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Basic topology of sets and existence of optimal solutions
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Convex functions and properties

Convex optimization problems and their classifications

Separating Hyperplane Theorems, Theorems of the Alternative, LP Duality
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Algorithms:
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Stability analysis and controller synthesis for linear dynamical systems

Robust optimization
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Computing Resources

MATLAB Toolbox

YALMIP: https://yalmip.github.io/

CVX: http://cvxr.com/cvx/

Python Toolbox

CVXOPT: https://cvxopt.org/index.html

CVXPY: https://www.cvxpy.org/

PYOMO: http://www.pyomo.org/

Solvers

MOSEK: https://www.mosek.com/

Gurobi: https://www.gurobi.com/

IPOPT: https://github.com/coin-or/Ipopt

COIN-OR: https://github.com/coin-or/

For optimal control, Casadi: https://web.casadi.org/
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Preliminaries

See https://www.stat.cmu.edu/~ryantibs/convexopt/prerequisite_topics.
pdf for refresher.

Please also see the Appendices of Boyd’s Book and Chapter 2 of ACO Book.
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Optimization in Abstract Form

An optimization problem can be stated as

min
x2X

f(x), (1)

where

x decision variable, often a vector in Rn

X set of feasible solutions, often a subset of Rn

– often specified in terms of equality and inequality constraints
X :=

�
x 2 Rn|gi(x)  0, hj(x) = 0, i 2 {1, 2, . . . ,m}, j 2 {1, 2, . . . , p}

 
.

f : Rn ! R cost function

Goal:

Find x
⇤ 2 X that minimizes the cost function, i.e., f(x⇤)  f(x) for every

x 2 X.

Optimal value: f ⇤
:= infx2X f(x)

Optimal solution: x⇤ 2 X if f(x⇤) = f
⇤.

What is infx2X f(x)?
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Infimum vs. Minimum

f
⇤
:= infx2X f(x) if f ⇤ is the greatest lower bound on the value of the

function f(x) over x 2 X.

For any ✏ > 0, there exists some x̄ 2 X such that f ⇤
< f(x̄) < f

⇤
+ ✏.

There are two possibilities:

There exists x
⇤ 2 X for which f(x

⇤
) = f

⇤. Then, we say that x
⇤ is the

optimal solution and f
⇤
:= minx2X f(x) is the optimal value.

f(x) 6= f
⇤ for any x 2 X. We then say that the infimum is not attained for

this problem.

If |X| is finite, then infimum is always attained.

The set of optimal solutions is denoted by argmin, and we say

x
⇤ 2 argminx2X f(x) = {y 2 X|f(y) = f

⇤}.

Note that [argminx2X f(x)] ✓ X.
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Examples

Let f(x) = e
�x and X = [0,1). Find f

⇤ and x
⇤.

What if X = [0, 1]?

What if X = [0, 1)?

Moral of the story: Properties of feasibility set X is critical in existence of optimal
solution.

Now suppose X = [0, 1] and f(x) = x for x > 0 and f(x) = 1 for x = 0.

Moral of the story:
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Infeasible optimization problem

The problem is infeasible when X is an empty set.

In this case, f ⇤
:= +1.

Example:
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Unbounded optimization problem

The problem is unbounded when f
⇤
= �1 over the feasibility set X.

Example:
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Basic Topology of Sets

Let B(x0, r) := {x 2 Rn|||x� x0||2  r} denote the ball around point x0 2 Rn

with radius r > 0.

Interior of the set X, denoted int(X):

Set X is called an open set if X = int(X).

Set X is called closed if and only if its complement is open.

Intersection of arbitrary number of closed sets is closed.

Examples of Open and Closed Sets’:
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Bounded and Compact Set

A set X is bounded if there exists B 2 (0,1) such that for any x1, x2 2 X,
||x1 � x2||2  B.

A set X is compact if it is closed and bounded.
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Global and Local Optimum

Definition 1 (Global Optimum). A feasible solution x
⇤ 2 X is a global

optimum if f(x⇤)  f(x) for all x 2 X. In this case, f ⇤
= f(x

⇤
). The set of

global optima is denoted by

argminx2X f(x) := {z 2 X|f(z) = f
⇤}.

Definition 2 (Local Optimum). A feasible solution x
⇤ 2 X is a local opti-

mum if f(x⇤)  f(x) for all x 2 B(x
⇤
, r) for some r > 0.

