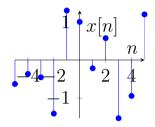
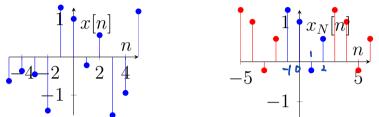
LECTURE 29: 9th October

Discrete-Time Fourier Transform

• Let x[n] be an arbitrary DT signal.





- For an even $N \geq 1$, define $x_N[n]$ to be the signal that:
 - a. is periodic with period N ($\omega_0 = \frac{2\pi}{N}$),
 - b. $x_N[n] = x[n]$ for $n = -\frac{N}{2} + 1, \dots, \frac{N}{2}$.
- The FS representation of $x_N[n]$ would be:

$$x_N[n] = \sum_{k=-\frac{N}{2}+1}^{\frac{N}{2}} a_k e^{jk\omega_0 n}, \qquad \omega_0 \approx \frac{2\pi}{N}, \qquad (1)$$
 where $a_k = \frac{1}{N} \sum_{n=-\frac{N}{2}+1}^{\frac{N}{2}} x[n] e^{-jk\omega_0 n}.$ For large N , we have:

 \bullet For large N, we have:

$$\underbrace{a_k} = \frac{1}{N} \sum_{n = -\frac{N}{2}}^{\frac{N}{2}} x[n] e^{-jk\omega_0 n} \approx \frac{1}{N} \sum_{n = -\infty}^{\infty} x[n] e^{-jk\omega_0 n} = \underbrace{\frac{1}{N} X(e^{jk\omega_0})}, \quad (2)$$

where $X(e^{j\omega_0})$ is the Fourier Transform, if x[n] is viewed as a continuoustime signal x(t) with impulses at integer values of t.

• Replacing (\mathfrak{P}) in (\mathfrak{P}) , we get:

$$x_N[n] \approx \sum_{k=-\frac{N}{2}}^{\frac{N}{2}} \frac{1}{N} X(e^{jk\omega_0}) e^{jk\omega_0 n} = \frac{1}{2\pi} \sum_{k=-\frac{N}{2}}^{\frac{N}{2}} \omega_0 X(e^{jk\omega_0}) e^{jk\omega_0 n}.$$
 Suppose we have a confinious time signal:
$$\chi(\mathfrak{t}) = \sum_{k=-\infty}^{\infty} \chi_{\mathsf{K}} \, \mathcal{S}(\mathfrak{t}-\mathsf{K}) \, \int_{1}^{1} \chi_{\mathsf{K}} \, \mathcal{S}(\mathfrak{t}-\mathsf{K}) \, \int_{1}^{1} \chi_{\mathsf{K}} \, \mathcal{S}(\mathfrak{t}-\mathsf{K}) \, \mathcal{S}(\mathfrak{t}$$

Continued.

• Replacing (??) in (??), we get:

$$x_N[n] \approx \sum_{k=-\frac{N}{2}}^{\frac{N}{2}} \frac{1}{N} X(e^{jk\omega_0}) e^{jk\omega_0 n} = \frac{1}{2\pi} \sum_{k=-\frac{N}{2}}^{\frac{N}{2}} \omega_0 X(e^{jk\omega_0}) e^{jk\omega_0 n}.$$

• Since the fundamental period $\omega_0=\frac{2\pi}{N}$ approaches 0, $k\omega_0$ approaches the continumm $\text{When} \quad \mathsf{K}=\frac{\mathsf{N}}{2} \;,\;\; \mathsf{K}\omega_0=\frac{\mathsf{N}}{2} \;.\;\; \text{The period } \omega_0=\frac{\mathsf{N}}{2} \;.\;\; \mathsf{N} \;.$

$$\bullet \text{ Note that } \sum_{k=-\frac{N}{2}}^{\frac{N}{2}} \omega_0 X(e^{jk\omega_0}) e^{jk\omega_0 n} \approx \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega.$$

ullet Letting N go to infinity, we get:

$$x[n] = \lim_{N \to \infty} x_N[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega.$$

Fourier Transform of DT Signals

For a \emptyset discrete-time signal x[n], we have:

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$
 (Synthesis Equation)

where

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$
 (Analysis Equation).

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n} \quad \text{(Analysis Equation)}.$$

$$X\left(e^{j\left(\omega+2\pi\right)}\right) = \sum_{n=-\infty}^{\infty} \chi[n]e^{-jn\left(\omega+2\pi\right)}$$

$$= \sum_{n=-\infty}^{\infty} \chi[n]e^{-jn\left(\omega+2\pi\right)}$$

- $X(e^{j\omega})$ is finite for all ω if either (a) x[n] is absolutely summable or (b) x[n]2 |2[n] | < xx = 1 | x[n] | < xx has finite energy.
- DTFT differs from CTFT in the following two ways.
 - 1. $X(e^{j\omega})$ is periodic in ω with period 2π . Thus, it suffices to specify it over any contiguous interval of ω of length 2π . For a continuous-time signal x(t), its FT $X(j\omega)$ is not necessarily periodic.
 - 2. The inverse DTFT integral is computed over an interval of length 2π even though $X(e^{j\omega})$ is defined for $\omega \in (-\infty, \infty)$.
 - 3. Notation: $x[n] \longleftrightarrow X(e^{j\omega})$ while $x(t) \longleftrightarrow X(j\omega)$.

