Lect 25: 10th September

Laplace Transform

$$\xrightarrow{x(t) = e^{st}} h(t) \xrightarrow{y(t) = H(s)e^{st}}$$

$$H(s) = \int_{-\infty}^{\infty} h(t)e^{-st}dt.$$

For any CT signal x(t), it's **Bilateral** Laplace-transform is the function:

$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt = \mathcal{L}\{x(t)\}.$$

The Region of Convergence of X(s) is defined to be

$$\begin{array}{ccc}
& \text{if } s_i \in ROC, \\
& \text{then } s_i \in ROC
\end{array}$$

$$\begin{array}{c}
s)t \\
\text{dt} < \infty \\
\end{array}$$

Re(s)

$$\mathrm{ROC} = \underbrace{\{\mathtt{s} \mid \int_{-\infty}^{\infty} |\mathtt{x}(\mathtt{t})| |\mathtt{e}^{-\mathtt{s}\mathtt{t}}| \mathtt{d}\mathtt{t} = \int_{-\infty}^{\infty} |\mathtt{x}(\mathtt{t})| \mathtt{e}^{\frac{-\mathrm{Re}(\mathtt{s})\mathtt{t}}{2}} \mathtt{d}\mathtt{t} < \infty\}.}^{\mathsf{then}}.$$

 $s = \alpha + j\omega$, $|e^{-St}| = |e^{-\alpha t}|$ ullet Letting $\alpha=\mathrm{Re}(s)$ and $\omega=\mathrm{Im}(s)$, we have:

$$X(s) = \int_{-\infty}^{\infty} \underline{x(t)e^{-st}}dt = \int_{-\infty}^{\infty} \underline{x(t)e^{-\alpha t}e^{-j\omega t}}dt$$
$$= \int_{-\infty}^{\infty} (\underline{x(t)e^{-\alpha t}})e^{-j\omega t}dt = \mathrm{FT}(x(t)e^{-\alpha t}).$$

- ullet Therefore, if $s=\alpha+\omega j\in {
 m ROC}$, $X(s)={
 m FT}(x(t)e^{-\alpha t})$
- If $\alpha=0$, $X(s)=\mathrm{FT}(x(t))$. assuming that $S | \mathrm{Re}(s) \ge 0 \neq C |$
- ullet Even when x(t) is not absolutely integrable, it may be possible for $x(t)e^{-\alpha t}$ to be absolutely integrable if α is sufficiently large.

Laplace Transform

ullet Example 1: What is the Laplace Transform and ROC of $x(t)=e^{-at}u(t)$ where $a \in \mathbb{R}$?

$$X(s) = \int_{-\infty}^{\infty} e^{-at} u(t)e^{-st} dt = \int_{0}^{\infty} e^{-(a+s)t} dt = \frac{1}{(a+s)} e^{-(a+s)t}$$

$$= \frac{-1}{(a+s)} (o-1) \quad \text{when} \quad \text{Re}(a+s) > 0$$

$$= \frac{-1}{(a+s)} (o-1) \quad \text{when} \quad \text{Re}(a+s) > 0$$

$$= \frac{1}{a+s} \quad \text{when} \quad \text{Re}(s) > -a$$

• Example 2: What is the Laplace Transform and ROC for $x(t) = -e^{-at}u(-t)$?

$$X(s) = \int_{\infty}^{\infty} -e^{-\alpha t} u(-t)e^{-st} dt = \int_{-\infty}^{\infty} -e^{-(\alpha + s)t} dt$$

$$= \frac{1}{\alpha + s} e^{-(\alpha + s)t} \Big|_{-\infty}^{\infty} = \frac{1}{\alpha + s} \text{ when } \operatorname{Re}(a + s) < 0$$

$$\operatorname{Re}(s) < -a$$

- Moral: Laplace-Transform without ROC is meaningless!
- Moral: ROC consists of vertical lines.

Poles and Zeros

• We almost exclusively work with rational Laplace transforms:

$$X(s) = \frac{a_0(s-z_1)\cdots(s-z_m)}{(s-p_1)\cdots(s-p_n)},$$

where $z_1, \ldots, z_m \in \mathbb{C}$ are the zeros and $p_1, \ldots, p_n \in \mathbb{C}$ are the poles.

- Location of the poles are important for ROC and stability
- Example: What are the poles and zeros of $X(s) = \frac{2s-1}{s^2+2s-1}$?

