
EE61012: Convex Optimization for Control and Signal
Processing

Instructor: Prof. Ashish R. Hota

Class Hours: G Slot + S3(2) Slot. Wednesday: 11am - 11:55pm, Thursday:
12pm - 12:55pm, Thursday: 5pm - 5:55pm, Friday: 8am-8:55am

Venue: NR 413

Grading Scheme: 50 % Endsem, 30 % Midsem, 20 % Tutorial and Class
Tests

Preferred Mode of Contact: Send email to ahota@ee.iitkgp.ac.in with
subject containing [EE61012]. Do not forget to write your name and roll no.

Any email with a blank subject and without name and roll no. will be ignored.

1

 

(null)://(null)ahota@ee.iitkgp.ac.in


Content

Theory:

Formal definition of an optimization problem

Basic topology of sets and existence of optimal solutions

Gradient, Hessian, and optimality conditions for unconstrained problems

Convex sets and properties

Convex functions and properties

Convex optimization problems and their classifications

Separating Hyperplane Theorems, Theorems of the Alternative, LP Duality

Lagrangian duality and KKT optimality conditions

Algorithms:

First order gradient based algorithms under smoothness, strong convexity
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Applications:

Regression, support vector machines, ML estimation, hypothesis testing

Stability analysis and controller synthesis for linear dynamical systems

Robust optimization
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Computing Resources

MATLAB Toolbox
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CVX: http://cvxr.com/cvx/

Python Toolbox

CVXOPT: https://cvxopt.org/index.html

CVXPY: https://www.cvxpy.org/

PYOMO: http://www.pyomo.org/

Solvers

MOSEK: https://www.mosek.com/

Gurobi: https://www.gurobi.com/

IPOPT: https://github.com/coin-or/Ipopt

COIN-OR: https://github.com/coin-or/

For optimal control, Casadi: https://web.casadi.org/
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Preliminaries

See https://www.stat.cmu.edu/~ryantibs/convexopt/prerequisite_topics.
pdf for refresher.

Please also see the Appendices of Boyd’s Book and Chapter 2 of ACO Book.
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Optimization in Abstract Form

An optimization problem can be stated as

min
x2X

f(x), (1)

where

x decision variable, often a vector in Rn

X set of feasible solutions, often a subset of Rn

– often specified in terms of equality and inequality constraints
X :=

�
x 2 Rn|gi(x)  0, hj(x) = 0, i 2 {1, 2, . . . ,m}, j 2 {1, 2, . . . , p}

 
.

f : Rn ! R cost function

Goal:

Find x
⇤ 2 X that minimizes the cost function, i.e., f(x⇤)  f(x) for every

x 2 X.

Optimal value: f ⇤
:= infx2X f(x)

Optimal solution: x⇤ 2 X if f(x⇤) = f
⇤.

What is infx2X f(x)?
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Infimum vs. Minimum

f
⇤
:= infx2X f(x) if f ⇤ is the greatest lower bound on the value of the

function f(x) over x 2 X.

For any ✏ > 0, there exists some x̄ 2 X such that f ⇤
< f(x̄) < f

⇤
+ ✏.

There are two possibilities:

There exists x
⇤ 2 X for which f(x

⇤
) = f

⇤. Then, we say that x
⇤ is the

optimal solution and f
⇤
:= minx2X f(x) is the optimal value.

f(x) 6= f
⇤ for any x 2 X. We then say that the infimum is not attained for

this problem.

If |X| is finite, then infimum is always attained.

The set of optimal solutions is denoted by argmin, and we say

x
⇤ 2 argminx2X f(x) = {y 2 X|f(y) = f

⇤}.

Note that [argminx2X f(x)] ✓ X.
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Examples

Let f(x) = e
�x and X = [0,1). Find f

⇤ and x
⇤.

What if X = [0, 1]?

What if X = [0, 1)?

Moral of the story: Properties of feasibility set X is critical in existence of optimal
solution.

Now suppose X = [0, 1] and f(x) = x for x > 0 and f(x) = 1 for x = 0.

Moral of the story:
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Infeasible optimization problem

The problem is infeasible when X is an empty set.

In this case, f ⇤
:= +1.

Example:
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Unbounded optimization problem

The problem is unbounded when f
⇤
= �1 over the feasibility set X.

Example:
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Basic Topology of Sets

Let B(x0, r) := {x 2 Rn|||x� x0||2  r} denote the ball around point x0 2 Rn

with radius r > 0.

Interior of the set X, denoted int(X):

Set X is called an open set if X = int(X).

Set X is called closed if and only if its complement is open.

Intersection of arbitrary number of closed sets is closed.

