

EE61012: Convex Optimization for Control and Signal Processing Instructor: Prof. Ashish R. Hota

- Class Hours: G Slot + S3(2) Slot. Wednesday: 11am 11:55pm, Thursday: 12pm 12:55pm, Thursday: 5pm 5:55pm, Friday: 8am-8:55am
- Venue: NR 413
- Grading Scheme: 50 % Endsem, 30 % Midsem, 20 % Tutorial and Class Tests
- Preferred Mode of Contact: Send email to ahota@ee.iitkgp.ac.in with subject containing [EE61012]. Do not forget to write your name and roll no.
- Any email with a blank subject and without name and roll no. will be ignored.

Content

Theory:

- Formal definition of an optimization problem
- Basic topology of sets and existence of optimal solutions
- Gradient, Hessian, and optimality conditions for unconstrained problems
- Convex sets and properties
- Convex functions and properties
- Convex optimization problems and their classifications
- Separating Hyperplane Theorems, Theorems of the Alternative, LP Duality
- Lagrangian duality and KKT optimality conditions

Algorithms:

- First order gradient based algorithms under smoothness, strong convexity
- Accelerated, stochastic and distributed gradient descent

Applications:

- Regression, support vector machines, ML estimation, hypothesis testing
- Stability analysis and controller synthesis for linear dynamical systems
- Robust optimization

Primary References:

- Optimization Models by G.C. Calafiore and L. El Ghaoui, Cambridge University Press, 2014. Link: https://people.eecs.berkeley.edu/~elghaoui/ optmodbook.html
- Convex Optimization by Stephen Boyd and L. Vandenberghe, Cambridge University Press. Available online at: https://web.stanford.edu/~boyd/ cvxbook/
- Algorithms for Convex Optimization by Nisheeth K. Vishnoi, Cambridge University Press. Available online at: https://convex-optimization.github.io

Advanced References on Theory:

- Lectures on Modern Convex Optimization, Aharon Ben-Tal and Arkadi Nemirovski, SIAM. Available online at: https://epubs.siam.org/doi/book/ 10.1137/1.9780898718829
- Convex Analysis and Optimization, Bertsekas, Athena Scientific. More information at: http://www.athenasc.com/convexity.html
- Convex Analysis and Minimization Algorithms, Jean-Baptiste Hiriart-Urruty, Claude Lemarechal, Springer. Available online at: https://link.springer. com/book/10.1007/978-3-662-02796-7

Advanced References on Algorithms:

- Optimization for Modern Data Analysis, Benjamin Recht and Stephen J. Wright, Available online at: https://people.eecs.berkeley.edu/ ~brecht/opt4ml_book/
- Numerical Optimization by Jorge Nocedal, Stephen J. Wright, Springer. Available online at: https://link.springer.com/book/10.1007/ 978-0-387-40065-5

- Introductory Lectures on Convex Optimization A Basic Course, by Yurii Nesterov. Available online at: https://link.springer.com/book/10. 1007/978-1-4419-8853-9
- First-order Methods in Optimization, by Amir Beck, SIAM. For more information: https://epubs.siam.org/doi/10.1137/1.9781611974997.

Advanced References on Applications in Control:

- Linear Matrix Inequalities in System and Control Theory, by Stephen Boyd, Laurent El Ghaoui, E. Feron, and V. Balakrishnan, Society for Industrial and Applied Mathematics (SIAM), 1994. Available online at: https://web. stanford.edu/~boyd/lmibook/
- A Course in Robust Control Theory: A Convex Approach, Springer. Available online at: https://link.springer.com/book/10.1007/ 978-1-4757-3290-0
- Predictive Control for Linear and Hybrid Systems, Cambridge University Press. More information at: http://www.mpc.berkeley.edu/ mpc-course-material

Advanced References on Applications in Signal Processing and Machine Learning:

- Convex Optimization in Signal Processing and Communications, Cambridge University Press. More information at: https://www.cambridge.org/in/ academic/subjects/engineering/communications-and-signal-processing/ convex-optimization-signal-processing-and-communications?format= HB&isbn=9780521762229
- Optimization for Machine Learning, by Suvrit Sra, Stephen J. Wright, Sebastian Nowozin, MIT Press. More information at: https://mitpress. mit.edu/9780262537766/optimization-for-machine-learning/
- Recent Special Issue of Proceedings of the IEEE: https://ieeexplore. ieee.org/xpl/tocresult.jsp?isnumber=9241485&punumber=5

MATLAB Toolbox

- YALMIP: https://yalmip.github.io/
- CVX: http://cvxr.com/cvx/

Python Toolbox

- CVXOPT: https://cvxopt.org/index.html
- CVXPY: https://www.cvxpy.org/
- PYOMO: http://www.pyomo.org/

Solvers

- MOSEK: https://www.mosek.com/
- Gurobi: https://www.gurobi.com/
- IPOPT: https://github.com/coin-or/Ipopt
- COIN-OR: https://github.com/coin-or/
- For optimal control, Casadi: https://web.casadi.org/

See https://www.stat.cmu.edu/~ryantibs/convexopt/prerequisite_topics.
pdf for refresher.

Please also see the Appendices of Boyd's Book and Chapter 2 of ACO Book.

[•] $f: \mathbb{R}^n \to \mathbb{R}$ cost function

Goal:

• Find $x^* \in X$ that minimizes the cost function, i.e., $f(x^*) \leq f(x)$ for every $x \in X$.

7

- Optimal value: $f^* := \inf_{x \in X} f(x)$
- Optimal solution: $x^* \in X$ if $f(x^*) = f^*$.

What is $\inf_{x \in X} f(x)$?

 $f^* := \inf_{x \in X} f(x)$ if f^* is the greatest lower bound on the value of the function f(x) over $x \in X$.

• For any $\epsilon > 0$, there exists some $\bar{x} \in X$ such that $f^* \leq f(\bar{x}) < f^* + \epsilon$.

There are two possibilities:

- There exists $x^* \in X$ for which $f(x^*) = f^*$. Then, we say that x^* is the optimal solution and $f^* := \min_{x \in X} f(x)$ is the optimal value.
- $f(x) \neq f^*$ for any $x \in X$. We then say that the infimum is not attained for this problem.
- If |X| is finite, then infimum is always attained.
- The set of optimal solutions is denoted by argmin, and we say

 $x^* \in \operatorname{argmin}_{x \in X} f(x) = \{y \in X | f(y) = f^*\}.$

• Note that $[\operatorname{argmin}_{x \in X} f(x)] \subseteq X$.

Moral of the story: Properties of feasibility set X is critical in existence of optimal solution.

Now suppose X = [0,1] and f(x) = x for x > 0 and f(x) = 1 for x = 0. $f = \inf_{x \in X} f(x) = 0$ f(x) = 0 f(x) = 0f(x) =

Moral of the story:

Ex:
$$f(n) = x^2$$
, $\chi = \mathbb{R} = (-\infty, \infty)$
 $\chi^* = 0$ is a (globar) optimum, despite the
set χ being unbounded.

- The problem is infeasible when X is an empty set.
- In this case, $f^* := +\infty$.
- Example: $X = \{x \in \mathbb{R}^2 \mid \frac{347}{9}, \frac{7}{1}, \frac{7}{9}, \frac{7}{9$

• The problem is unbounded when $f^* = -\infty$ over the feasibility set X.

• Example:
$$f(x) = \log x$$
 f(x)
 $X = [1,5]$: not unbounded.
 $X = [0,5]$: problem is
unbounded.
 1

LECTURE 2: 2nd Jan 2025

Bounded and Compact Set

• A set X is bounded if there exists $B \in (0, \infty)$ such that for any $x_1, x_2 \in X$, $||x_1 - x_2||_2 \leq B$.

$$\underline{\varepsilon_{x}}: \quad X = \begin{bmatrix} -50, 700 \end{bmatrix}$$

• A set X is compact if it is closed and bounded.

