSockOn \ /
o Effect: LeftShoeOn
e Action - RightSock LeftShoe A RightShoe
¢ Precondition: RightSockOn Finish

e Effect: RightShoeOn

IIT Kharagpur

Shocks

o Initial state : @
e Goal state: LeftShoeOn A RightShoeOn Start

e Action - LeftSock
e Precondition: @

o Effect: LeftSockOn LeftSock
e Action - RightSock
e Precondition: @ l
o Effect: RightSockOn LeftSockOn RightSockOn
e Action - LeftShoe LeftShoe RightShoe
e Precondition: LeftSockOn \ /
o Effect: LeftShoeOn
e Action - RightSock LeftShoe A RightShoe
e Precondition: RightSockOn Finish

e Effect: RightShoeOn

IIT Kharagpur

Shocks

o Initial state : @
e Goal state: LeftShoeOn A RightShoeOn

e Action - LeftSock
e Precondition: @
o Effect: LeftSockOn
e Action - RightSock
e Precondition: @
o Effect: RightSockOn
e Action - LeftShoe
e Precondition: LeftSockOn
o Effect: LeftShoeOn
e Action - RightSock

e Precondition: RightSockOn
e Effect: RightShoeOn

IIT Kharagpur

Start

LeftSock

|

LeftSockOn

LeftShoe

\

RightSock

l

RightSockOn

RightShoe

/

LeftShoe A RightShoe

Finish

Shocks

e Initial state : @

e Goal state: LeftShoeOn A RightShoeOn Start
e Action - LeftSock
e Precondition: @
o Effect: LeftSockOn LeftSock RightSock
e Action - RightSock
e Precondition: @ l l
o Effect: RightSockOn LeftSockOn RightSockOn
e Action - LeftShoe LeftShoe RightShoe
e Precondition: LeftSockOn \ /
o Effect: LeftShoeOn
e Action - RightSock LeftShoe A RightShoe
e Precondition: RightSockOn Finish

e Effect: RightShoeOn

IIT Kharagpur

Partial order planning

e Basic idea: Make choices only that are relevant for solving the current part of the problem
e Least commitment choices

e Ordering - Leave actions unordered, unless they must be sequential

e Binding - Leave variable unbound, unless needed to unify with conditions being achieved
e Actions - Usually not subjected to least commitment

IIT Kharagpur

Milk, Bananas, Book

Initial State:
Action: Start

Effect: At(Home) A Sells(BS,Book) A Sells(M,Milk) A Sells(M,Bananas)

Goal State:
Action: Finish

Precondition: Have(Book) A Have(Milk) A Have(Bananas) A At(Home)

Action: Goly) Action: Buy(x)

Precondition: At(x) Precondition: At(y) A Sells(y,x)
Effect: At(y) A ~At(x) Effect: Have(x)

IIT Kharagpur

Milk, Bananas, Book

At(Home) A Sells(BS,Book) A Sells(M,Milk) A Sells(M,Bananas)

IIT Kharagpur

Milk, Bananas, Book

At(Home) A Sells(BS,Book) A Sells(M,Milk) A Sells(M,Bananas)

Have(Book) A Have(Milk) A Have(Bananas) A At(Home)

IIT Kharagpur

Milk, Bananas, Book

At(Home) A Sells(BS,Book) A Sells(M,Milk) A Sells(M,Bananas)

At(BS) A Sells(BS,Book)

Buy(book)

Have(Book) A Have(Milk) A Have(Bananas) A At(Home)

IIT Kharagpur

Milk, Bananas, Book

At(Home) A Sells(BS,Book) A Sells(M,Milk) A Sells(M,Bananas)

At(BS) A Sells(BS,Book)) A Sells(M,Milk)
Buy(book) Buy(MlIk

Have(Book) A Have M|Ik) A Have (Bananas) A At(Home)

IIT Kharagpur

Milk, Bananas, Book

At(Home) A Sells(BS,Book) A Sells(M,Milk) A Sells(M,Bananas)

At(BS) A Sells(BS,Book)) A Sells(M,Milk) At(M) A Sells(M,Bananas)
Buy(book) Buy(MlIk

Have(Book) A Have M|Ik) A Have (Bananas) A At(Home)

IIT Kharagpur

Milk, Bananas, Book

At(Home) A Sells(BS,Book) A Sells(M,Milk) A Sells(M,Bananas)

/

At(Home)

—.At(Home)

At(BS) A Sells(BS Book)) A SeIIs M Milk)