Existence of Optimal Solution:

Theorem 1: Weierstrass Theorem

If the cost function f is continuous and the feasible region X is compact
(closed and bounded), then (at least one global) optimal solution x

⇤ exists.

Example:

When X is not bounded, then the above theorem still holds when an ↵-sublevel
set of f , defined as

S↵(f) := {x 2 X|f(x)  ↵},
is non-empty and bounded for some ↵ 2 R.
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Notes

Given an optimization problem, first determine

the decision variable x and the space in which it resides

feasibility set X

cost function f : X ! R

Before attempting to solve the problem, check whether

f is continuous

X is non empty, or the problem is unbounded

X is closed, and bounded (or any sub-level set of X is bounded)

How to verify whether some x
⇤
is indeed an optimal solution?
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Gradient (rf (x))

For a function f : Rn ! R, its gradient is defined as:

Compute gradient of

f(x) = x
>
a

f(x) = x
>
Ax

f(x) = ||Ax� b||22
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Hessian (H(x))

For a function f : Rn ! R, its Hessian is defined as:

Compute Hessian of

f(x) = x
>
a

f(x) = x
>
Ax

f(x) = ||Ax� b||22
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Directional Derivative and Descent Direction

Consider a function f : Rn ! R. Let d 2 Rn be the direction of interest.

Definition: The directional derivative of f at point x0 2 Rn along direction
d 2 Rn is defined as

Define �(t) := f(x+ td).

Compute �
0
(0) :

If the directional derivative is negative along direction d, then d is called a descent
direction of the function at point x0.
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Necessary Condition of Optimality for Unconstrained
Problems

Theorem 2

If x⇤ is a local optimum for the problem minx2Rn f(x), then rf(x
⇤
) = 0.

Proof by contradiction:
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Su�cient Condition of Optimality for Unconstrained
Problems

Let f be twice continuously di↵erentiable over Rn.

Theorem 3

If for x⇤ 2 Rn, we have rf(x
⇤
) = 0 and the Hessian of the cost function

f at x
⇤ is a positive definite matrix, then x

⇤ is a local optimum for the
problem minx2Rn f(x).
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Least Sqaures Problem

Consider the following optimization problem:

min
x2Rn

||Ax� b||22.
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Convex Sets

Definition 1. Given a collection of points x1, x2, . . . , xk, the combination
�1x1 + �2x2 + . . . + �kxk is called Convex combination if �i � 0 andPk

i=1 �i = 1.
A set X is a convex set if all convex combinations of its elements are in the
set.

Equivalently, X is a convex set if

for every x, y 2 X, �x+ (1� �)y 2 X for any � 2 [0, 1].

it contains all convex combinations of any two of its elements.

Are the following sets convex:

X1 = {x 2 R2|x1 � 0, x2 � 0}.

X2 = {x 2 R2|x1x2 � 0}.
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Basic Examples of Convex Sets

Sets Defined by Linear Inequalities:

Hyperplane: H = {x 2 Rn|a>x = b} for some a 2 Rn
, b 2 R.

Halfspaces: {x 2 Rn|a>x  b} for some a 2 Rn
, b 2 R.
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Sets Defined by Norms

Consider the Ball Bp(c, R) := {x 2 Rn| ||x� c||p  R} where

||z||p :=

8
<

:

⇣P
i2[n] |xi|p

⌘ 1
p
, 1  p < 1,

maxi2[n] |xi|, p = 1.

Recall that norm satisfies triangle inequality and positive homogeneity. We define

[n] := {1, 2, . . . , n}.

Proposition 1. Bp(c, R) is a convex set.
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Positive Semidefinite Matrices

Proposition 2. Set of symmetric positive semidefinite matrices, denoted by
S+
n := {X 2 S

n|X ⌫ 0n⇥n}, is a convex set.
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Operations that preserve convexity of sets

Proposition 3 (Intersection). If X1, X2, . . . , Xm are convex sets, then \i2[m]Xi

is a convex set.

Example: Polyhedron {x 2 Rn|Ax  b} for some A 2 Rm⇥n
, b 2 Rm which is

an intersection of half-spaces.
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Operations that preserve convexity of sets

Proposition 4 (A�ne Image). If X is a convex set, f(x) = Ax + b with
A 2 Rm⇥n

, b 2 Rm, then the set f(X) := {y|y = Ax+ b for some x 2 X}
is a convex set.
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Operations that preserve convexity of sets

Proposition 5 (Product). If X1, X2, . . . , Xm are convex sets, then

X := X1 ⇥X2 ⇥ . . .⇥Xm := {(x1, x2, . . . , xm) | xi 2 Xi, i 2 [m]}

is a convex set.