Definition 1 (Global Optimum). A feasible solution $x^* \in X$ is a global optimum if $f(x^*) \leq f(x)$ for all $x \in X$. In this case, $f^* = f(x^*)$. The set of global optima is denoted by

 $\operatorname{argmin}_{x \in X} f(x) := \{ z \in X | f(z) = f^* \}.$

Definition 2 (Local Optimum). A feasible solution $x^* \in X$ is a local opti- $\leq f(x)$ for all $x \in B(x^*, r)$ for some r > 0. mum i

Existence of Optimal Solution:

XeX

Theorem 1: Weierstrass Theorem

If the cost function f is continuous and the feasible region X is compact (closed and bounded), then (at least one global) optimal solution x^* exists.

Example
$$f(x) = \chi^2$$
, $S_1(f) = \{\chi \in \mathbb{R} \mid \chi^2 \leq 4\}$
 $X = (-\infty, \infty)$ $= [-2, 2]$

When X is not bounded, then the above theorem still holds when an α -sublevel set of f, defined as

$$S_{\alpha}(f) := \{ x \in X | f(x) \le \alpha \},\$$

is non-empty and bounded for some $\alpha \in \mathbb{R}$.

Given an optimization problem, first determine

- the decision variable x and the space in which it resides
- feasibility set X
- cost function $f: X \to \mathbb{R}$

Before attempting to solve the problem, check whether

- f is continuous
- \bullet X is non empty, or the problem is unbounded
- X is closed, and bounded (or any sub-level set of X is bounded)

How to verify whether some x^* is indeed an optimal solution? We are going to derive necessary & Sufficient conditions for optimality when the cost function f is differentiable. For a function $f: \mathbb{R}^n \to \mathbb{R}$, its desirative at point $\mathcal{X}_0 \in \mathbb{R}^n$ is denoted by $Df(\mathcal{X}_0) \in \mathbb{R}^{1\times n}$, satisfies $f(\mathcal{X}_0 + \Delta \mathbf{X}) \simeq f(\mathcal{X}_0) + Df(\mathcal{X}_0) \Delta \mathbf{X}$. Gradient of function f at \mathcal{X}_0 is denoted by $\nabla f(\mathcal{X}_0) = Df(\mathcal{X}_0)^T = \begin{bmatrix} \frac{\partial f}{\partial \mathbf{X}_1} \\ \frac{\partial f}{\partial \mathbf{X}_2} \end{bmatrix}$ For a function $f: \mathbb{R}^n \to \mathbb{R}$, its gradient is defined as:

$$\nabla f(\mathbf{x}) = \begin{bmatrix} \Im_{\mathbf{x}_{1}}^{\mathbf{y}} \\ \Im_{\mathbf{x}_{2}}^{\mathbf{y}} \\ \Im_{\mathbf{x}_{2}}^{\mathbf{y}} \\ \Im_{\mathbf{x}_{2}}^{\mathbf{y}} \end{bmatrix} = \begin{bmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{n} \end{bmatrix} = a,$$

$$f(x) = x^{T}a = \sum_{i=1}^{n} a_{i}x_{i}$$

$$g(x) = g^{T}x = g^{T} \begin{bmatrix} \sum_{\substack{j=1 \\ i=1 \\ j=1 \\ j=1 \\ j=1 \\ j=1 \\ j=1 \end{bmatrix}} = \frac{1}{a_{i}} \begin{bmatrix} a_{i} \\ x_{1}^{2} + \sum_{\substack{j=1 \\ i=1 \\ j=1 \\ j=1 \\ j=1 \end{bmatrix}} = \frac{1}{a_{i}} \begin{bmatrix} a_{i} \\ x_{1}^{2} + \sum_{\substack{j=1 \\ i=1 \\ j=1 \\ j=1 \\ j=1 \end{bmatrix}} = \frac{1}{a_{i}} \begin{bmatrix} a_{i} \\ x_{1}^{2} + \sum_{\substack{j=1 \\ i=1 \\ j=1 \\ j=1 \\ j=1 \\ j=1 \\ j=1 \end{bmatrix}} = \frac{1}{a_{i}} \begin{bmatrix} a_{i} \\ x_{1}^{2} + \sum_{\substack{j=1 \\ i=1 \\ j=1 \\ j=1$$