At(M) A Sells(M,Bananas)

Buy(Bananas

Have(Book) A Have M|Ik) A Have (Bananas) A At(Home)

IIT Kharagpur

Milk, Bananas, Book

[Start |

At(Home) A Sells(BS,Book) A Sells(M,Milk) A Sells(M,Bananas)

N

At(Home) At(Home)
—.At(Home) —At(Home)
At(BS) A Sells(BS Book)) A SeIIs M Milk)

At(M) A Sells(M,Bananas)

Buy(Bananas

Have(Book) A Have M|Ik) A Have (Bananas) A At(Home)

IIT Kharagpur

Milk, Bananas, Book

At(Home) A Sells(BS,Book) A Sells(M,Milk) A Sells(M,Bananas)

. .
At(Home) . At(Home)
1
1
—At(Home) ! —-At(Home)
S~ -
At(BS) A Sells(BS,Book) At(M) A Sells(M,Milk)

At(M) A Sells(M,Bananas)

Buy(Bananas

Have(Book) A Have(Milk) A Have(Bananas) A At(Home)

IIT Kharagpur

Milk, Bananas, Book

At(Home) A Sells(BS,Book) A Sells(M,Milk) A Sells(M,Bananas)

.
At(Home) .7 At(BS)
1
1
—At(Home) ! —-At(BS)
S~ -
At(BS) A Sells(BS,Book) At(M) A Sells(M,Milk)

At(M) A Sells(M,Bananas)

Buy(Bananas

Have(Book) A Have(Milk) A Have(Bananas) A At(Home)

IIT Kharagpur

Milk, Bananas, Book

At(Home) A Sells(BS,Book) A Sells(M,Milk) A Sells(M,Bananas)

At(Home)
e
—At(BS)

—At(Home)
e) !
1
1
At(M) A Sells(M,Bananas)

1
h At(M) A Sells(M,Milk)
! Buy(Milk)

Have(Book) A Have(Milk) A Have(Bananas) A At(Home)

IIT Kharagpur

Milk, Bananas, Book

At(Home) A Sells(BS,Book) A Sells(M,Milk) A Sells(M,Bananas)

At(M)

Go(Home)
-At(M)

At(Home)
e
—At(BS)

—At(Home)
e) !
1
1
At(M) A Sells(M,Bananas)

1
h At(M) A Sells(M,Milk)
Buy(Milk)

Have(Book) A Have(Milk) A Have(Bananas) A At(Home)

IIT Kharagpur

Milk, Bananas, Book

At(Home) A Sells(BS,Book) A Sells(M,Milk) A Sells(M,Bananas)

At(Home)
e
—At(BS)

—At(Home)
e) !
1
1
At(M) A Sells(M,Bananas)

1
h At(M) A Sells(M,Milk)
! Buy(Milk)

Have(Book) A Have(Milk) A Have(Bananas) A At(Home)

IIT Kharagpur

Milk, Bananas, Book

At(Home) A Sells(BS,Book) A Sells(M,Milk) A Sells(M,Bananas)

At(Home) . . At(BS)
I L, - - ’
1 ’ 7
—At(Home) , /) -At(BS) R
-~ - ’/ ,I _____________ - -
)
! At(M) A Sells(M,Milk) At(M) A Sells(M,Bananas)

At(BS) A Sells(BS,Book) '
N Buy(Milk)
~ /I T
N

Have(Book) A Have(Milk) A Have(Bananas) A At(Home)

IIT Kharagpur

Planning Graphs

e Consists of a sequence of levels that correspond to time steps in the plan

e Each level contains a set of actions and a set of literals that could be true at that time step
depending on the actions taken in previous time steps

e For every +ve and -ve literal C, we add a persistence action with precondition C and effect C

IIT Kharagpur

Planning Graph

Start: Have(Cake)
Finish: Have(Cake) A Eaten(Cake)

IIT Kharagpur

Planning Graph

Start: Have(Cake)
Finish: Have(Cake) A Eaten(Cake)

IIT Kharagpur

Action: Eat(Cake)
Precondition: Have(Cake)
Effect: Eaten(Cake) A —~Have(Cake)

Action: Bake(Cake)
Precondition: —Have(Cake)
Effect: Have(Cake)

Planning Graph

Start: Have(Cake)
Finish: Have(Cake) A Eaten(Cake)

So

Have(Cake)

—Eaten(Cake)

