EE61012 – Spring Semester 2024-25

Homework 1: Convex Optimization in Control and Signal Processing

Prof. Ashish Ranjan Hota Department of Electrical Engineering, IIT Kharagpur

Q 1.1: Bounded Set

Let $\{x_n\}_{n\in\mathbb{N}}$ be a sequence that converges to $x^* \in X$. Show that the set $\{x_n\}_{n\in\mathbb{N}} = \{x_1, x_2, \ldots\} \subseteq X$ is bounded. Recall that a sequence converges if for every $\epsilon > 0$, there exists $n \in \mathbb{N}$ such that $||x^* - x_m|| \le \epsilon$ for all $m \ge n$.

Q 1.2: Open and Closed Set

Is the set $X = \{x \in \mathbb{R}^2 | x_1 + x_2 = 1\}$ an open set? Is it a closed set?

Q 1.3: Intersection of Closed Sets

Prove that intersection of arbitrarily many closed sets is a closed set.

Q 1.4: Convex Hull

Let $C = \{x \in \mathbb{R} | 1 \le x \le 2, 3 \le x \le 4\}$. Find the affine hull, conic hull, and convex hull of C.

Q 1.5: Convex Set

Let $x_0, v \in \mathbb{R}^n$. Let $C = \{x \in \mathbb{R}^n | x = x_0 + \alpha v, \alpha \ge 0\}$ be the set of points that lie on the ray originating from x_0 along the direction v. Is C an affine set? Is it a convex set? Is it a cone?

Q 1.6: Convex Set

Show that the set $C = \{x \in \mathbb{R}^2 | x_1 x_2 \ge 1, x_1 \ge 0, x_2 \ge 0\}$ is a convex set. Hint: If $a, b \ge 0$ and $0 \le \theta \le 1$, then $a^{\theta} b^{(1-\theta)} \le \theta a + (1-\theta)b$.

Q 1.7: Convex Set

Let $x \in \mathbb{R}^n$ and $F_0, F_1, \ldots, F_n \in \mathbb{S}^n$ where \mathbb{S}^n is the set of symmetric matrices of dimension n. A linear matrix inequality (LMI) $F : \mathbb{R}^n \to \mathbb{S}^n$ is an expression of the form:

$$F(x) := F_0 + \sum_{i \in [n]} x_i F_i \preceq 0_{n \times n}.$$

Show that the set $\{x \in \mathbb{R}^n \mid F(x) \leq 0_{n \times n}\}$ is a convex set.

Q 1.8: Dual Cones

Let $K \subseteq \mathbb{R}^n$ be a cone. Consider the following set:

$$K^* = \{ y \in \mathbb{R}^n | x^\top y \ge 0, \forall x \in K \}.$$

 K^* is called the dual cone of the set K. Show that:

a. K^* is a convex set and is a cone.

b. Let $K_1 \subseteq K_2$. Then the respective dual cones satisfy: $K_2^* \subseteq K_1^*$.

Q 1.9: Convex Sets and Cones

Is the set $C = \{(x, y) | ||x||_2^2 \le y\} \subseteq \mathbb{R}^2$ convex? Is this a cone?

Q 1.10: Union of Convex Sets

Give an example of two convex sets X_1 and X_2 whose union is not convex.

Q 1.11: Convex Set

Let $C \in \mathbb{R}^n$ be a compact (closed and bounded) convex set. For a scalar α , let $C(\alpha)$ be the set of all points in C whose first coordinate is closer to α than any other point. In other words, $C(\alpha) = \{x \in C | |x_1 - \alpha| \le |y_1 - \alpha|, \forall y \in C\}$. Is $C(\alpha)$ a convex set for any choice of C and α ?

Q 1.12: Cone

Let $C = \{x \in \mathbb{R}^2 | x_2 \ge 0, x_2 \ge |x_1|\}$. Show that C is a cone.

Q 1.13: Midsem Spring 2023-24

Determine if the following sets in \mathbb{R}^2 are convex sets together with suitable explanation.