Examples of Open and Closed Sets’:
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Bounded and Compact Set

A set X is bounded if there exists B 2 (0,1) such that for any x1, x2 2 X,
||x1 � x2||2  B.

A set X is compact if it is closed and bounded.
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Global and Local Optimum

Definition 1 (Global Optimum). A feasible solution x
⇤ 2 X is a global

optimum if f(x⇤)  f(x) for all x 2 X. In this case, f ⇤
= f(x

⇤
). The set of

global optima is denoted by

argminx2X f(x) := {z 2 X|f(z) = f
⇤}.

Definition 2 (Local Optimum). A feasible solution x
⇤ 2 X is a local opti-

mum if f(x⇤)  f(x) for all x 2 B(x
⇤
, r) for some r > 0.

Existence of Optimal Solution:

Theorem 1: Weierstrass Theorem

If the cost function f is continuous and the feasible region X is compact
(closed and bounded), then (at least one global) optimal solution x

⇤ exists.

Example:

When X is not bounded, then the above theorem still holds when an ↵-sublevel
set of f , defined as

S↵(f) := {x 2 X|f(x)  ↵},
is non-empty and bounded for some ↵ 2 R.
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Notes

Given an optimization problem, first determine

the decision variable x and the space in which it resides

feasibility set X

cost function f : X ! R

Before attempting to solve the problem, check whether

f is continuous

X is non empty, or the problem is unbounded

X is closed, and bounded (or any sub-level set of X is bounded)

How to verify whether some x
⇤
is indeed an optimal solution?
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Gradient (rf (x))

For a function f : Rn ! R, its gradient is defined as:

Compute gradient of

f(x) = x
>
a

f(x) = x
>
Ax

f(x) = ||Ax� b||22
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Hessian (H(x))

For a function f : Rn ! R, its Hessian is defined as:

Compute Hessian of

f(x) = x
>
a

f(x) = x
>
Ax

f(x) = ||Ax� b||22
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Directional Derivative and Descent Direction

Consider a function f : Rn ! R. Let d 2 Rn be the direction of interest.

Definition: The directional derivative of f at point x0 2 Rn along direction
d 2 Rn is defined as

Define �(t) := f(x+ td).

Compute �
0
(0) :

If the directional derivative is negative along direction d, then d is called a descent
direction of the function at point x0.
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Necessary Condition of Optimality for Unconstrained
Problems

Theorem 2

If x⇤ is a local optimum for the problem minx2Rn f(x), then rf(x
⇤
) = 0.

Proof by contradiction:
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Su�cient Condition of Optimality for Unconstrained
Problems

Let f be twice continuously di↵erentiable over Rn.

Theorem 3

If for x⇤ 2 Rn, we have rf(x
⇤
) = 0 and the Hessian of the cost function

f at x
⇤ is a positive definite matrix, then x

⇤ is a local optimum for the
problem minx2Rn f(x).
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Least Sqaures Problem

Consider the following optimization problem:

min
x2Rn

||Ax� b||22.
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Convex Sets

Definition 1. Given a collection of points x1, x2, . . . , xk, the combination
�1x1 + �2x2 + . . . + �kxk is called Convex combination if �i � 0 andPk

i=1 �i = 1.
A set X is a convex set if all convex combinations of its elements are in the
set.

Equivalently, X is a convex set if

for every x, y 2 X, �x+ (1� �)y 2 X for any � 2 [0, 1].

it contains all convex combinations of any two of its elements.

Are the following sets convex:

X1 = {x 2 R2|x1 � 0, x2 � 0}.

X2 = {x 2 R2|x1x2 � 0}.
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Basic Examples of Convex Sets

Sets Defined by Linear Inequalities:

Hyperplane: H = {x 2 Rn|a>x = b} for some a 2 Rn
, b 2 R.

Halfspaces: {x 2 Rn|a>x  b} for some a 2 Rn
, b 2 R.
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Sets Defined by Norms

Consider the Ball Bp(c, R) := {x 2 Rn| ||x� c||p  R} where

||z||p :=

8
<

:

⇣P
i2[n] |xi|p

⌘ 1
p
, 1  p < 1,

maxi2[n] |xi|, p = 1.

Recall that norm satisfies triangle inequality and positive homogeneity. We define

[n] := {1, 2, . . . , n}.

Proposition 1. Bp(c, R) is a convex set.
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Positive Semidefinite Matrices

Proposition 2. Set of symmetric positive semidefinite matrices, denoted by
S+
n := {X 2 S

n|X ⌫ 0n⇥n}, is a convex set.
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Operations that preserve convexity of sets

Proposition 3 (Intersection). If X1, X2, . . . , Xm are convex sets, then \i2[m]Xi

is a convex set.