Recall that $\chi(e^{j\omega}) = \sum_{n=-\infty}^{\infty} \chi(n) e^{-j\omega n}$

DTFT Example

• What is the DTFT of
$$x_1[n] = \delta[n]$$
? $X_1(e^{j\omega}) = \sum_{n=-\infty}^{\infty} s[n]e^{-j\omega n} = 1$

• What is the DTFT of
$$x[n] = \delta[n] + \delta[n-1] + \delta[n+1]$$
?

$$\begin{array}{lll}
X_{2}(e^{j\omega}) &=& \sum_{n=-\infty}^{\infty} \left(8[n] + 8[n-1] + 8[n+1]\right) e^{-j\omega n} \\
&=& e^{-j\omega - 0} + e^{-j\omega - 1} + e^{+j\omega - 1} \\
&=& e^{-j\omega - 0} + e^{-j\omega - 1} + e^{+j\omega - 1} \\
&=& 1 + e^{j\omega} + e^{-j\omega} = 1 + 2\cos(\omega) \\
&=& 1 + e^{j\omega} + e^{-j\omega} = 1 + 2\cos(\omega) \\
&=& 1 + e^{j\omega} + e^{-j\omega} = 1 + 2\cos(\omega) \\
&=& 1 + e^{j\omega} + e^{-j\omega} = 1 + 2\cos(\omega) \\
&=& 1 + e^{j\omega} + e^{-j\omega} = 1 + 2\cos(\omega) \\
&=& 1 + e^{j\omega} + e^{-j\omega} = 1 + 2\cos(\omega) \\
&=& 1 + e^{j\omega} + e^{-j\omega} = 1 + 2\cos(\omega) \\
&=& 1 + e^{j\omega} + e^{-j\omega} = 1 + 2\cos(\omega) \\
&=& 1 + e^{j\omega} + e^{-j\omega} = 1 + 2\cos(\omega) \\
&=& 1 + e^{j\omega} + e^{-j\omega} = 1 + 2\cos(\omega) \\
&=& 1 + e^{j\omega} + e^{-j\omega} = 1 + 2\cos(\omega) \\
&=& 1 + e^{j\omega} + e^{-j\omega} = 1 + 2\cos(\omega) \\
&=& 1 + e^{j\omega} + e^{-j\omega} = 1 + 2\cos(\omega) \\
&=& 1 + e^{j\omega} + e^{-j\omega} = 1 + 2\cos(\omega) \\
&=& 1 + e^{j\omega} + e^{-j\omega} = 1 + 2\cos(\omega) \\
&=& 1 + e^{j\omega} + e^{-j\omega} = 1 + 2\cos(\omega) \\
&=& 1 + e^{j\omega} + e^{-j\omega} = 1 + 2\cos(\omega) \\
&=& 1 + e^{j\omega} + e^{-j\omega} = 1 + 2\cos(\omega) \\
&=& 1 + e^{j\omega} + e^{-j\omega} = 1 + 2\cos(\omega) \\
&=& 1 + e^{j\omega} + e^{-j\omega} = 1 + e^{-j\omega} \\
&=& 1 + e^{j\omega} + e^{-j\omega} = 1 + e^{-j\omega} \\
&=& 1 + e^{j\omega} + e^{-j\omega} = 1 + e^{-j\omega} \\
&=& 1 + e^{j\omega} + e^{-j\omega} = 1 + e^{-j\omega} \\
&=& 1 + e^{j\omega} + e^{-j\omega} = 1 + e^{-j\omega} \\
&=& 1 + e^{j\omega} + e^{-j\omega} = 1 + e^{-j\omega} \\
&=& 1 + e^{-j\omega} + e^{-j\omega} = 1 + e^{-j\omega} \\
&=& 1 + e^{-j\omega} + e^{-j\omega} = 1 + e^{-j\omega} \\
&=& 1 + e^{-j\omega} + e^{-j\omega} = 1 + e^{-j\omega} \\
&=& 1 + e^{-j\omega} + e^{-j\omega} = 1 + e^{-j\omega} \\
&=& 1 + e^{-j\omega} + e^{-j\omega} = 1 + e^{-j\omega} \\
&=& 1 + e^{-j\omega} + e^{-j\omega} + e^{-j\omega} = 1 + e^{-j\omega} \\
&=& 1 + e^{-j\omega} + e^{-j\omega} + e^{-j\omega} = 1 + e^{-j\omega} \\
&=& 1 + e^{-j\omega} + e^{-j\omega} + e^{-j\omega} = 1 + e^{-j\omega} + e^{-j\omega} \\
&=& 1 + e^{-j\omega} + e^{-j\omega} + e^{-j\omega} + e^{-j\omega} + e^{-j\omega} \\
&=& 1 + e^{-j\omega} + e^{-j\omega} + e^{-j\omega} + e^{-j\omega} + e^{-j\omega} \\
&=& 1 + e^{-j\omega} \\
&=& 1 + e^{-j\omega} +$$