$$D\begin{pmatrix} \partial f \\ \partial x_{1} \end{pmatrix} = \begin{bmatrix} \partial f \\ \partial x_{1}^{2} & \partial f \\ \partial x_{2}^{2} & \partial f \\ \partial x_{1}^{2} & \partial x_{2}^{2} & y_{2}^{2} & y_{$$

A xot 29

Directional Derivative and Descent Direction

Consider a function $f : \mathbb{R}^n \to \mathbb{R}$. Let $d \in \mathbb{R}^n$ be the direction of interest.

Definition: The directional derivative of f at point $x_0 \in \mathbb{R}^n$ along direction $d \in \mathbb{R}^n$ is defined as

$$\lim_{\substack{\epsilon \to 0}} \frac{f(x_0 + \epsilon d) - f(x_0)}{\epsilon} = \nabla f(x_0)^T d$$
Define $\phi(t) := f(x_0 + td)$,
Compute $\phi'(0)$:

$$\int \frac{\phi'(t)}{\epsilon R} = Df(x_0 + td) \cdot \frac{d_T}{\delta T} \frac{(x_0 + td)}{\epsilon R^{N \times 1}}$$

$$= Df(x_0 + td) \cdot d$$

$$\int \frac{\phi'(t)}{\epsilon R} = \nabla f(x_0)^T d$$

If the directional derivative is negative along direction d, then d is called a descent direction of the function at point x_0 .

d = - Vf(xo) is always a direction of descent at xo.

LECTURE 3: 3rd Jan 2025

Necessary Condition of Optimality for Unconstrained Problems $\Rightarrow X = \mathbb{R}^{\mathcal{V}}$

Theorem 2

If x^* is a local optimum for the problem $\min_{x \in \mathbb{R}^n} f(x)$, then $\nabla f(x^*) = 0$.

Proof by contradiction: Suppose $\nabla f(x^{t}) \neq 0$. we need to show that x^{t} is not a local optimion. In other worlds, there exist points arbitrarily close to x^{t} at which $f(x) < f(x^{t})$. $f(x^{t} \in d) \simeq f(x^{t}) + \varepsilon \nabla f(x^{t})^{T} d + (higher order terms)$ let $d = -\nabla f(x^{t})$ $= f(x^{t}) - \varepsilon || \nabla f(x^{t})||_{2}^{2} + (hot)$ $- \frac{\sqrt{\varepsilon}}{2} + \frac{1}{2} + \frac{1}{$

Sufficient Condition of Optimality for Unconstrained Problems

 $v^T H(x) v > 0 + v \neq 0$

Let f be twice continuously differentiable over \mathbb{R}^n .

Theorem 3

If for $x^* \in \mathbb{R}^n$, we have $\nabla f(x^*) = 0$ and the Hessian of the cost function f at x^* is a positive definite matrix, then x^* is a local optimum for the problem $\min_{x \in \mathbb{R}^n} f(x)$.

Using the Taylor services expansion, we obtain

$$f(x) = f(x) + \nabla f(x) T(x-x^{2}) + \frac{1}{2} (x-x^{2}) H(x^{2}) (x-x^{2}) + (hot)$$

