
First Order Discrete-Time System

A discrete-time first order LTI system is given by:

y[n]� ay[n� 1] = x[n] with |a| < 1.

Determine its frequence response H(ej!) and impulse response h[n].

Determine its step response s[n].

The parameter a plays the role of time constant. If |a| is close to 1, the
response is slow, and if |a| is close to 0, the response is fast.

If a < 0, we see oscillations and overshoot.
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Log-Magnitude and Phase of Frequency Response

When a > 0:
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Log-Magnitude and Phase of Frequency Response

When a < 0:
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Second Order Discrete-Time System

A discrete-time first order LTI system is given by:

y[n]� 2r cos(✓)y[n� 1] + r
2
y[n� 2] = x[n],

where r 2 (0, 1) and 0  ✓  2⇡.

Determine its frequence response H(ej!) and impulse response h[n].
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Sampling

Question: Can we convert a continuous-time signal x(t) to a discrete-time
signal?

One way to do this is to sample at regular intervals of time T and define the
sampled signal xs[k] := x(kT ).

Question: Can we recover a continuous-time signal x(t) from regular sam-
pling xs[k] = x(kT )?
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For example, consider x(t) = sin(2⇡t).

Question: Is the recovered signal unique?

Answer: No in general!

But if we know the signal x(t) is band-limited, then with su�cient samples,
we can!
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Sampling by Impulse Train

x(t) ⇥

p(t) =
P1

k=�1 �(t� kT )

xp(t)

Figure 1: Diagram of impulse train sampling system.

The above diagram (system) described impulse train sampling.

The time-domain representation of various signals:

�2 �1 1 2 3

�2

�1

1

2

t

x(t)
xp(t)

T
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Impulse Train Sampling: Frequency Domain Analysis

x(t) ⇥

p(t) =
P1

k=�1 �(t� kT )

xp(t)

In frequency domain, we have:

Xp(j!) =
1

2⇡
P (j!) ⇤X(j!) (1)

Note that p(t) is periodic with period T .

Therefore, p(t) =
P1

k=�1 ake
jk!st, where

ak =
1

T

Z
T/2

�T/2
p(⌧)e�jk!s⌧d⌧ =

1

T
.

As a result P (j!) = 2⇡
T

P1
k=�1 �(! � k!s).

Replacing this in (1), we get:

Xp(j!) =
1X

k=�1

1

T
X(j(! � k!s)).
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Bandlimited Signals

Define the bandwidth of a signal x(t) to be the smallest !M > 0 such that:

X(j!) = 0 for |!| > !M .

�!M !M

1

!

If !M < 1 we call this signal a bandlimited signal.

So if !s > 2!M , for Xp(j!) =
1
T

P1
k=�1X(j(! � k!s)) we get:

�2!s �!s �!M !M !s 2!s

1
T

!

What happens when !s < 2!M?
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Aliasing

Overlapping copies of X(j(! � k!0)) is called aliasing.

�!s !s

1
T

!

In this case, what would be Xp(j!) =
P1

k=�1X(j(! � k!0))?

Therefore, in order not to have aliasing we need to have: !s > 2!M .
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Optimal Recovery

If x(t) is a band-limited signal and !s > 2!M , then x(t) can be recovered
by (ideal) low-pass filtering of sampled signal xp(t).

For perfect recovery, we need to have Hr(j!) = T rect!s/2(!).

x(t) ⇥

p(t) =
P1

k=�1 �(t� kT )

Hr(j!) = T rect!s/2(!) xr(t)
xp(t)

2!M is called the Nyquist-rate (of signal x(t)).
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Sampling Theorem (Shannon-Nyquist)

Suppose that x(t) is a band-limited signal with bandwidth !M . Then x(t)
can be recovered from the samples x(kT ) for k = 0,±1,±2, . . . if 2⇡

T
=

!s > 2!M . This can be achived by impulse train sampling and recovery
system with Hr(j!) = T rect!s/2(!).

x(t) ⇥

p(t) =
P1

k=�1 �(t� kT )

Hr(j!) = T rect!s/2(!) xr(t)
xp(t)
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Questions

1. Let x(t) be a signal band-limited to the interval [-20kHz, 20kHz]. What
condition should the sampling period T satisfy to avoid aliasing and allow
reconstruction of the signal?

a. T <
1
20 ⇥ 10�3 sec

b. T <
1
40 ⇥ 10�3 sec

c. T <
⇡

20 ⇥ 10�3 sec

d. T <
⇡

40 ⇥ 10�3 sec

2. Let x(t) be a signal with Nyquist rate given by !
?. Determine Nyquist rate

of the following signals.

a. x(t) + x(t� 1)

b. d

dt
x(t)

c. x(t) cos(!0t)

3. Suppose signal x1(t) has bandwidth !1 and x2(t) has bandwidth !2. Deter-
mine the Nyquist rate of x1(t)⇥ x2(t).
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Reconstruction after Impulse Train Sampling

A naive approach would be to do linear interpolation.

x(t) ⇥

p(t) =
P1

k=�1 �(t� kT )

Hr(j!) = T rect!s/2(!) xr(t)
xp(t)

In TD: hr(t) =
T sin( ⇡T t)

⇡t

Therefore,

xr(t) = xp(t) ⇤ h(t)

=

" 1X

n=�1
x(nT )�(t� nT )

#
⇤ h(t)

=
1X

n=�1
x(nT ) [�(t� nT ) ⇤ h(t)]

=
1X

n=�1
x(nT )h(t� nT ) =

1X

n=�1
x(nT )

T sin( ⇡
T
(t� nT ))

⇡(t� nT )
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Time Domain View of Reconstruction Process

x(t) ⇥

p(t) =
P1

k=�1 �(t� kT )

Hr(j!) = T rect!s/2(!) xr(t)
xp(t)

xr(t) =
P1

n=�1 x(nT )
T sin( ⇡T (t�nT ))

⇡(t�nT )

This is a linear combination of time-shifted sinc functions!
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Exercise

What is the bandwidth !M of cos(t)?