- What is the DTFT of $x_3[n] = a^n u[n]$ for |a| < 1?
- We have:

$$X(e^{j\omega}) = \sum_{n=0}^{\infty} a^n e^{-j\omega n} = \sum_{n=0}^{\infty} (ae^{-j\omega})^n = \frac{1}{1 - ae^{-j\omega}}.$$

$$|X(e^{j\omega})|^2 = X(e^{j\omega}) \cdot X(e^{j\omega})^{**}$$

$$= \frac{1}{1 - ae^{j\omega}} \cdot \frac{1}{1 - ae^{j\omega}}$$

$$= \frac{1}{1 + a^2 - ae^{j\omega} - ae^{j\omega}} = \frac{1}{1 + a^2 - 2a\cos\omega}$$

DTFT of $a^n u[n]$

Note that: $\frac{1}{1-2a\cos\omega+a^2}$ is maximized (minimized) when $-2a\cos\omega$ is minimized (maximized)

Case A. If 0 < a < 1, then $\left| X(e^{j\omega}) \right|^2$ achieves maximum when $\omega = 0$, and $\left| X(e^{j\omega}) \right|^2$ achieves minimum when $\omega = \pi$. Thus,

$$\max \left\{ \left| X(e^{j\omega}) \right|^2 \right\} = \frac{1}{1 - 2a + a^2} = \frac{1}{(1 - a)^2}$$
$$\min \left\{ \left| X(e^{j\omega}) \right|^2 \right\} = \frac{1}{1 + 2a + a^2} = \frac{1}{(1 + a)^2}.$$

Case B: If -1 < a < 0, then $\left| X(e^{j\omega}) \right|^2$ achieves maximum when $\omega = \pi$, and $\left| X(e^{j\omega}) \right|^2$ achieves minimum when $\omega = 0$. Thus,

$$\max \left\{ \left| X(e^{j\omega}) \right|^2 \right\} = \frac{1}{1 + 2a + a^2} = \frac{1}{(1+a)^2}$$
$$\min \left\{ \left| X(e^{j\omega}) \right|^2 \right\} = \frac{1}{1 - 2a + a^2} = \frac{1}{(1-a)^2}.$$

DTFT of $a^{|n|}$

ullet What is the DTFT of $x[n]=a^{|n|}$ for |a|<1?

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} a^{(n)} e^{-j\omega n}$$

$$= \sum_{n=-\infty}^{\infty} a^{(n)} e^{-j\omega n} + \sum_{n=1}^{\infty} a^{(n)} e^{-j\omega n}$$