Zeros:
$$S=0.5$$
 poles: $S=-1+\sqrt{2}$ & $S=-1-\sqrt{2}$ are the two poles of $X(S)$.

• Determine the Laplace Transform of $x(t) = e^{-2t}u(t) + e^{-t}\cos(3t)u(t)$ with its ROC.

• Determine the Laplace Transform of
$$x(t) = e^{-2t}u(t) + e^{-t}\cos(3t)u(t)$$
 with its ROC.
$$= e^{-2t}u(t) + e^{-t} + \frac{1}{2} \left[e^{j3t} + e^{-j3t} \right] u(t)$$

$$= \frac{1}{s+2} + \frac{1}{2} \frac{1}{s+1+j3} + \frac{1}{2} \frac{1}{s+1-j3}$$

$$= \frac{1}{s+2} + \frac{1}{2} \frac{1}{s+1-j3} + \frac{1}{2} \frac{1}{s+1-j3} + \frac{1}{2} \frac{1}{s+1-j3}$$

$$= \frac{1}{s+2} + \frac{1}{s+1-j3} + \frac{1}{s+$$

Properties of ROC for Laplace Transform

- $\int \chi(f) = 0 \text{ for } t < 9$ and t > b
- Property 1: ROC does not contain any poles
- Property 2: If x(t) is of finite duration and x(t) is absolutely integrable, i.e., $\int_a^b |x(t)| dt < \infty$, then ROC is the entire $\mathbb C$.
 - To show this, let $s \in \mathbb{C}$ with $\text{Re}(s) = \alpha$. Then:

$$\int_{-\infty}^{\infty} |x(t)|e^{-\alpha t}dt = \int_{a}^{b} |x(t)|e^{-\alpha t}dt$$

$$\leq \max(e^{-\alpha t} : t \in [a, b]) \int_{a}^{b} |x(t)|dt < \infty.$$

• Property 3: If x(t) is right-sided and $s_0 \in \mathsf{ROC}$, then the whole half-plane $\{s : \mathsf{Re}(s) > \mathsf{Re}(s_0)\}$ is in ROC.

LECTURE 26: 11th September

Properties of ROC for Laplace Transform

s.t x(t)=0 +t>T

• Property 4: If x(t) is left-sided and $s_0 \in \mathsf{ROC}$, then the half-plane s: $Re(s) < Re(s_0)$ is in ROC.

- Property 5: If x(t) is two-sided and s_0 is in ROC, then there exist $Re(s_0) < b$ such that the strip s: a < Re(s) < b is in ROC.
- Property 6: If X(s) is rational, then ROC is either bounded between two poles or extends to infinity. NG) is
- Property 7: If X(s) is rational and right-sided, then the ROC is right-half plane to the right-most pole.

plane to the right-most pole.
$$\chi(S) = \chi(S) + \chi(S)$$

We can express $\chi(H) = \chi(H) + \chi(H)$, where $\chi(H) = \begin{cases} 0 & \forall H < T \\ \chi(H) & \forall H > T \end{cases}$
 $\chi(S) = \chi(S) + \chi(S)$

Where $\chi(H) = \begin{cases} 0 & \forall H < T \\ \chi(H) & \forall H > T \end{cases}$

2(H) is • Property 8: If X(s) is rational and left-sided, then the ROC is left-half plane to the left-most pole.

Fore a reight-sided signal rtG), ROC={'s | Recs)>5+} Case 1: $\sigma_{+} > \sigma_{-}$: $ROC = \phi$ $\pi(f)$, $ROC = \{s \mid Re(s) < \sigma_{-}\}$ $Case 2: \sigma_{+} < \sigma_{-}: ROC = \{s \mid Re(s) \in (\sigma_{+}, \sigma_{-})\}$ of $\pi(f)$

Laplace Transform

Determine the Laplace transform of $x(t) = e^{-b|t|}$ for both b > 0 and b < 0.

Case 1: 6>0 $x(t) = e^{-bt}u(t) + e^{bt}u(-t)$ $\chi(s) = \frac{1}{S+b} - \frac{1}{S-b}$

Re(s)> -6

Roc: Recs) < b-

= J - J - C-6

-ebt 4(-t) (-)

 $=\frac{-2b}{s^2-b^2}$, Roc: $\{s \mid -b < Re(s) < b\}$. Roc: Re(s) < b.

est uct) (stb , Roc: {s| Ress)>-b3 case 2 ! b < 0

 $e^{bt}u(t) \iff \frac{-1}{s-b}$, $Roc: \{s \mid Re(s) \land b\}$

x(s) does not exist

since { s | Re(s) > -6}

n {s/Recs) Lb3

is an empty set.