Proposition 6 (Weighted Sum). If X1, X2, . . . , Xm are convex sets, thenP
i2[m] ↵iXi := {y | y =

P
i2[m] ↵ixi, xi 2 Xi} is a convex set for ↵i 2 R.

Example:
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Operations that preserve convexity of sets

Proposition 7 (Inverse A�ne Image). Let X 2 Rn be a convex set and
A : Rm ! Rn be an a�ne map with A(y) = Ay + b for matrix A and vector
b of suitable dimension. Then, the set A�1(X) := {y 2 Rm | Ay + b 2 X} is
a convex set.

Problem: Let X1 and X2 be convex sets. Determine if X1 \X2 is convex.
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Ellipsoid

Proposition 8. Let A be a symmetric positive definite matrix. Then, the set
E := {x 2 Rn|(x� c)>A�1(x� c)  1} is convex.
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Convex Combination

Given a collection of points x1, x2, . . . , xk, the combination �1x1 + �2x2 + . . .+
�kxk is called Convex if �i � 0 and

Pn
i=1 �i = 1.

Equivalent Definition:

Definition 4 (Convex Set). A set is convex if it contains all convex combi-
nations of its points.

Definition 5 (Convex Hull). The convex hull of a set X 2 Rn is the set of
all convex combinations of its elements, i.e.,

conv(X) :=

8
<

:y 2 Rn | y =
X

i2[k]

�ixi,where�i � 0,
X

i2[k]

�i = 1, xi 2 X8i 2 [k], k 2 N

9
=

; .

Proposition 9 (Convex Hull). The following are true.

conv(X) is a convex set (even when X is not).

If X is convex, then conv(X) = X.

For any set X, conv(X) is the smallest convex set containing X.

Example: Determine the convex hull of X = [0, 1] [ [2, 3].
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Combination of points

Given a collection of points x1, x2, . . . , xk, the combination �1x1 + �2x2 + . . .+
�kxk is called

Convex if �i � 0 and
Pn

i=1 �i = 1.

Conic if �i � 0,

A�ne if
Pn

i=1 �i = 1,

Linear if �i 2 R.

A set is convex/ convex cone/ a�ne subspace/linear subspace if it contains all
convex/conic/a�ne/linear combinations of its elements.

Definition 6. A set X is a cone if for any x 2 X,↵ � 0, we have ↵x 2 X.

Note: Every cone must include the origin. Union of two cones is a cone.
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Projection

Definition 7 (Projection). The projection of a point x0 on a set X, denoted
projX(x0) is defined as

projX(x0) := argminx2X ||x� x0||22.

Theorem 4: Projection Theorem

If X is closed and convex, then projX(x0) exists and is unique.

Main idea:

Existence due to Weierstrass Theorem

Uniqueness via contradiction exploiting convexity
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Supporting Hyperplane

Consider a hyperplane H = {x 2 Rn | a>x = b} with a 6= 0. We define

H
� := {x 2 Rn | a>x  b}.

Definition 8 (Supporting Hyperplane). A hyperplane H is a supporting hy-
perplane for a convex set C at a boundary point z 2 �C if z 2 C and C ✓ H

�.

Theorem 5: Supporting Hyperplane Theorem

If C is a convex set and z 2 �C is a boundary point, then there exists a
supporting hyperplane for C at z.
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Separating Hyperplane

Definition 9 (Separating Hyperplane). Let X1 and X2 be two nonempty sets
in Rn. A hyperplane H = {x 2 Rn | a>x = b} with a 6= 0 is said to separate
X1 and X2 if

X1 ✓ H
� := {x 2 Rn | a>x  b},

X2 ✓ H
+ := {x 2 Rn | a>x � b}.

Separation is said to be strict if X1 ⇢ {x 2 Rn | a>x  b
0}, X2 ⇢ {x 2 Rn |

a
>
x � b

00} with b
0
< b

00.