$$= \sum_{n=-\infty}^{\infty} a^{(n)} e^{-j\omega n} + a^{(n)} e^{-j\omega n}$$

$$= \sum_{n=-\infty}^{\infty} a^{(n)} e^{-j\omega n} + a^{(n)} e^{-j\omega n}$$

$$= \sum_{n=-\infty}^{\infty} a^{(n)} e^{-j\omega n} + a^{(n)} e^{-j\omega n}$$

$$= \sum_{n=-\infty}^{\infty} a^{(n)} e^{-j\omega n} + a^{(n)} e^{-j\omega n}$$

$$= \sum_{n=-\infty}^{\infty} a^{(n)} e^{-j\omega n} + a^{(n)} e^{-j\omega n}$$

$$= \sum_{n=-\infty}^{\infty} a^{(n)} e^{-j\omega n} + a^{(n)} e^{-j\omega n}$$

$$= \sum_{n=-\infty}^{\infty} a^{(n)} e^{-j\omega n} + a^{(n)} e^{-j\omega n}$$

$$= \sum_{n=-\infty}^{\infty} a^{(n)} e^{-j\omega n} + a^{(n)} e^{-j\omega n}$$

$$= \sum_{n=-\infty}^{\infty} a^{(n)} e^{-j\omega n} + a^{(n)} e^{-j\omega n}$$

$$= \sum_{n=-\infty}^{\infty} a^{(n)} e^{-j\omega n} + a^{(n)} e^{-j\omega n}$$

$$= \sum_{n=-\infty}^{\infty} a^{(n)} e^{-j\omega n} + a^{(n)} e^{-j\omega n}$$

$$= \sum_{n=-\infty}^{\infty} a^{(n)} e^{-j\omega n} + a^{(n)} e^{-j\omega n}$$

$$= \sum_{n=-\infty}^{\infty} a^{(n)} e^{-j\omega n} + a^{(n)} e^{-j\omega n}$$

$$= \sum_{n=-\infty}^{\infty} a^{(n)} e^{-j\omega n} + a^{(n)} e^{-j\omega n}$$

$$= \sum_{n=-\infty}^{\infty} a^{(n)} e^{-j\omega n} + a^{(n)} e^{-j\omega n}$$

$$= \sum_{n=-\infty}^{\infty} a^{(n)} e^{-j\omega n} + a^{(n)} e^{-j\omega n}$$

$$= \sum_{n=-\infty}^{\infty} a^{(n)} e^{-j\omega n} + a^{(n)} e^{-j\omega n}$$

$$= \sum_{n=-\infty}^{\infty} a^{(n)} e^{-j\omega n} + a^{(n)} e^{-j\omega n}$$

$$= \sum_{n=-\infty}^{\infty} a^{(n)} e^{-j\omega n} + a^{(n)} e^{-j\omega n}$$

$$= \sum_{n=-\infty}^{\infty} a^{(n)} e^{-j\omega n} + a^{(n)} e^{-j\omega n}$$

$$= \sum_{n=-\infty}^{\infty} a^{(n)} e^{-j\omega n} + a^{(n)} e^{-j\omega n}$$

$$= \sum_{n=-\infty}^{\infty} a^{(n)} e^{-j\omega n} + a^{(n)} e^{-j\omega n}$$

$$= \sum_{n=-\infty}^{\infty} a^{(n)} e^{-j\omega n} + a^{(n)} e^{-j\omega n}$$

$$= \sum_{n=-\infty}^{\infty} a^{(n)} e^{-j\omega n} + a^{(n)} e^{-j\omega n}$$

$$= \sum_{n=-\infty}^{\infty} a^{(n)} e^{-j\omega n} + a^{(n)} e^{-j\omega n}$$

$$= \sum_{n=-\infty}^{\infty} a^{(n)} e^{-j\omega n} + a^{(n)} e^{-j\omega n}$$

$$= \sum_{n=-\infty}^{\infty} a^{(n)} e^{-j\omega n} + a^{(n)} e^{-j\omega n}$$

$$= \sum_{n=-\infty}^{\infty} a^{(n)} e^{-j\omega n} + a^{(n)} e^{-j\omega n}$$

$$= \sum_{n=-\infty}^{\infty} a^{(n)} e^{-j\omega n} + a^{(n)} e^{-j\omega n}$$

$$= \sum_{n=-\infty}^{\infty} a^{(n)} e^{-j\omega n} + a^{(n)} e^{-j\omega n}$$

$$= \sum_{n=-\infty}^{\infty} a^{(n)} e^{-j\omega n} + a^{(n)} e^{-j\omega n}$$

$$= \sum_{n=-\infty}^{\infty} a^{(n)} e^{-j\omega n} + a^{(n)} e^{-j\omega n}$$

$$= \sum_{n=-\infty}^{\infty} a^{(n)} e^{-j\omega n} + a^{(n)} e^{-j\omega n}$$

$$= \sum_{n=-\infty}^{\infty} a^{(n)} e^{-j\omega n} + a^{(n)} e^{-j\omega n}$$

$$= \sum_{n=-\infty}^{\infty} a^{(n)} e^{-j\omega n} + a^{(n)} e^{-j\omega n}$$

$$= \sum_{n=$$

Exercise

 $\hbox{ Note that $a^nu[n]\longleftrightarrow \frac{1}{1-ae^{-j\omega}}$. Now, given the discrete-time signal $x[n]$ with Fourier transform $X(e^{j\omega})=\frac{1}{1-\frac{1}{2}e^{j\omega}}$, calculate $x[n]$.}$

A.
$$x[n] = 2^n u[-n]$$

B. $x[n] = 2^{-n} u[-n]$

C. $x[n] = 2^{n+2} u[n+2]$

$$x[n] = 2^n u[-n]$$

$$x[n] = 2^n u[-n]$$

$$x[n] = 2^n u[-n]$$

$$x[n] = 2^n u[-n]$$

If
$$x[n] \leftrightarrow x(e^{j\omega})$$
, then, $x[-n] \leftrightarrow x(e^{-j\omega})$

$$x[n] = \frac{1}{2\pi} \int x(e^{j\omega}) e^{j\omega n} d\omega$$

$$x[-n] = \frac{1}{2\pi} \int x(e^{j\omega}) e^{-j\omega n} d\omega = \frac{1}{2\pi} \int x(e^{j\omega}) e^{j\omega n} d\omega,$$

$$\overline{x}[-n] = \frac{1}{2\pi} \int x(e^{j\omega}) e^{-j\omega n} d\omega = \frac{1}{2\pi} \int x(e^{j\omega}) e^{j\omega n} d\omega,$$

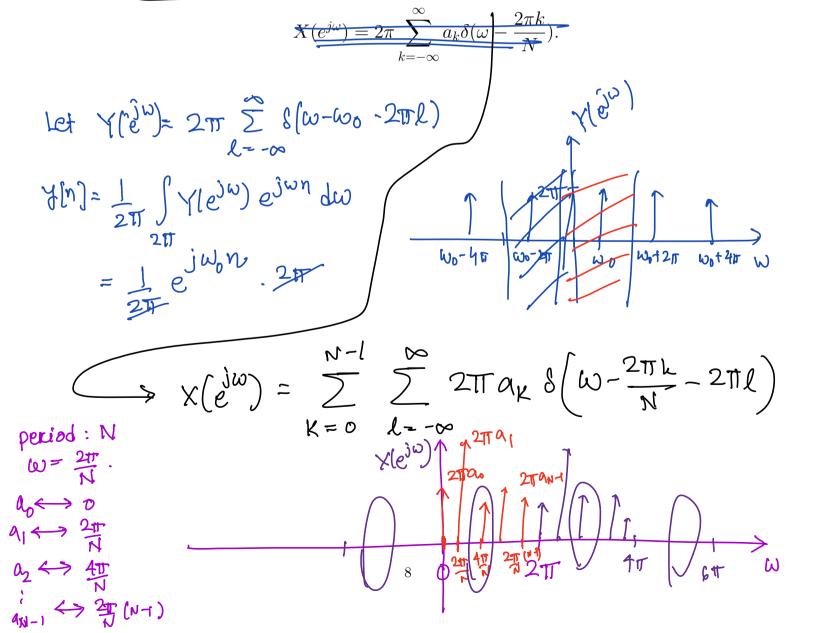
$$\overline{\omega} = -\omega.$$

DTFT of Periodic Signals

- Let x[n] be a periodic signal with period N. What is the FT of this signal?
- By the Fourier series decomposition of periodic signals, we have:

$$x[n] = \sum_{k = \langle N \rangle} a_k e^{jk\frac{2\pi}{N}n}.$$
• Show that $e^{j\omega_0 n} \longleftrightarrow 2\pi \sum_{l = -\infty}^{\infty} \delta(\omega - \omega_0 - 2\pi l)$

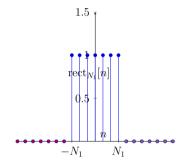
 $2\pi a_{K} \sum_{n=-\infty}^{\infty} \delta\left(w^{-2} \frac{\pi_{K}}{N} - 2n\right)$ • Using this and linearity of Fourier Transform, we get:



DTFT of Rectangular Pulse

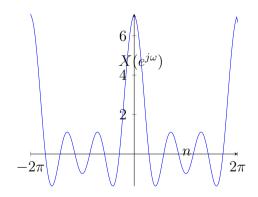
• FT of discrete-time rect

$$x[n] = \operatorname{rect}_{N_1}[n] = \begin{cases} 1 & |n| \le N_1 \\ 0 & \text{otherwise} \end{cases}$$



- Recall that $1 + \beta + \beta^2 + \ldots + \beta^{r-1} = \frac{1-\beta^r}{1-\beta}$.
- ullet For $\omega \neq 0$, we have:

$$X(e^{j\omega}) = \sum_{n=-N_1}^{N_1} e^{-j\omega n} = e^{-j\omega N_1} \frac{e^{2j\omega N_1 + 1} - 1}{e^{j\omega} - 1}$$



Properties of DTFT

- Periodicity of DTFT: $X(e^{j\omega}) = X(e^{j(\omega+2\pi)})$
- Linearity: $\alpha x[n] + \beta y[n] \longleftrightarrow \alpha X(e^{j\omega}) + \beta Y(e^{j\omega})$
- Time-Reversal: $x[-n] \longleftrightarrow X(e^{-j\omega})$

• Time-Reversal:
$$x[-n] \longleftrightarrow X(e^{j\omega})$$
• Time shift: $x[n-n_0] \longleftrightarrow e^{-j\omega n_0} X(e^{j\omega})$

$$\sum_{n=-\infty}^{\infty} x[n-n_0] e^{-j\omega n_0} = \sum_{n=-\infty}^{\infty} x[n-n_0] e^{-j\omega(n-n_0)} = \sum_{n=-\infty}^{\infty} x[n-n_0] e^{-j\omega(n-n_0)} = e^{-j\omega n_0} x(e^{j\omega})$$

$$= e^{-j\omega n_0} \left[\sum_{n=-\infty}^{\infty} x[n-n_0] e^{-j\omega(n-n_0)}\right] = e^{-j\omega n_0} x(e^{j\omega})$$

• Frequency shift: $e^{j\omega_0 n}x[n]\longleftrightarrow X(e^{j(\omega-\omega_0)})$

Frequency shift:
$$e^{j\omega_0 n}x[n] \longleftrightarrow X(e^{j(\omega-\omega_0)})$$

$$= \sum_{n=-\infty}^{\infty} x[n]e^{-j(\omega-\omega_0)}n = X(e^{j(\omega-\omega_0)})$$

• Conjugation:
$$x^*[n] \longleftrightarrow (X(e^{-j\omega}))^*$$

$$\times \left(\bar{e}^{j\omega}\right) = \sum_{n=-\infty}^{\infty} \chi[n]e^{j\omega n} \Rightarrow \left[\chi(\bar{e}^{j\omega})\right]^* = \sum_{n=-\infty}^{\infty} \chi[n]^* \left(\bar{e}^{j\omega n}\right)^* = \sum_{n=-\infty}^{\infty} \chi[n]^* e^{j\omega n}$$

$$= \sum_{n=-\infty}^{\infty} \chi[n]^* e^{j\omega n}$$

ullet Show that if x[n] is real and even, then $X(e^{j\omega})$ is also a real and even function of ω .

If
$$\chi[n]$$
 is real $\Rightarrow \chi[n] = \chi[n]^{*} \Rightarrow \chi(e^{j\omega}) = (\chi(\bar{e}^{j\omega}))^{*}$

If $\chi[n]$ is even $\Rightarrow \chi[n] = \chi[-n] \Rightarrow \chi(e^{j\omega}) = \chi(\bar{e}^{j\omega})$

If $\chi[n]$ is both real and even, (1) $\chi(\bar{e}^{j\omega}) = \chi(\bar{e}^{j\omega})^{*}$

(2) $\chi(e^{j\omega}) = \chi(\bar{e}^{j\omega})$
 $\Rightarrow \chi(e^{j\omega})$ is even.