IIT Kharagpur

Action: Eat(Cake)
Precondition: Have(Cake)
Effect: Eaten(Cake) A —~Have(Cake)

Action: Bake(Cake)
Precondition: —Have(Cake)
Effect: Have(Cake)

Planning Graph

Start: Have(Cake) Action: Eat(Cake)
Finish: Have(Cake) A Eaten(Cake) Precondition: Have(Cake)

Effect: Eaten(Cake) A —~Have(Cake)

So Ao

Have(Cake)

—Eaten(Cake)

IIT Kharagpur

Action: Bake(Cake)
Precondition: —Have(Cake)
Effect: Have(Cake)

Planning Graph

Start: Have(Cake) Action: Eat(Cake)
Finish: Have(Cake) A Eaten(Cake) Precondition: Have(Cake)

Effect: Eaten(Cake) A —~Have(Cake)

So Ao
Have(Cake)
—Eaten(Cake)

IIT Kharagpur

Action: Bake(Cake)
Precondition: —Have(Cake)
Effect: Have(Cake)

Planning Graph

Start: Have(Cake) Action: Eat(Cake)
Finish: Have(Cake) A Eaten(Cake) Precondition: Have(Cake)

Effect: Eaten(Cake) A —~Have(Cake)

So Ao
Have(Cake)
—Eaten(Cake)

IIT Kharagpur

Action: Bake(Cake)
Precondition: —Have(Cake)
Effect: Have(Cake)

Planning Graph

Start: Have(Cake) Action: Eat(Cake)
Finish: Have(Cake) A Eaten(Cake) Precondition: Have(Cake)

Effect: Eaten(Cake) A —~Have(Cake)

So Ao S
Have(Cake)
—Eaten(Cake)

IIT Kharagpur

Action: Bake(Cake)
Precondition: —Have(Cake)
Effect: Have(Cake)

Planning Graph

Start: Have(Cake) Action: Eat(Cake)
Finish: Have(Cake) A Eaten(Cake) Precondition: Have(Cake)

Effect: Eaten(Cake) A —~Have(Cake)

So Ao S
Have(Cake)
—-Have(Cake)
Eaten(Cake)
—Eaten(Cake)

IIT Kharagpur

Action: Bake(Cake)
Precondition: —Have(Cake)
Effect: Have(Cake)

Planning Graph

Start: Have(Cake) Action: Eat(Cake)
Finish: Have(Cake) A Eaten(Cake) Precondition: Have(Cake)

Effect: Eaten(Cake) A —~Have(Cake)

So Ao S
Have(Cake)
—-Have(Cake)
Eaten(Cake)
—Eaten(Cake)

IIT Kharagpur

Action: Bake(Cake)
Precondition: —Have(Cake)
Effect: Have(Cake)

Planning Graph

Start: Have(Cake) Action: Eat(Cake)
Finish: Have(Cake) A Eaten(Cake) Precondition: Have(Cake)

Effect: Eaten(Cake) A —~Have(Cake)

So Ao S
Have(Cake) Have(Cake)
—Have(Cake)
Eaten(Cake)
—Eaten(Cake) —Eaten(Cake)

IIT Kharagpur

Action: Bake(Cake)
Precondition: —Have(Cake)
Effect: Have(Cake)

Planning Graph

Start: Have(Cake) Action: Eat(Cake)
Finish: Have(Cake) A Eaten(Cake) Precondition: Have(Cake)

Effect: Eaten(Cake) A —~Have(Cake)

So Ao S$1
Have(Cake) [] Have(Cake)
—Have(Cake)

Eat(Cake)

Eaten(Cake)

—Eaten(Cake) [] —~Eaten(Cake)

IIT Kharagpur

Action: Bake(Cake)
Precondition: —Have(Cake)
Effect: Have(Cake)

Planning Graph

Start: Have(Cake) Action: Eat(Cake)
Finish: Have(Cake) A Eaten(Cake) Precondition: Have(Cake)

Effect: Eaten(Cake) A —~Have(Cake)

So Ao 3
Have(Cake) [] Have(Cake)
—Have(Cake)

Eat(Cake)

Eaten(Cake)

—Eaten(Cake) — | —~Eaten(Cake)

IIT Kharagpur

Action: Bake(Cake)
Precondition: —Have(Cake)
Effect: Have(Cake)

Planning Graph

Start: Have(Cake) Action: Eat(Cake)
Finish: Have(Cake) A Eaten(Cake) Precondition: Have(Cake)