•
$$S_1 = \{(x_1, x_2) | x_2 \ge \exp^{(x_1 - 1)} \}.$$

- $S_2 = \{(x_1, x_2) | x_2 \le x_1(x_1 2)(x_1 3)\}.$
- $S_3 = \{(x_1, x_2) | x_1^2 + x_2^2 \le 4, x_1 \ge 0\}.$

•
$$S_4 = \{x \in \mathbb{R}^2 | x_1^2 + x_2^2 \le 2\}.$$

•
$$S_5 = \{x \in \mathbb{R}^2 | x_1^2 + x_2^2 \le 2, (x_1 - 1)^2 + (x_2 + 1)^2 \le 5\}.$$

• $S_6 = \{x \in \mathbb{R}^2 | x_1^2 + x_2^2 \le 2\} \cup \{x \in \mathbb{R}^2 | (x_1 - 1)^2 + (x_2 + 1)^2 \le 1\}.$

Q 1.14: Endsem Spring 2023-24

Determine if the following sets are convex sets.

•
$$S_1 = \{x \in \mathbb{R}^n | \sum_{i=1}^n x_i^2 = 1\}.$$

• $S_2 = \{x \in \mathbb{R}^3 | \frac{x_1^2 + 4x_2^2 + 4x_1x_2}{2x_1 + x_2 + x_3} \le 10, 2x_1 + x_2 + x_3 > 0\}.$

Q 1.15: Separating Hyperplane

Let $C_1 = \{x \in \mathbb{R}^2 | x_1 \ge 0, x_2 \ge 0\}$, and let $C_2 = \{x \in \mathbb{R}^2 | x_1 \le 0, x_2 \le 0\}$. Find a hyperplane that separates C_1 and C_2 .

Q 1.16: Convex Function

Let $x_k \in \mathbb{R}^n, k = 1, 2, ..., T$. Let $x = [x_1^\top, x_2^\top, ..., x_k^\top]^\top \in \mathbb{R}^{nT}$ where $f : \mathbb{R}^{nT} \to \mathbb{R}$. Let $f(x) = \sum_{k=1}^T x_k^\top Q_k x_k$, where each Q_k is positive semi-definite. Then show that f is a convex function.

Q 1.17: Midsem Spring 2023-24

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a differentiable convex function. Show that

$$(\nabla f(x) - \nabla f(y))^{\top}(x - y) \ge 0, \quad \forall x, y \in \operatorname{dom} f.$$

Q 1.18: Convex Function

Suppose that g(x) is convex and h(x) is concave. Suppose the domain of both functions is a closed, convex set C such that both g(x) and h(x) are always positive. Prove that the function $f(x) = \frac{g(x)}{h(x)}$ is quasi-convex, i.e., all sub-level sets of f are convex sets.

Q 1.19: Convex Function

Determine whether the following functions $f_i : \mathbb{R}^2 \to \mathbb{R}$ are convex, concave or neither.

- a. $f_1(x_1, x_2) = x_1 x_2$ with domain $x_1 > 0, x_2 > 0$.
- b. $f_2(x_1, x_2) = -\frac{1}{x_1 x_2}$ with domain $x_1 > 0, x_2 > 0$.
- c. $f_3(x_1, x_2) = \frac{x_1^2}{x_2}$ with domain $x_1 \in \mathbb{R}, x_2 > 0$.
- d. $f_4(x_1, x_2) = x_1 \log \left(1 + \frac{\beta x_2}{x_1}\right)$ with domain $x_1, x_2 > 0$, and $\beta \in \mathbb{R}$ is a constant.

e.
$$f_5(x) = -(\sum_{i=1}^n x_i^a)^{1/a}$$
 for $a \in (0, 1)$.

- f. $f_6(x) = \min(0.5, x, x^2)$.
- g. $f_7(x) = \max_{i \in \{1, 2, \dots, n\}} x_i \min_{i \in \{1, 2, \dots, n\}} x_i$.