Properties of DTFT

• DT integration (accumulation):

$$\sum_{k=-\infty}^{n} x[k] \longleftrightarrow \frac{1}{1 - e^{-j\omega}} X(e^{j\omega}) + \pi X(e^{j0}) \sum_{k=-\infty}^{\infty} \delta(\omega - 2k\pi).$$

ullet Corollary: Fourier transform of the unit step function u[n] is given by

$$X(e^{j\omega}) = \frac{1}{1 - e^{-j\omega}} + \pi \sum_{k = -\infty}^{\infty} \delta(\omega - 2k\pi).$$

$$\mathcal{R}(K)[N] = \left\{ \mathcal{R} \left[\frac{1}{K} \right] \text{ when } N \text{ is a multiple } K \right\}$$

$$\mathcal{R}(K)[N] = \left\{ \mathcal{R} \left[\frac{1}{K} \right] \text{ when } N \text{ is a multiple } K \right\}$$

$$\mathcal{R}(K)[N] = \left\{ \mathcal{R} \left[\frac{1}{K} \right] \text{ when } N \text{ is a multiple } K \right\}$$

$$\mathcal{R}(K)[N] = \left\{ \mathcal{R} \left[\frac{1}{K} \right] \text{ when } N \text{ is a multiple } K \right\}$$

$$\mathcal{R}(K)[N] = \left\{ \mathcal{R} \left[\frac{1}{K} \right] \text{ when } N \text{ is a multiple } K \right\}$$

$$\mathcal{R}(K)[N] = \left\{ \mathcal{R} \left[\frac{1}{K} \right] \text{ when } N \text{ is a multiple } K \right\}$$

$$\mathcal{R}(K)[N] = \left\{ \mathcal{R} \left[\frac{1}{K} \right] \text{ when } N \text{ is a multiple } K \right\}$$

$$\mathcal{R}(K)[N] = \left\{ \mathcal{R} \left[\frac{1}{K} \right] \text{ when } N \text{ is a multiple } K \right\}$$

$$\mathcal{R}(K)[N] = \left\{ \mathcal{R} \left[\frac{1}{K} \right] \text{ when } N \text{ is a multiple } K \right\}$$

$$\mathcal{R}(K)[N] = \left\{ \mathcal{R} \left[\frac{1}{K} \right] \text{ when } N \text{ is a multiple } K \right\}$$

$$\mathcal{R}(K)[N] = \left\{ \mathcal{R} \left[\frac{1}{K} \right] \text{ when } N \text{ is a multiple } K \right\}$$

$$\mathcal{R}(K)[N] = \left\{ \mathcal{R}(K)[N] + \mathcal{R}(K)[N] \right\}$$

$$\mathcal{R}(K)[N] = \left\{ \mathcal{R}(K)[N]$$

$$\sum_{n=-\infty}^{\infty} \chi_{(k)}[n] e^{j\omega n} = \sum_{m=-\infty}^{\infty} \chi_{[m]} e^{j\omega km} = \chi(e^{j\omega k})$$

$$= \sum_{m=-\infty}^{\infty} \chi_{[m]} e^{j\omega km} = \chi(e^{j\omega k})$$
Properties of DTFT cont.

• Time-scaling: Define

$$x_{(k)}[n] = \begin{cases} x[\frac{n}{k}] & \text{for } n \text{ a multiple of } k \\ 0 & \text{otherwise} \end{cases}$$

Then,

$$x_{(k)}[n] \longleftrightarrow X(e^{j\omega k}).$$

• Differentiation in frequency domain:

$$x(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}.$$

$$x(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n] (-jn)e^{-j\omega n}.$$

Parseval's Relation:

holds only when
$$\sum_{n=-\infty}^{\infty}|x[n]|^2=\frac{1}{2\pi}\int_{2\pi}|X(e^{j\omega})|^2d\omega$$
 as finite energy / for periodic square integrable. Farewalls

for peruodic DT signals, use Pareseval's relation given for tourier Series 12 coefficients.