Effect: Eaten(Cake) A —~Have(Cake)

So Ao S$1
Have(Cake) [Have(Cake)
—Have(Cake)
Eat(Cake)
Eaten(Cake)

—Eaten(Cake) ——{ |———— —Eaten(Cake)

IIT Kharagpur

Action: Bake(Cake)
Precondition: —Have(Cake)
Effect: Have(Cake)

Planning Graph

Start: Have(Cake) Action: Eat(Cake)
Finish: Have(Cake) A Eaten(Cake) Precondition: Have(Cake)

Effect: Eaten(Cake) A —~Have(Cake)

So Ao S$1
Have(Cake) [Have(Cake)
—Have(Cake)

Eat(Cake)

Eaten(Cake)

—Eaten(Cake) [] —Eaten(Cake)

IIT Kharagpur

Action: Bake(Cake)
Precondition: —Have(Cake)
Effect: Have(Cake)

Planning Graph

Start: Have(Cake) Action: Eat(Cake)
Finish: Have(Cake) A Eaten(Cake) Precondition: Have(Cake)

Effect: Eaten(Cake) A —~Have(Cake)

So Ao S$1
Have(Cake) [Have(Cake) >
—Have(Cake)
Eat(Cake)

Eaten(Cake) >

—Eaten(Cake) [] —Eaten(Cake)

IIT Kharagpur

Action: Bake(Cake)
Precondition: —Have(Cake)
Effect: Have(Cake)

Planning Graph

Start: Have(Cake) Action: Eat(Cake)
Finish: Have(Cake) A Eaten(Cake) Precondition: Have(Cake)

Effect: Eaten(Cake) A —~Have(Cake)

So Ao S$1
Have(Cake) [Have(Cake)
—Have(Cake)

Eat(Cake)

Eaten(Cake)

—Eaten(Cake) [] —Eaten(Cake)

IIT Kharagpur

Action: Bake(Cake)
Precondition: —Have(Cake)
Effect: Have(Cake)

Planning Graph

Start: Have(Cake)
Finish: Have(Cake) A Eaten(Cake)

So Ao

Action: Eat(Cake)
Precondition: Have(Cake)
Effect: Eaten(Cake) A —~Have(Cake)

S

Have(Cake) [

Eat(Cake)

—Eaten(Cake) []

IIT Kharagpur

Have(Cake)

—Have(Cake)

Eaten(Cake)

—Eaten(Cake)

Aq

Action: Bake(Cake)
Precondition: —Have(Cake)
Effect: Have(Cake)

Planning Graph

Start: Have(Cake) Action: Eat(Cake) Action: Bake(Cake)
Finish: Have(Cake) A Eaten(Cake) Precondition: Have(Cake) Precondition: —Have(Cake)
Effect: Eaten(Cake) A —~Have(Cake) Effect: Have(Cake)
So Ao 3 A
Bake(Cake)
Have(Cake) [Have(Cake)
—Have(Cake)
Eat(Cake) [Eat(Cake) |
Eaten(Cake)
—Eaten(Cake) [] —Eaten(Cake)

IIT Kharagpur

Planning Graph

Start: Have(Cake) Action: Eat(Cake) Action: Bake(Cake)
Finish: Have(Cake) A Eaten(Cake) Precondition: Have(Cake) Precondition: —Have(Cake)
Effect: Eaten(Cake) A —~Have(Cake) Effect: Have(Cake)
So Ao S1 Aq
Bake(Cake)
Have(Cake) [Have(Cake) []
—-Have(Cake) []
Eat(Cake) [Eat(Cake) |
Eaten(Cake) []
—Eaten(Cake) [] —~Eaten(Cake) []

IIT Kharagpur

Planning Graph

Start: Have(Cake) Action: Eat(Cake) Action: Bake(Cake)
Finish: Have(Cake) A Eaten(Cake) Precondition: Have(Cake) Precondition: —Have(Cake)
Effect: Eaten(Cake) A —~Have(Cake) Effect: Have(Cake)
So Ao 3 A
Bake(Cake)

[]

Have(Cake) [Have(Cake) M
—Have(Cake)

[]

Eaten(Cake) V]
—Eaten(Cake) [] —~Eaten(Cake)]

IIT Kharagpur

Planning Graph

Start: Have(Cake) Action: Eat(Cake) Action: Bake(Cake)
Finish: Have(Cake) A Eaten(Cake) Precondition: Have(Cake) Precondition: —Have(Cake)
Effect: Eaten(Cake) A —~Have(Cake) Effect: Have(Cake)
So Ao 3 A
Bake(Cake)