Inverse Laplace Transform

ullet Suppose that the line $\{s|\mathtt{Re}(s)=\sigma_1\}\in ROC$

- We know that along this line $X(\sigma+j\omega)=\mathrm{FT}(e^{-\sigma t}x(t)).$
- Therefore,

$$x(t) = e^{\sigma t} \operatorname{IFT}(X(\sigma + j\omega)) = e^{\sigma t} \frac{1}{2\pi} \int_{-\infty}^{\infty} X((\sigma + j\omega)) e^{j\omega t} d\omega$$

$$= \frac{1}{2\pi j} \int_{\sigma - j\infty}^{\sigma + j\infty} X(s) e^{st} ds.$$

$$\lim_{n \to \infty} \sum_{n \to \infty} \sum_{n$$

=

Inverse Laplace Transform

- ullet For rational transfer functions $X(s)=rac{q(s)}{p(s)}$, we proceed as in the case of inverse Fourier transform:
 - a. We perform partial fraction on

$$X(s) = \frac{q(s)}{p(s)} = \frac{A}{s+p_1} + \frac{B}{s+p_2} + \cdots$$

- b. If pole p_i is to the left side of ROC, we use $e^{-p_i t} u(t) \longleftrightarrow \frac{1}{s+p_i}$
- G) If pole p_i is to the right side of ROC, we use $-e^{-p_i t} u(-t) \longleftrightarrow rac{1}{s+p_i}$
- \bullet Example: What is the Laplace Transform inverse of $X(s)=\frac{s}{s^2+5s+6}$ given that ROC= $\{s \mid -3 < \text{Re}(s) < -2\}$?

$$x(s) = \frac{A}{s+2} + \frac{B}{s+3} = \frac{(A+B)s + (2B+3A)}{(s+2)(s+3)}, \qquad \begin{cases} A+B = 1 \\ 3A+2B = 0 \end{cases}$$

$$= \frac{-2}{s+2} + \frac{3}{s+3} \qquad \begin{cases} 2+3 \\ 2+3 \end{cases} \qquad \begin{cases} 2+2 + 2 \\ 3A+2 = 0 \end{cases}$$

$$\Rightarrow A+2 = 0$$

$$\Rightarrow A+2 = 0$$

$$\Rightarrow A = -2$$

$$\Rightarrow A = -2$$

$$\Rightarrow A = 3$$

$$\Rightarrow A = -2$$

$$\Rightarrow A = 3$$

$$\Rightarrow A = 3$$

Hence
$$y(t) = 3e^{-3t}u(t) + 2e^{-2t}u(-t)$$

Find inverse laplace transform with ROC = {s | Re(s) < -3}

$$7 \text{ (H)} = 2e^{-2t} \text{ (I-t)}$$

$$-3e^{-3t} \text{ (I-t)}$$

$$-3e^{-2t} \text{ (I-t)}$$

$$-3e^{-2t} \text{ (I-t)}$$

$$-2e^{-2t} \text{ (I-t)}$$

$$-2e^{-2t} \text{ (I-t)}$$

$$SEROC \Leftrightarrow \int_{-\infty}^{\infty} |\chi(t)| e^{-Re(S)t} dt < \infty$$
Causality and Stability

- ullet For **causality**, we know that the impulse response h(t) is right-sided, therefore, ROC is to the right-side of the right-most pole
- ullet For **stability** of such a system, we need $\int_{-\infty}^{\infty} |h(t)| dt < \infty$
- ullet This means that the $j\omega$ axis, i.e., $\{s\mid {\rm Re}(s)=0\}$, be in the ROC of H(s).
- ullet A causal system with rational H(s) is stable if and only if all the poles are to the left of the $j\omega$ axis.