Example: Polyhedron {x 2 Rn|Ax  b} for some A 2 Rm⇥n
, b 2 Rm which is

an intersection of half-spaces.
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Operations that preserve convexity of sets

Proposition 4 (A�ne Image). If X is a convex set, f(x) = Ax + b with
A 2 Rm⇥n

, b 2 Rm, then the set f(X) := {y|y = Ax+ b for some x 2 X}
is a convex set.
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Operations that preserve convexity of sets

Proposition 5 (Product). If X1, X2, . . . , Xm are convex sets, then

X := X1 ⇥X2 ⇥ . . .⇥Xm := {(x1, x2, . . . , xm) | xi 2 Xi, i 2 [m]}

is a convex set.

Proposition 6 (Weighted Sum). If X1, X2, . . . , Xm are convex sets, thenP
i2[m] ↵iXi := {y | y =

P
i2[m] ↵ixi, xi 2 Xi} is a convex set for ↵i 2 R.

Example:
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Operations that preserve convexity of sets

Proposition 7 (Inverse A�ne Image). Let X 2 Rn be a convex set and
A : Rm ! Rn be an a�ne map with A(y) = Ay + b for matrix A and vector
b of suitable dimension. Then, the set A�1(X) := {y 2 Rm | Ay + b 2 X} is
a convex set.

Problem: Let X1 and X2 be convex sets. Determine if X1 \X2 is convex.
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Ellipsoid

Proposition 8. Let A be a symmetric positive definite matrix. Then, the set
E := {x 2 Rn|(x� c)>A�1(x� c)  1} is convex.
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Convex Combination

Given a collection of points x1, x2, . . . , xk, the combination �1x1 + �2x2 + . . .+
�kxk is called Convex if �i � 0 and

Pn
i=1 �i = 1.

Equivalent Definition:

Definition 4 (Convex Set). A set is convex if it contains all convex combi-
nations of its points.

Definition 5 (Convex Hull). The convex hull of a set X 2 Rn is the set of
all convex combinations of its elements, i.e.,

conv(X) :=

8
<

:y 2 Rn | y =
X

i2[k]

�ixi,where�i � 0,
X

i2[k]

�i = 1, xi 2 X8i 2 [k], k 2 N

9
=

; .

Proposition 9 (Convex Hull). The following are true.

conv(X) is a convex set (even when X is not).

If X is convex, then conv(X) = X.

For any set X, conv(X) is the smallest convex set containing X.

Example: Determine the convex hull of X = [0, 1] [ [2, 3].
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Combination of points

Given a collection of points x1, x2, . . . , xk, the combination �1x1 + �2x2 + . . .+
�kxk is called

Convex if �i � 0 and
Pn

i=1 �i = 1.

Conic if �i � 0,

A�ne if
Pn

i=1 �i = 1,

Linear if �i 2 R.

A set is convex/ convex cone/ a�ne subspace/linear subspace if it contains all
convex/conic/a�ne/linear combinations of its elements.

Definition 6. A set X is a cone if for any x 2 X,↵ � 0, we have ↵x 2 X.

Note: Every cone must include the origin. Union of two cones is a cone.
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Projection

Definition 7 (Projection). The projection of a point x0 on a set X, denoted
projX(x0) is defined as

projX(x0) := argminx2X ||x� x0||22.

Theorem 4: Projection Theorem

If X is closed and convex, then projX(x0) exists and is unique.

Main idea:

Existence due to Weierstrass Theorem

Uniqueness via contradiction exploiting convexity
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Supporting Hyperplane

Consider a hyperplane H = {x 2 Rn | a>x = b} with a 6= 0. We define

H
� := {x 2 Rn | a>x  b}.

Definition 8 (Supporting Hyperplane). A hyperplane H is a supporting hy-
perplane for a convex set C at a boundary point z 2 �C if z 2 C and C ✓ H

�.

Theorem 5: Supporting Hyperplane Theorem

If C is a convex set and z 2 �C is a boundary point, then there exists a
supporting hyperplane for C at z.
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Separating Hyperplane

Definition 9 (Separating Hyperplane). Let X1 and X2 be two nonempty sets
in Rn. A hyperplane H = {x 2 Rn | a>x = b} with a 6= 0 is said to separate
X1 and X2 if

X1 ✓ H
� := {x 2 Rn | a>x  b},

X2 ✓ H
+ := {x 2 Rn | a>x � b}.

Separation is said to be strict if X1 ⇢ {x 2 Rn | a>x  b
0}, X2 ⇢ {x 2 Rn |

a
>
x � b

00} with b
0
< b

00.