DTFT Properties

TABLE 5.1 PROPERTIES OF THE DISCRETE-TIME FOURIER TRANSFORM

Section	Property	Aperiodic Signal	Fourier Transform
		x[n]	$X(e^{j\omega})$ periodic with
		y[n]	$Y(e^{jw})$ period 2π
5.3.2	Linearity	ax[n] + by[n]	$aX(e^{j\omega}) + bY(e^{j\omega})$
5.3.3	Time Shifting	$x[n-n_0]$	$e^{-j\omega n_0}X(e^{j\omega})$
5.3.3	Frequency Shifting	$e^{j\omega_0 n}x[n]$	$X(e^{j(\omega-\omega_0)})$
5.3.4	Conjugation	$x^*[n]$	$X^*(e^{-j\omega})$
5.3.6	Time Reversal	x[-n]	$X(e^{-j\omega})$
5.3.7	Time Expansion	$x_{(k)}[n] = \begin{cases} x[n/k], & \text{if } n = \text{multiple of } k \\ 0, & \text{if } n \neq \text{multiple of } k \end{cases}$	$X(e^{jk\omega})$
5.4	Convolution	x[n] * y[n]	$X(e^{j\omega})Y(e^{j\omega})$
5.5	Multiplication	x[n]y[n]	$\frac{1}{2\pi} \int_{2\pi} X(e^{j\theta}) Y(e^{j(\omega-\theta)}) d\theta$
5.3.5	Differencing in Time	x[n] - x[n-1]	$(1-e^{-j\omega})X(e^{j\omega})$
5.3.5	Accumulation	$\sum_{k=-\infty}^{n} x[k]$	$\frac{1}{1-e^{-j\omega}}X(e^{j\omega})$
5.3.8	Differentiation in Frequency	nx[n]	$+\pi X(e^{j0}) \sum_{k=-\infty}^{+\infty} \delta(\omega - 2\pi k)$ $j \frac{dX(e^{j\omega})}{d\omega}$
			$\begin{cases} X(e^{j\omega}) = X^*(e^{-j\omega}) \\ \Re e\{X(e^{j\omega})\} = \Re e\{X(e^{-j\omega})\} \\ \Im e\{X(e^{j\omega})\} = -\Im e\{X(e^{-j\omega})\} \\ X(e^{j\omega}) = X(e^{-j\omega}) \\ \not \leq X(e^{j\omega}) = -\not \leq X(e^{-j\omega}) \end{cases}$
5.3.4	Conjugate Symmetry for Real Signals	x[n] real	$\Re\{X(e^{j\omega})\} = \Re\{X(e^{-j\omega})\}$
			$\langle \mathfrak{Gm}\{X(e^{j\omega})\} = -\mathfrak{Gm}\{X(e^{-j\omega})\}$
			$ X(e^{j\omega}) = X(e^{-j\omega}) $
5.3.4	Symmetry for Real, Even Signals	x[n] real an even	$X(e^{j\omega})$ real and even
5.3.4	Symmetry for Real, Odd Signals	x[n] real and odd	$X(e^{j\omega})$ purely imaginary and odd
1.3.4	Even-odd Decomposition	$x_e[n] = \mathcal{E}v\{x[n]\}$ [x[n] real]	$\Re e\{X(e^{j\omega})\}$
	of Real Signals	$x_o[n] = Od\{x[n]\} [x[n] \text{ real}]$	$j\mathcal{G}m\{X(e^{j\omega})\}$
.3.9	-	ation for Aperiodic Signals	Janoty (e.)}
,			
	$\sum x[n] ^2$	$\frac{d}{dt} = \frac{1}{2\pi} \int_{\mathbb{R}^{n}} X(e^{j\omega}) ^2 d\omega$	

Exercise

Determine the DTFT of the signal

$$x[n] = \begin{cases} 1, & n \in \{0, 2, 4\} \\ 2, & n \in \{1, 3, 5\} \\ 0, & \text{otherwise.} \end{cases}$$

$$\chi(e^{j\omega}) = \sum_{n=-\infty}^{\infty} \chi(n)e^{-j\omega n} = 1 + e^{-j2\omega} + e^{-j4\omega}$$

 $+2e^{-j\omega} + 2e^{-j3\omega} + 2e^{-j5\omega}$

$$\chi(e^{j\omega}) = \sum_{n=-\infty}^{\infty} \chi[n]e^{-j\omega n} = \sum_{m=-\infty}^{\infty} \chi[-m]e^{j\omega m}$$

$$\chi(e^{j\omega}) = \sum_{n=-\infty}^{\infty} \chi[n]e^{-j\omega n} = \sum_{m=-\infty}^{\infty} \chi[-m]e^{j\omega m}$$

$$\chi(e^{j\omega}) = \sum_{n=-\infty}^{\infty} \chi[n]e^{-j\omega n} = \sum_{m=-\infty}^{\infty} \chi[-m]e^{j\omega m}$$

$$\chi(e^{j\omega}) = \sum_{n=-\infty}^{\infty} \chi[n]e^{-j\omega n} = \sum_{m=-\infty}^{\infty} \chi[-m]e^{j\omega m}$$

Duality of DTFT and Continuous-time Fourier Series

- We noticed that $X(e^{j\omega})$ is always periodic with period 2π .
- ullet Let $z(t)=X(e^{jt})$ which is periodic with period $2\pi.$
- T,hen $z(t) = \sum_{k=-\infty}^{\infty} a_k e^{jkt}$ where:

$$a_k = \frac{1}{2\pi} \int_{2\pi} z(t)e^{-jkt}dt = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega})e^{-jk\omega}d\omega = x[-k].$$

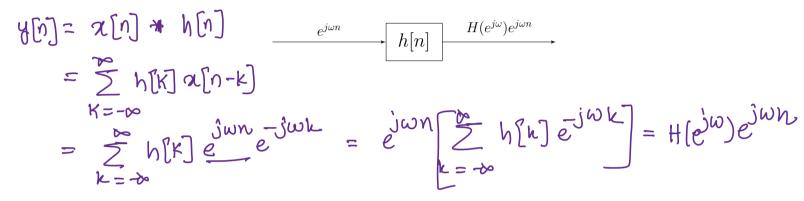
• $x[n] \longleftrightarrow X(e^{j\omega}) \longleftrightarrow x[-n].$

For a continuous-time persiodic signal, Fs welficients span from

For a discrete-time signal that spans from -00 to 00, its DTFT is a continuous function of w which is periodic with peniod 211.