Q 1.20: Convex Function

If f is a convex function, then g(x,t) = tf(x/t) is also a convex function. You may use the epigraph definition of convex functions to show the above.

Q 1.21: Convex Optimization

Formulate an optimization problem to find the largest circle contained in the triangle $X := \{x \in \mathbb{R}^2 \mid x_1 \ge 0, x_2 \ge 0, 3x_1 + 4x_2 \le 12\}$. Clearly state the decision variables, constraints and cost function. Determine if the problem is a convex optimization problem.

Q 1.22: Convex Optimization

Formulate an optimization problem to find the minimum distance between a circle $X_1 := \{x \in \mathbb{R}^2 \mid x_1^2 + x_2^2 \leq 1\}$ and the line $X_2 := \{x \in \mathbb{R}^2 \mid x_1 - x_2 = 2\}$. Clearly state the decision variables, constraints and cost function. Determine if the problem is a convex optimization problem.

Q 1.23: Midsem Spring 2022-23

Answer the following questions.

- 1. Let $f(x) = \frac{x^2+2}{x+2}$ with dom $(f) = (-\infty, -2)$. Is this function convex, concave or neither?
- 2. Show that a function is convex if and only if its epigraph is a convex set.
- 3. Consider an optimization problem with cost function $f(x) = -x_1 + x_2^2$ and constraint set $X = \{x \in \mathbb{R}^2 | -x_1^2 x_2^2 + 4 \le 0, x_1 + x_2 \ge -2\}$. Explain with justificiation whether this problem is a convex optimization problem or not.

Q 1.24: Midsem Spring 2022-23

Consider the set $X := \{x \in \mathbb{R}^n | | |x - z_0||_2 \le ||x - z_i||_2, i = 1, 2, ..., k\}$ where $z_0, z_1, ..., z_k \in \mathbb{R}^n$. Show that this set is a polyhendron and can be written as $X := \{x \in \mathbb{R}^n | Ax \le b\}$. Find A and b.

Q 1.25: Endsem Spring 2022-23

Consider the following optimization problem:

1

$$\begin{array}{ll} \text{maximize}_{x \in \mathbb{R}^1} & 2x - x^2\\ \text{subject to} & 0 \le x \le 3. \end{array}$$

Is the above problem a convex optimization problem? Find a globally optimal solution of the above.

Q 1.26: Endsem Spring 2022-23

Determine if the following statements are true or false. If true, justify. If false, give a counter example.

- 1. A convex optimization problem can have at most one globally optimal solution.
- 2. A convex optimization problem must have at least one globally optimal solution.
- 3. Any optimization problem with an unbounded feasible region does not have an optimal solution.

Q 1.27: Endsem Spring 2022-23

Consider a function $f : \mathbb{R}^2 \to \mathbb{R}$ given by $f(x) = (x_1 + x_2^2)^2$ where $x = [x_1 x_2]$.

- 1. Compute the gradient of f.
- 2. At $x_0 = [0, 1]$, is the direction d = [1, -1] a descent direction, i.e., with directional derivative negative?
- 3. Find $\alpha > 0$ that minimizes $f(x_0 + \alpha d)$.

Q 1.28: Endsem Spring 2023-24

Consider the optimization problem $\max\{g(y)|f_1(y) \leq 0, f_2(y) \leq 0\}$ with g being a concave function and f_1, f_2 being convex functions. Let Y_{opt} be the set of optimal solutions of the above problem.

Now, suppose the problem $\max\{g(y)|f_1(y) \leq 0\}$ has a unique optimal solution y^* .

If $f_2(y^*) \leq 0$, then show that $Y_{\text{opt}} = \{y^*\}$.

Q 1.29: Endsem Spring 2023-24

Determine if the following functions are convex functions.

- $f_1(x) = \frac{1}{k} \sum_{i=1}^k \log(1 + e^{-a_i^\top x})$ where $x \in \mathbb{R}^n$.
- $f_2(x) = \log(e^{x_1} + e^{x_2})$ for $x \in \mathbb{R}^2$.