Have(Cake) [Have(Cake) M
—Have(Cake)

Eat(Cake) Eat(Cake)
Eaten(Cake) V
—Eaten(Cake) [] —Eaten(Cake)

IIT Kharagpur

Planning Graph

Start: Have(Cake) Action: Eat(Cake) Action: Bake(Cake)
Finish: Have(Cake) A Eaten(Cake) Precondition: Have(Cake) Precondition: —Have(Cake)
Effect: Eaten(Cake) A —~Have(Cake) Effect: Have(Cake)
So Ao S Aq S,
Bake(Cake)
Have(Cake) [Have(Cake) M Have(Cake)
—Have(Cake) —Have(Cake)
Eat(Cake) Eat(Cake)
Eaten(Cake) V Eaten(Cake)
—Eaten(Cake) [] —Eaten(Cake) —Eaten(Cake)

IIT Kharagpur

Planning Graph

Start: Have(Cake)
Finish: Have(Cake) A Eaten(Cake)

Action: Eat(Cake)
Precondition: Have(Cake)

Effect: Eaten(Cake) A —~Have(Cake)

S

So Ao
Have(Cake) []
—Eaten(Cake) []

IIT Kharagpur

Action: Bake(Cake)
Precondition: —Have(Cake)
Effect: Have(Cake)

Have(Cake) M
—Have(Cake)

Eaten(Cake) V
—Eaten(Cake)

Aq S2
Have(Cake)
@ —Have(Cake)
Eat(Cake)
[Eaten(Cake)
Ey —Eaten(Cake)

Planning Graph

Start: Have(Cake)
Finish: Have(Cake) A Eaten(Cake)

Action: Eat(Cake)
Precondition: Have(Cake)

Effect: Eaten(Cake) A —~Have(Cake)

S

So Ao
Have(Cake) []
—Eaten(Cake) []

IIT Kharagpur

Action: Bake(Cake)
Precondition: —Have(Cake)
Effect: Have(Cake)

Have(Cake) M
—Have(Cake)

Eaten(Cake) V
—Eaten(Cake)

Aq S2
Have(Cake)
@ —Have(Cake)
Eat(Cake)
[Eaten(Cake)
Ey —Eaten(Cake)

Mutex actions

e Mutual exclusion relation exists between two actions if
e Inconsistent effects - once action negates an effect of the other
e Eat(Cake) causes —Have(Cake) and Bake(Cake) causes Have(Cake)
¢ Interference - one of the effects of one action is the negation of a precondition of the other
e Eat(Cake) causes —Have(Cake) and the persistence of Have(Cake) needs Have(Cake)

e Competing needs - one of the preconditions of one action is mutually exclusive with a pre-
condition of the other

o Bake(Cake) needs —Have(Cake) and Eat(Cake) needs Have(Cake)

So Ay $ Ay S2
Have(Cake) Have(Cake) M (::O } Have(Cake)
—Have(Cake) T —Have(Cake)
>\ Eat(Cake)
Eaten(Cake) [] Eaten(Cake)
—Eaten(Cake) ﬂEaten(Cake)y ﬁ/ —Eaten(Cake)

IIT Kharagpur

Mutex literals

e Mutual exclusion relation exists between two literals if
e One is the negation of the other, OR
e Each possible pair of actions that could achieve the two literals is mutually exclusive (incon-
sistent support)

So Ay $ Ay S2
Have(Cake) Have(Cake) Have(Cake)
—Have(Cake) @ } —Have(Cake)
>\ Eat(Cake)
Eaten(Cake) [] Eaten(Cake)
—Eaten(Cake) —Eaten(Cake) V ﬁ/ —Eaten(Cake)

IIT Kharagpur 24

GraphPLAN algorithm

Function GraphPlan
graph « Initial-Planning-Graph(problem)
goals < Goals[problem]
do
if goals are all non-mutex in last level of graph then do
solution «— Extract-Solution(graph)
if solution < failure then return solution
else if No-Solution-Possible (graph)
then return failure
graph < Expand-Graph(graph, problem)

IIT Kharagpur

Termination

e Termination when no plan exists

e Literals increase monotonically
e Actions increase monotonically
e Mutexes decrease monotonically

IIT Kharagpur

Finding the plan

e Once a world is found having all goal predicates without mutexes, the plan can be extracted
by solving a constraint satisfaction problem (CSP) for resolving the mutexes

e Creating the planning graph can be done in polynomial time, but planning is known to be a
PSPACE-complete problem. The hardness is in the CSP.