Properties of DTFT: Convolution Property

- As in the case of CT, synthesis equation provides decomposition of a discretetime signal into exponential components.
- From convolution, we have



• Therefore:

ullet Therefore: For any signals x[n] and h[n], we have:

$$y[n] = x[n] * h[n] \longleftrightarrow X(e^{j\omega}) \underline{H(e^{j\omega})} = Y(e^{j\omega}).$$
 In the system.

• Multiplication:

$$y[n] = x[n] \times z[n] \longleftrightarrow Y(e^{j\omega}) = \frac{1}{2\pi} \int_{2\pi} X(e^{j\theta}) Z(e^{j\omega - j\theta}) d\theta.$$

Exercise

Consider an LTI System with inpulse response $h[n]=\alpha^n u[n]$ with $|\alpha|<1$. Let the input to this system be $\mathbf{X}[n]=\beta^n u[n]$ with $|\beta|<1$. Determine y[n] when $\alpha=\beta$ and $\alpha\neq\beta$.

Exercise

Solve Example 5.14 from the book.

Frequency Response of Systems Characterized by Constant-Coefficient Difference Equation

• Similar to CT, in DT, many practical systems are defined by **constant coefficient difference equations**

$$a_N y[n-N] + \dots + a_1 y[n-1] + a_0 y[n]$$

= $b_M x[n-M] + \dots + b_1 x[n-1] + b_0 x[n].$

• Taking FT of both sides we get:

$$(a_N e^{-j\omega N} + \dots + a_1 e^{-j\omega} + a_0) Y(e^{j\omega})$$

= $(b_M e^{-j\omega M} + \dots + b_1 e^{-j\omega} + b_0) X(e^{j\omega})$

• Therefore,

$$H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})} = \frac{b_M e^{-j\omega M} + \dots + b_1 e^{-j\omega} + b_0}{a_N e^{-j\omega N} + \dots + a_1 e^{-j\omega} + a_0}.$$

Problems

• Problem 1: What is the frequency response of a system whose input-output behavior is given by:

applying DTFT on both sides, we obtain
$$Y(e^{j\omega}) - e^{-j\omega} Y(e^{-j\omega}) = 3X(e^{-j\omega}) + 2e^{-j\omega} X(e^{-j\omega}) + e^{-j2\omega} X(e^{-j\omega})$$

$$H(e^{j\omega}) = \frac{3 + 2e^{-j\omega} + e^{-j2\omega}}{1 - e^{-j\omega}}$$

• Problem 2: Suppose $x[n] \longleftrightarrow X(e^{j\omega})$. Determine DTFT of the following signals in terms of $X(e^{j\omega})$.

$$-x_{1}[n] = x[-1-n] + x[1-n] \rightarrow 2\omega S \omega X$$

$$-x_{2}[n] = (n-1)^{2}x[n]. \qquad \alpha[-n] \neq$$

$$\chi_{2}[n] = \int_{-\infty}^{\infty} \chi(n) - 2n\chi(n) + \chi(n) \qquad \chi_{2}[-1-n] + \chi(e^{j\omega}) \qquad -2id\chi(e^{j\omega}) \qquad -2id\chi(e^{j\omega}) \qquad \chi_{2}[-n] =$$

$$+\chi(e^{j\omega}) = -\chi[-n] =$$

2005 W
$$\chi(e^{j\omega})$$

 $\alpha[-n] \leftrightarrow \chi(e^{-j\omega})$
 $\alpha[-1-n] \leftrightarrow e^{j\omega} \chi(e^{-j\omega})$
 $\alpha[-(n+1)]$
 $\alpha[-(n+1)] \leftrightarrow e^{-j\omega} \chi(e^{-j\omega})$

• Problem 3: When $x[n]=(\frac{4}{5})^nu[n]$ is applied to a DT LTI system, the output $y[n]=n(\frac{4}{5})^nu[n]$. Determine the difference equation relating x[n] and y[n].

$$y[n] = n(\frac{1}{5}) \cdot u[n]. \text{ Determine the difference equation relating } x[n] \text{ and } y[n].$$

$$x(e^{j\omega}) = \frac{1}{1 - \frac{1}{5}e^{-j\omega}}, \quad y(e^{j\omega}) = \frac{1}{1 - \frac{1}{5}$$

$$\Rightarrow \underbrace{4} e^{j\omega} \times (e^{j\omega}) = \Upsilon(j\omega) - \underbrace{4} e^{j\omega} \times (e^{j\omega})$$

$$\Rightarrow \underbrace{4} \times [n-1] = \Upsilon(n-1) - \underbrace{4} \times [n-1] \Rightarrow \Upsilon(n-1) + \chi(n-1)$$
First Order Discrete-Time System

• A discrete-time first order LTI system is given by:

$$y[n] - ay[n-1] = x[n]$$
 with $|a| < 1$.

- Determine its frequence response $H(e^{j\omega})$ and impulse response h[n].
- Determine its step response s[n].
- The parameter a plays the role of time constant. If |a| is close to 1, the response is slow, and if |a| is close to 0, the response is fast.
- If a < 0, we see oscillations and overshoot.