Equivalently
sup
x2X1

a
>
x  inf

x2X2

a
>
x

with the inequality being strict for strict separation.
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Separating Hyperplane Theorem

Theorem 6: Separating Hyperplane Theorem

Let X1 and X2 be convex sets with X1 \X2 = �. Then, there exists
a separating hyperplane for X1 and X2. If X1 is closed and bounded,
and X2 is closed, then X1 and X2 can be strictly separated.

Let X be a closed convex set and x0 /2 X. Then, there exists a
hyperplane that strictly separates x0 and X.

We will prove the second statement. Main Idea:

1. LetH = {x 2 Rn | a>x = b} with a = x0�projX(x0) and b = a
>
x0� ||a||22

2 .

2. Use properties of projection and convexity of X to verify that H is indeed
the separating hyperplane.
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Theorem of the Alternative (Farkas’ Lemma)

Lemma 1 (Farkas’ Lemma). Let A 2 Rm⇥n and b 2 Rm. Then, exactly one
of the following sets must be empty:

1. {x 2 Rn | Ax = b, x � 0}

2. {y 2 Rm | A>
y  0, b>y > 0}.

Insight: If unable to show a system of linear inequalities does not have a solution,
try to show that its alternative system does.

Main Idea:

1. Easy to show that if (2) is feasible, (1) is infeasible.

2. For the converse, suppose (1) is infeasible. Then, b /2 cone(a1, a2, . . . , an)
where ai is the i-th column of A. Find a hyperplane separating b from
cone(a1, a2, . . . , an) and show that (2) is feasible.
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Proof
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Domain of a Function

We consider extended real-valued functions f : Rn ! R [ {1} =: R̄.

The (e↵ective) domain of f , denoted dom(f), is the set {x 2 Rn | |f(x)| <
+1}.

Example: f(x) = 1
x . What is dom(f)?

f(x) =
Pn

i=1 xi log(xi). What is dom(f)?

When dom(f) 6= �, we say that the function f is proper.

39



Convex Functions

Definition 10 (Convex Function). A function f : Rn ! R̄ is convex if

1. dom(f) ✓ Rn is a convex set, and

2. for every x, y 2 dom(f),� 2 [0, 1], we have f(�x+ (1� �)y)  �f(x) +
(1� �)f(y).

The Line segment joining (x, f(x)) and (y, f(y)) lies “above” the function.

Examples:

f(x) = x
2

f(x) = e
x

f(x) = a
>
x+ b for x 2 Rn
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Example: Norms

Definition 11 (Norms). A function ⇡ : Rn ! R̄ is a norm if

⇡(x) � 0, 8x and ⇡(x) = 0 if and only if x = 0,

⇡(↵x) = |↵|⇡(x) for all ↵ 2 R,

⇡(x+ y)  ⇡(x) + ⇡(y).

Examples:

||x||p := (
Pn

i=1 |xi|p)
1
p for p � 1.

||x||Q :=
p
x>Qx where Q is a positive definite matrix.

||A||F := (
Pm

i=1

Pn
j=1 |Ai,j|2)1/2 Frobenius norm on Rm⇥n.

Proposition 10. A Norm is a convex function.
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Example: Indicator Function

Definition 12. Indicator function IC(x) of a set C is defined as

IC(x) :=

(
0, x 2 C,

1, x /2 C.

Proposition 11. Indicator function IC(x) is convex if the set C is a convex
set.
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Example: Support Function

Proposition 12. Support function of a set C is defined as I⇤C(x) := supy2C x
>
y.

Support function of a set is always a convex function.

43



Special Types of Convex Functions

Definition 13. A function f : Rn ! R̄ is

strictly convex if property (2) above holds with strict inequality for
� 2 (0, 1),

µ-strongly convex if f(x)� µ
||x||22
2 is convex, and

concave if �f(x) is convex.
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Jensen’s Inequality

Proposition 13. For a convex function f : Rn ! R̄, for any collection of
points {x1, x2, . . . , xk}, we have f(

Pk
i=1 �ixi) 

Pk
i=1 �if(xi) when �i � 0

and
Pk

i=1 �i = 1.

Proof is straightforward via induction.
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Epigraph Characterization

Definition 14. A epigraph of a function f : Rn ! R̄ is defined as the set

epi(f) := {(x, t) 2 Rn+1|f(x)  t}.

Example: Norm cone: {(x, t)|||x||  t} is a convex set.

Proposition 14. Function f : Rn ! R̄ is convex in Rn if and only if its
epigraph is a convex set in Rn+1.
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