Equivalently
sup
x2X1

a
>
x  inf

x2X2

a
>
x

with the inequality being strict for strict separation.
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Separating Hyperplane Theorem

Theorem 6: Separating Hyperplane Theorem

Let X1 and X2 be convex sets with X1 \X2 = �. Then, there exists
a separating hyperplane for X1 and X2. If X1 is closed and bounded,
and X2 is closed, then X1 and X2 can be strictly separated.

Let X be a closed convex set and x0 /2 X. Then, there exists a
hyperplane that strictly separates x0 and X.

We will prove the second statement. Main Idea:

1. LetH = {x 2 Rn | a>x = b} with a = x0�projX(x0) and b = a
>
x0� ||a||22

2 .

2. Use properties of projection and convexity of X to verify that H is indeed
the separating hyperplane.
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Theorem of the Alternative (Farkas’ Lemma)

Lemma 1 (Farkas’ Lemma). Let A 2 Rm⇥n and b 2 Rm. Then, exactly one
of the following sets must be empty:

1. {x 2 Rn | Ax = b, x � 0}

2. {y 2 Rm | A>
y  0, b>y > 0}.

Insight: If unable to show a system of linear inequalities does not have a solution,
try to show that its alternative system does.

Main Idea:

1. Easy to show that if (2) is feasible, (1) is infeasible.

2. For the converse, suppose (1) is infeasible. Then, b /2 cone(a1, a2, . . . , an)
where ai is the i-th column of A. Find a hyperplane separating b from
cone(a1, a2, . . . , an) and show that (2) is feasible.
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Proof
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Domain of a Function

We consider extended real-valued functions f : Rn ! R [ {1} =: R̄.

The (e↵ective) domain of f , denoted dom(f), is the set {x 2 Rn | |f(x)| <
+1}.

Example: f(x) = 1
x . What is dom(f)?

f(x) =
Pn

i=1 xi log(xi). What is dom(f)?

When dom(f) 6= �, we say that the function f is proper.
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Convex Functions

Definition 10 (Convex Function). A function f : Rn ! R̄ is convex if

1. dom(f) ✓ Rn is a convex set, and

2. for every x, y 2 dom(f),� 2 [0, 1], we have f(�x+ (1� �)y)  �f(x) +
(1� �)f(y).

The Line segment joining (x, f(x)) and (y, f(y)) lies “above” the function.

Examples:

f(x) = x
2

f(x) = e
x

f(x) = a
>
x+ b for x 2 Rn
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Example: Norms

Definition 11 (Norms). A function ⇡ : Rn ! R̄ is a norm if

⇡(x) � 0, 8x and ⇡(x) = 0 if and only if x = 0,

⇡(↵x) = |↵|⇡(x) for all ↵ 2 R,

⇡(x+ y)  ⇡(x) + ⇡(y).

Examples:

||x||p := (
Pn

i=1 |xi|p)
1
p for p � 1.

||x||Q :=
p
x>Qx where Q is a positive definite matrix.

||A||F := (
Pm

i=1

Pn
j=1 |Ai,j|2)1/2 Frobenius norm on Rm⇥n.

Proposition 10. A Norm is a convex function.
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Example: Indicator Function

Definition 12. Indicator function IC(x) of a set C is defined as

IC(x) :=

(
0, x 2 C,

1, x /2 C.

Proposition 11. Indicator function IC(x) is convex if the set C is a convex
set.
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Example: Support Function

Proposition 12. Support function of a set C is defined as I⇤C(x) := supy2C x
>
y.

Support function of a set is always a convex function.
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Special Types of Convex Functions

Definition 13. A function f : Rn ! R̄ is

strictly convex if property (2) above holds with strict inequality for
� 2 (0, 1),

µ-strongly convex if f(x)� µ
||x||22
2 is convex, and

concave if �f(x) is convex.
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Jensen’s Inequality

Proposition 13. For a convex function f : Rn ! R̄, for any collection of
points {x1, x2, . . . , xk}, we have f(

Pk
i=1 �ixi) 

Pk
i=1 �if(xi) when �i � 0

and
Pk

i=1 �i = 1.

Proof is straightforward via induction.
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Epigraph Characterization

Definition 14. A epigraph of a function f : Rn ! R̄ is defined as the set

epi(f) := {(x, t) 2 Rn+1|f(x)  t}.

Example: Norm cone: {(x, t)|||x||  t} is a convex set.

Proposition 14. Function f : Rn ! R̄ is convex in Rn if and only if its
epigraph is a convex set in Rn+1.
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