So Aq 51 Az 52
Have(Cake) [Have(Cake) Have(Cake)
ﬁHave(Cake)>< @) —Have(Cake)
Eaten(Cake) [Eaten(Cake)
—Eaten(Cake) [] ﬁEaten(Cake)V E)/ —Eaten(Cake)

IIT Kharagpur 27

Finding the plan

e Once a world is found having all goal predicates without mutexes, the plan can be extracted
by solving a constraint satisfaction problem (CSP) for resolving the mutexes

e Creating the planning graph can be done in polynomial time, but planning is known to be a
PSPACE-complete problem. The hardness is in the CSP.

So Aq 51 Az 52
Have(Cake)] Have(Cake) Have(Cake)
ﬁHave(Cake)>< @) —Have(Cake)
Eaten(Cake) [Eaten(Cake)
—Eaten(Cake) [] ﬁEaten(Cake)V E)/ —Eaten(Cake)

IIT Kharagpur 27

Finding the plan

e Once a world is found having all goal predicates without mutexes, the plan can be extracted
by solving a constraint satisfaction problem (CSP) for resolving the mutexes

e Creating the planning graph can be done in polynomial time, but planning is known to be a
PSPACE-complete problem. The hardness is in the CSP.

So Aq 51 Az 52
Have(Cake)] Have(Cake) Have(Cake)
ﬁHave(Cake)>< @) —Have(Cake)
Eaten(Cake) [Eaten(Cake)
—Eaten(Cake) [] ﬁEaten(Cake)V E)/ —Eaten(Cake)

IIT Kharagpur 27

Finding the plan

e Once a world is found having all goal predicates without mutexes, the plan can be extracted
by solving a constraint satisfaction problem (CSP) for resolving the mutexes

e Creating the planning graph can be done in polynomial time, but planning is known to be a
PSPACE-complete problem. The hardness is in the CSP.

So Aq 51 Az 52
Have(Cake)] Have(Cake) Have(Cake)
ﬁHave(Cake)>< @) —Have(Cake)
Eaten(Cake)] Eaten(Cake)
—Eaten(Cake) [] ﬁEaten(Cake)V Ey —Eaten(Cake)

IIT Kharagpur 27

Finding the plan

e Once a world is found having all goal predicates without mutexes, the plan can be extracted
by solving a constraint satisfaction problem (CSP) for resolving the mutexes

e Creating the planning graph can be done in polynomial time, but planning is known to be a
PSPACE-complete problem. The hardness is in the CSP.

So Aq 51 Az 52
Have(Cake)] Have(Cake) Have(Cake)
ﬁHave(Cake)>< @) —Have(Cake)
Eaten(Cake)] Eaten(Cake)
—Eaten(Cake) [] ﬁEaten(Cake)V Ey —Eaten(Cake)

IIT Kharagpur 27

Finding the plan

e Once a world is found having all goal predicates without mutexes, the plan can be extracted
by solving a constraint satisfaction problem (CSP) for resolving the mutexes

e Creating the planning graph can be done in polynomial time, but planning is known to be a
PSPACE-complete problem. The hardness is in the CSP.

So Aq 51 Az 52
Have(Cake)] Have(Cake) Have(Cake)
ﬁHave(Cake)>< @) —Have(Cake)
Eaten(Cake)] Eaten(Cake)
—Eaten(Cake) [] ﬁEaten(Cake)V E)/ —Eaten(Cake)

IIT Kharagpur 27

Finding the plan

e Once a world is found having all goal predicates without mutexes, the plan can be extracted
by solving a constraint satisfaction problem (CSP) for resolving the mutexes

e Creating the planning graph can be done in polynomial time, but planning is known to be a
PSPACE-complete problem. The hardness is in the CSP.

So Aq 51 Az 52
Have(Cake)] Have(Cake) Have(Cake)
ﬁHave(Cake)>< @) —Have(Cake)
Eaten(Cake) [Eaten(Cake)
—Eaten(Cake) [] ﬁEaten(Cake)V ﬂ/ —Eaten(Cake)

IIT Kharagpur 27

Finding the plan

e Once a world is found having all goal predicates without mutexes, the plan can be extracted
by solving a constraint satisfaction problem (CSP) for resolving the mutexes

e Creating the planning graph can be done in polynomial time, but planning is known to be a
PSPACE-complete problem. The hardness is in the CSP.