Let
$$x(t) = x_1(t) - x_2(t)$$
, $x_1(t) \longleftrightarrow \frac{1}{S+1}$, $Roc: Re(S) > -1$

What is the Roc for $x(t)$?

$$x(t)$$
?

$$x(t) = x_1(s) - x_2(s) - \frac{1}{S+1} - \frac{1}{(S+1)(S+2)} = \frac{1}{S+2}$$

$$x(t) = e^{-2t} u(t)$$

Roc: $Re(S) > -2$

which contains intersection of $Rocs$ of $x_1(s) \ge x_2(s)$

Properties of Laplace Transform

- Linearity: $ax_1(t) + bx_2(t) \longleftrightarrow aX_1(s) + bX_2(s)$, ROC contains the intersection.
- Time-Shift: $x(t-t_0) \longleftrightarrow e^{-st_0}X(s)$. ROC is not affected.

$$\int_{-\infty}^{\infty} e^{S_0 t} \chi(f) e^{-St} dt = \int_{-\infty}^{\infty} \chi(f) e^{-(S_0 - S_0)^{\frac{1}{2}}} dt = \chi(S_0 - S_0)$$

let $\overline{S} \in \mathbb{C}$ that belongs to ROC of $\chi(S) \leftrightarrow \chi(S)$

• Frequency Shift: $e^{s_0t}x(t)\longleftrightarrow X(s-s_0)$. ROC now includes $\mathrm{Re}(s_0)+\mathrm{RoC}\to\mathrm{f}$ x(t) we need to show show belongs to $\mathrm{RoC}\to\mathrm{f}$ estable.

Laplace toansform of u(t)

$$\int_{-\infty}^{\infty} u(t)e^{-st} dt = \int_{0}^{\infty} e^{-st} dt = -\frac{1}{s} e^{-st} \int_{0}^{\infty} e^{-st} \int_{0}^{\infty} e^{-st} \int_{0}^{\infty} e^{-st} dt$$

lef R be the ROC of x(f).

Properties of Laplace Transform

- ullet Differentiation: $\underbrace{\frac{dx(t)}{dt}\longleftrightarrow sX(s)}_{}$ ROC contains R
- Differentiation: $-tx(t) \longleftrightarrow \frac{dX(s)}{ds}$. $\nearrow ROC = R$ $X(S) = \int_{-\infty}^{\infty} \chi(S) = \int_{-\infty}^{\infty} (-t\chi(S)) e^{-St} dt$
- Integration: $\int_{-\infty}^{\infty} x(7)d7 \longleftrightarrow \frac{1}{s}X(s)$, Roc containing $R \cap \{Re(s)>0\}$ Note that $\chi(H) \neq \chi(H) = \int_{-\infty}^{\infty} \chi(7)\chi(H-7)d7 = \int_{-\infty}^{\infty} \chi(7)d7$
 - ullet Initial Value Theorem: For a causal signal x(t) which does not contain an impulse at the origin, we have

$$x(0^+) = \lim_{s \to \infty} sX(s).$$

• Final value theorem: For a causal signal x(t) for which $\lim_{t\to\infty}x(t)$ is finite, we have

$$\lim_{t \to \infty} x(t) = \lim_{s \to 0} sX(s).$$

Laplace transform of some common signals.

(1)
$$\chi(t) = te^{-\alpha t} u(t) \iff (sta)^2$$

$$\chi(t) = \frac{t^{n-1}}{(n-1)!} e^{-\alpha t} u(t) \qquad -te^{-\alpha t} u(t) \iff \frac{ds}{ds} (sta)$$

$$\chi(s) = \frac{1}{(s+a)^2}$$

$$\chi(s) = \frac{1}{(s+a)^2}$$

2
$$\chi(f) = S(f)$$
, $\chi(s) = \int_{-\infty}^{\infty} S(f)e^{-sf} df = 1$, $\chi(s) = \int_{-\infty}^{\infty} S(f)e^{-sf} df = 1$

3
$$\chi(s) = u(t)$$
 $\chi(s) = \frac{1}{s}$ $\chi(s) = \frac{1}{s^2}$ $\chi(s) = \frac{1}{s^2}$

Observe the Laplace and fourier Transforms Act = cos(wot)	
2) xCH)= ejwot similar property holds for other periodic signals as well. Can me claim that Fourier transform= x(s) s=jw? I appace transform includes the	
→ only when ROC of Laplace transform includes the	

Finding Impulse Response of Differential Equations

. consider the example

can we uniquely determine its impulse response?

applying Laplace transform,

Transform using Laplace transform.

$$\Rightarrow$$
 H(S)= $\frac{\Upsilon(S)}{\chi(S)} = \frac{1}{S+3}$.

However, the above approach does not provide information about Roc. If we have additional information about causality (or etability), we can determine Roc and find h(t).