Determine Xp(j!), Xr(j!), and xr(t) for !s = 2!M .
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Under-Sampling and Aliasing

Let x(t) = cos(!0t). We vary !s by choosing !s = 6!0, 3!0, 1.5!0, 1.2!0.
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Under-Sampling and Aliasing Continued

When !s = 6!0, 3!0, the reconstructed signal xr(t) = x(t).
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Under-Sampling and Aliasing Continued

When !s = 1.5!0, 1.2!0, the reconstructed signal xr(t) = cos((!s�!0)t) 6=
x(t).

As !0 increases relative to !s, the frequence of output decreases. Look up
Wagon-Wheel E↵ect.

When !s = !0, the output is constant.

Phase reversal: If x(t) = cos(!0t+�), then xr(t) = cos((!s�!0)t��).
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Zero-Order-Hold (ZOH) Sampling

Since creating an ideal impulse train and implementing an ideal low-pass filter
is not possible, in practice, we often do Zero-Order-Hold (ZOH) sampling.

In ZOH sampling, the sampled signal xs(t) holds the value of x(t) at kth
sampling time for T seconds, i.e.,

xs(t) = x(kT ) for t 2 [kT, (k + 1)T )

�2 �1 1 2 3

1

2
x(t)
xs(t)

T
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ZOH Sampling and Perfect Recovery

ZOH sampling can be viewed as series interconnection of impulse train sam-
pling and an LTI system with the impulse response h0(t) = rectT/2(t� T

2 ).

x(t) ⇥

p(t) =
P1

k=�1 �(t� kT )

h0(t)
Hr(j!) xr(t)

xp(t) xs(t)

The main question is that if !s > 2!M , then can we find a recovery system
Hr so that xr(t) = x(t)?

For perfect recovery, the system in blue box should be the ideal low-pass
filter Hr(j!) = T rect!s/2(!).
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ZOH Sampling and Perfect Recovery

ZOH sampling can be viewed as series interconnection of impulse train sam-
pling and an LTI system with the impulse response h0(t) = rectT/2(t� T

2 ).

x(t) ⇥

p(t) =
P1

k=�1 �(t� kT )

h0(t)
Hr(j!) xr(t)

xp(t) xs(t)

For perfect recovery, the system in blue box should be the ideal low-pass
filter Hr(j!) = T rect!s/2(!).

Therefore, for perfect recovery, we need to have:

Hr(j!) = e
j!T/2 !T

2 sin(T!/2)
rect!s/2(!).

Note that the first zero of sin(T!/2)
!

occurs at !1 = 2⇡
T

= !s. Since,

rect!s/2(!s) = 0, the zeros of sin(T!/2)
!

are not going to be problematic
in the above fraction.
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First Order Hold Sampling

Corresponds to linear interpolation of the impulse train samples.
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DT Processing of CT Signals

xc(t) C\D Conversion DT System Hd(ej⌦) D\C Conversion yc(t)
xd[n] = x(nT ) yd[n] = y(nT )

How to process a CT signal using discrete-time processors?

1. Convert x(t) to xd[n] by C/D conversion (with sampling period T )

2. (design and implement) Filter xd[n], Xd(ej⌦) in discrete-time with hd[n],
Hd(ej⌦) to get desired yd[n], Yd(ej⌦).

3. Convert yd[n] to y(t) by D/C conversion (with sampling period T ).
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DT Processing of CT Signals

xc(t) C\D Conversion DT System Hd(ej⌦) D\C Conversion yc(t)
xd[n] = x(nT ) yd[n] = y(nT )

The discrete-time sequence xd[n] = xc(nT ).

What is the relationship between Xc(j!) and Xd(ej⌦)?

We use ! to denote frequency in continuous-time FT and ⌦ to denote
frequency in discrete-time FT.
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DT Processing of CT Signals

CT Sampling - Perspective 1: xp(t) = xc(t)p(t) =
P1

n=�1 x(nT )�(t� nT )
and

Xp(j!) =
1

T

1X

k=�1

Xc(j(! � k!s))

CT Sampling - Perspective 2: On the other hand �(t� nT ) ! e
�j!nT and

hence:

Xp(j!) =
1X

n=�1
x(nT )e�j!nT

DT Sampling: xd[n] = x(nT ) for n and hence

Xd(e
j⌦) =

1X

n=�1
x(nT )e�j⌦n

Conclusion:

Xd(e
j⌦) = Xp(j⌦/T ) =

1

T

1X

k=�1

Xc(j(⌦/T � k!s))

Converting xp(t) to xd[n] scales the time-axis by 1/T . Consequently, in the
frequency domain, Xd(ej⌦) is obtained by scaling Xc(j!) by factor T , i.e.,
⌦ = T!.
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DT Processing of CT Signals

xc(t) C\D Conversion DT System Hd(ej⌦) D\C Conversion yc(t)
xd[n] = x(nT ) yd[n] = y(nT )
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DT Processing of CT Signals
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