So Aq 51 Az 52
Have(Cake)] Have(Cake) Have(Cake)
—uHave(Cake)>< @) —Have(Cake)
Eaten(Cake) [Eaten(Cake)
—Eaten(Cake) [] ﬁEaten(Cake)V ﬂ/ —Eaten(Cake)

IIT Kharagpur 27

Finding the plan

e Once a world is found having all goal predicates without mutexes, the plan can be extracted
by solving a constraint satisfaction problem (CSP) for resolving the mutexes

e Creating the planning graph can be done in polynomial time, but planning is known to be a
PSPACE-complete problem. The hardness is in the CSP.

So Aq 51 Az 52
Have(Cake)] Have(Cake) Have(Cake)
—uHave(Cake)>< @) —Have(Cake)
Eaten(Cake) [Eaten(Cake)
—Eaten(Cake) [] ﬁEaten(Cake)V ﬂ/ —Eaten(Cake)

IIT Kharagpur 27

Finding the plan

e Once a world is found having all goal predicates without mutexes, the plan can be extracted
by solving a constraint satisfaction problem (CSP) for resolving the mutexes

e Creating the planning graph can be done in polynomial time, but planning is known to be a
PSPACE-complete problem. The hardness is in the CSP.

So Aq 51 Az 52
Have(Cake)] Have(Cake) Have(Cake)
—uHave(Cake)>< @) —Have(Cake)
> w<
Eaten(Cake) [Eaten(Cake)
—Eaten(Cake) [] ﬁEaten(Cake)V ﬂ/ —Eaten(Cake)

IIT Kharagpur 27

Finding the plan

e Once a world is found having all goal predicates without mutexes, the plan can be extracted
by solving a constraint satisfaction problem (CSP) for resolving the mutexes

e Creating the planning graph can be done in polynomial time, but planning is known to be a
PSPACE-complete problem. The hardness is in the CSP.

So Aq 51 Az 52
Have(Cake)] Have(Cake) Have(Cake)
—uHave(Cake)>< @) —Have(Cake)
> w<
Eaten(Cake) [Eaten(Cake)
—Eaten(Cake) [] ﬁEaten(Cake)V ﬂ/ —Eaten(Cake)

IIT Kharagpur 27

Finding the plan

e Once a world is found having all goal predicates without mutexes, the plan can be extracted
by solving a constraint satisfaction problem (CSP) for resolving the mutexes

e Creating the planning graph can be done in polynomial time, but planning is known to be a
PSPACE-complete problem. The hardness is in the CSP.

So Aq 51 Az 52
Have(Cake) [Have(Cake) Have(Cake)
—uHave(Cake)>< @) —Have(Cake)
> w<
Eaten(Cake) [Eaten(Cake)
—Eaten(Cake) [] ﬁEaten(Cake)V ﬂ/ —Eaten(Cake)

IIT Kharagpur 27

Planning with Propositional Logic

e The planning problem is translated into a CNF satisfiability problem

e The goal is asserted to hold at a time step T, and clauses are included for each time step up to
T.

o [f the clauses are satisfiable, then a plan is extracted by examining the actions that are true.
e Otherwise, we increment T and repeat

e Constructing formulas to encode bounded planning problems into satisfiability problems
o If fis a fluent At(M), we write At(M, i) as f;, i denotes time stamp
e If g is an action Move(A, B), we write Move(A, B, i) as a;.

e Notations: PC - precondition, E - effects, E* - effects in the +ve form, E~ - effect in the -ve
form, sg - start state, g - goal state, g* - literals in +ve form in goal state, g~ - literals in -ve
form in goal state, A - set of actions

IIT Kharagpur 28

SAT encoding

e Formula is built with these five kinds of sets of formulas:

IIT Kharagpur

SAT encoding

e Formula is built with these five kinds of sets of formulas:

o Initial state:

IIT Kharagpur

SAT encoding

e Formula is built with these five kinds of sets of formulas:

o Initial state:

T

feso féso

IIT Kharagpur

SAT encoding

e Formula is built with these five kinds of sets of formulas:

o Initial state:

< e

feso féso

e Goal state:

IIT Kharagpur

SAT encoding

e Formula is built with these five kinds of sets of formulas:

o Initial state:

< e

feso féso

e Goal state:

Tk

fegt feg~

IIT Kharagpur

SAT encoding

e Formula is built with these five kinds of sets of formulas:

o Initial state:

< e

feso féso

e Goal state:

Tk

fegt feg~
e Action

IIT Kharagpur

SAT encoding

e Formula is built with these five kinds of sets of formulas:

o Initial state:

< e

feso féso

e Goal state:

Tk

fegt feg~
e Action

e C3: Gi=>(/\ pi A /\ ei+1)

pePC(a) ecE(a)

IIT Kharagpur

SAT encoding

e Formula is built with these five kinds of sets of formulas:

o Initial state:

< e

feso

e Goal state:

Tk

feg*
e Action

CC3IG,':>(

IIT Kharagpur

fé#so

feg™

/\ pi A

pePC(a)

A

ecE(a)

ei+1)

e An action changes only the fluents that are in its
effects.

SAT encoding

e Formula is built with these five kinds of sets of formulas:

o Initial state:

e Ci: (/\fo
feso

e Goal state:

Tk

feg*
e Action

'C3IG,':>

IIT Kharagpur

I

feg™

(A o\ e

pePC(a) ecE(a)

|

e An action changes only the fluents that are in its
effects.

o Cy: (_'fi A = (\/{GEAIfiEE*(ai)}ai)) "

(f,-/\ﬁf,-ﬂ = (\/{aeAIf;eE’(ai)}ai))

e Explanatory frame axioms - set of propositions that
enumerate the set of actions that could have occurred in
order to account for a state change.

SAT encoding

e Formula is built with these five kinds of sets of formulas:

e Initial state: e An action changes only the fluents that are in its
effects.
* G (/\ fO) A (/\ ﬁfO) * Cs: (_‘fi Ay = (\/{aeAMEE*(a;)} Gi)) A
feso féso
e Goal state: (fi A fi = (\/{aeAlf.-eE*(ao} ”i))
e Explanatory frame axioms - set of propositions that
o Cy: /\ fr|A /\ fr enumerate the set of actions that could have occurred in
feg* feg~ order to account for a state change.
e Action e Complete exclusion axiom - only one action occurs at

) each step.

'C310i=>(/\ pi A /\em

pePC(a) ecE(a)

IIT Kharagpur 29

SAT encoding

e Formula is built with these five kinds of sets of formulas:

e Initial state: e An action changes only the fluents that are in its
effects.
* G (/\ fO) A (/\ ﬁfO) * Cs: (_‘fi Ay = (\/{aeAMEE*(a;)} Gi)) A
feso féso
e Goal state: (fi A fi = (\/{aeAlf.-eE*(ao} ”i))
e Explanatory frame axioms - set of propositions that
o Cy: /\ fr|A /\ fr enumerate the set of actions that could have occurred in
feg* feg~ order to account for a state change.
e Action e Complete exclusion axiom - only one action occurs at

each step.
e C5: —a;V —|b,'

'C310i=>(/\ pi A /\em

pePC(a) ecE(a)

IIT Kharagpur 29

SAT encoding

e Formula is built with these five kinds of sets of formulas:

e Initial state: e An action changes only the fluents that are in its
effects.
* G (/\ fO) A (/\ ﬁfO) * Cs: (_‘fi Ay = (\/{aeAMEE*(a;)} Gi)) A
feso féso
e Goal state: (fi A fi = (\/{aeAlf.-eE*(ao} ”i))
e Explanatory frame axioms - set of propositions that
o Cy: /\ fr|A /\ fr enumerate the set of actions that could have occurred in
feg* feg~ order to account for a state change.
e Action e Complete exclusion axiom - only one action occurs at

each step.
e C5: —a;V —|b,'

'C310i=>(/\ pi A /\em

pePC(a) ecE(a)
e Need to check satisfiability of C; A Co A C3 A C4 A Cs

IIT Kharagpur 29

Excercise

e Consider a simple example where we have one robot r and two locations /; and I,. Let us
suppose that the robot can move between the two locations. In the initial state, the robot is
at Iy; in the goal state, it is at I,. The operator that moves the robot is: Action: move(r, 1, 1’),

Precond: At(r, I), Effects: At(r, "), —At(r,). In this planning problem, a plan of length 1is enough
to reach the goal state. Write the constraints.

IIT Kharagpur

Summary

Search involving logic along with change of state

We looked into planning problem where the environment is fully observable, deterministic
and static

We looked into planning graph and SAT based planning

Application domains - robotics, autonomous systems, etc.

IIT Kharagpur 31

IIT Kharagpur

Thantk you!