For a LTI system, suppose
$$\chi(t) = e^{-st}u(t)$$
 applied as most results in output $y(t) = [e^{-t} - 2t]u(t)$

Determine if the system is stable and causal.

$$X(s) = \frac{1}{s+3}$$
, Roc: $\frac{2}{s}$ | Rec(s) > -3 $\frac{3}{s}$

$$H(S) = \frac{Y(S)}{X(S)} = \frac{(S+3) \cdot (S+2 - (S+1))}{(S+1)(S+2)} = \frac{S+3}{(S+1)(S+2)} / ROC: \{s | Re(S) > -1\}$$

stable.

Unilateral Laplace Transform

$$\chi(s) = \int \chi(t)e^{-st} dt = uk(\chi(t))$$
, ROC is a right half plane.

reight half plane.

Ex: determine Xu(s) for x(x) = &(t) + et u(t)

$$\int_{0}^{\infty} (S(t) + e^{t})e^{-St} dt = 1 + \int_{0}^{\infty} e^{-(S-t)t} dt$$

$$= 1 + \int_{0}^{\infty} (Re(S) > 1)$$

Ex: determine x (1) for which /xu(s)= (St1)(St2).

ROC is the region to the reight of the origint most pole.

$$\chi_{u(s)} = \frac{1}{s+r} - \frac{1}{s+2}$$
 $\chi_{u(s)} = \frac{1}{s+r} - \frac{1}{s+2}$
 $\chi_{u(s)} = \frac{1}{s+r} - \frac{1}{s+2}$

Differentiation Property

$$\int_{0}^{\infty} \frac{d}{dt} \chi(t) e^{-St} dt = s \chi_{u}(s) - \chi(0) \iff \frac{d}{dt} \chi(t)$$
By taking integration by parets,

we obtain

$$2(t)e^{-St}|_{0}^{\infty} + \int_{0}^{\infty} 2x(t)e^{-St}dt = -x(0) + S\int_{0}^{\infty} 2(t)e^{-St}dt$$

$$= 2X_{u}(S) - x(0)$$

$$\frac{d^2x(f)}{df^2} \iff s^2 \times \chi_{U}(s) - s \times (\bar{\sigma}) - \frac{d}{dt} \times (\bar{\sigma})$$

ex: consider a LTI system whose input x(f) and output y(f) are governed by

$$\frac{d^2y(t)}{dt^2} + 3 \frac{dy(t)}{dt} + 2y(t) = x(t)$$
.

Determine the output yst), and state which part of the output is due to input and initial conditions.

applying unilateral laplace transform, we obtain

$$s^{2} Y_{u}(s) - s y(o^{-}) - y'(o^{-}) + 3[s Y_{u}(s) - y(o^{-})]$$

+ 2 Y_u(s) = X_u(s) = $\frac{2}{s}$

$$\Rightarrow (s^{2} + 2s + 2)Y_{4}(s) - (3+s)y(o) - y'(o) = X_{4}(s)$$

$$\Rightarrow Y_{4}(s) = \frac{X_{4}(s)}{s^{2} + 3s + 2} + \frac{(3+s)y(o)}{(s^{2} + 3s + 2)}$$

$$= \frac{2}{s(s+2)(s+1)} + \frac{(3+s)3 - 5}{(s+2)(s+1)}$$

$$= \frac{A}{s} + \frac{B}{s+2} + \frac{C}{s+1}$$
fend y(t)

Pole-Zero canculation and differential equations

$$G(s) = \frac{1}{S+1}$$
, $G(s) = \frac{S+2}{(S+1)(S+2)}$.

$$\begin{array}{cccc}
x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, & \begin{array}{c} \dot{x} = f(x) \\ \dot{x} = f(x) \end{array}
\end{array}$$

$$\begin{array}{cccc}
d^2 y d \\ d t^2 & \begin{array}{c} t \\ - \\ - \\ \end{array}$$

$$\begin{array}{cccc}
x_1 = y d \\ d t & \begin{array}{c} y d \\ \end{array}$$

$$\begin{array}{cccc}
x_2 = \frac{d}{dt} (y d t)
\end{array}$$

Practice problems from textbook
•
Chapter 6: 6.9, 6.10, 6.11, 6.12
Chapter 9: 9.2, 9.4, 9.7, 9.8, 9.16, 9.13, 9.22, 9.26
9.31, 9.33
Chapter 4: 4.1, 4.2, 4.31, 4.6, 4.17