$$= f(x^{2}) + \frac{1}{2} (x-x^{2}) H(x^{2}) (x-x^{2}) + (hot)$$

$$= f(x) + \frac{1}{2} (x-x^{2}) H(x^{2}) (x-x^{2}) + (hot)$$

$$= f(x) + \frac{1}{2} (x-x^{2}) H(x^{2}) (x-x^{2}) + (hot)$$

$$= f(x) + \frac{1}{2} (x-x^{2}) H(x^{2}) (x-x^{2}) + (hot)$$

$$= f(x) + \frac{1}{2} (x-x^{2}) H(x^{2}) (x-x^{2}) + (hot)$$

$$= f(x) + \frac{1}{2} (x-x^{2}) H(x^{2}) (x-x^{2}) + (hot)$$

$$= f(x) + \frac{1}{2} (x-x^{2}) H(x^{2}) (x-x^{2}) + (hot)$$

$$= f(x) + \frac{1}{2} (x-x^{2}) H(x^{2}) (x-x^{2}) + (hot)$$

$$= f(x) + \frac{1}{2} (x-x^{2}) + \frac{1}{2} (x-x^{2}) + (hot)$$

$$= f(x) + \frac{1}{2} (x-x^{2}) + \frac{1}{2} (x-x^{2}) + (hot)$$

$$= f(x) + \frac{1}{2} (x-x^{2}) +$$

Definition 1. Given a collection of points x_1, x_2, \ldots, x_k , the combination $\lambda_1 x_1 + \lambda_2 x_2 + \ldots + \lambda_k x_k$ is called Convex combination if $\lambda_i \geq 0$ and $\sum_{i=1}^{k} \lambda_i = 1.$ A set X is a convex set if all convex combinations of its elements are in the set. $\mathcal{X} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ \mathcal{Y} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \ \mathcal{Z} = \lambda_1 \mathbf{x} + \lambda_2 \mathbf{y}$ $\mathcal{Z} = \lambda_1 \mathbf{x} + (1 - \lambda_1) \mathbf{y}$ (0,1). Żχ, (1,0) Equivalently, X is a convex set if • for every $x, y \in X$, $\lambda x + (1 - \lambda)y \in X$ for any $\lambda \in [0, 1]$. • it contains all convex combinations of any two of its elements 2' Are the following sets convex: • $X_1 = \{x \in \mathbb{R}^2 | x_1 \ge 0, x_2 \ge 0\}.$ • $X_2 = \{x \in \mathbb{R}^2 | x_1 x_2 \ge 0\}$ in the convex set V let X, ye X, Let 至= Xx+(1-1)y, 1e[0川 0 419/1 $= \Im \left[\frac{\overline{X}_{1}}{\overline{X}_{2}} \right] + (1 - \Im) \left[\frac{\overline{Y}_{1}}{\overline{Y}_{2}} \right]$ $= \left[\begin{array}{c} 3 \overline{X}_{1} + (1 - A) \overline{Y}_{1} \\ 3 \overline{X}_{2} + (1 - A) \overline{Y}_{2} \end{array} \right]$ $7r \begin{bmatrix} 0\\ 0 \end{bmatrix}$ ₹EX1 1 Hence X1 is a convex set.

Sets Defined by Linear Inequalities:

• Hyperplane: $H = \{x \in \mathbb{R}^n | a^\top x = b\}$ for some $a \in \mathbb{R}^n, b \in \mathbb{R}$.

Let
$$\overline{X}, \overline{Y} \in H \Rightarrow a^{T}\overline{X} = b, a^{T}\overline{Y} = b$$

 $A \in [0,1]$. $\overline{Z} = A \overline{X} + (1-A)\overline{Y}$. To show that $\overline{Z} \in H$,
we compute $a^{T}\overline{Z} = a^{T}(A\overline{X} + (1-A)\overline{Y}) = Aa^{T}\overline{X} + (1-A)a^{T}\overline{Y}$
 $= Ab + (1-A)b = b$
 $\overline{Z} \in H$. $\Rightarrow H$ is a convex set.
• Halfspaces: $\{x \in \mathbb{R}^{n} | a^{T}x \leq b\}$ for some $a \in \mathbb{R}^{n}, b \in \mathbb{R}$.
 $\overline{A} = Aa^{T}\overline{X} + (1-A)a^{T}\overline{Y}$ for some $a \in \mathbb{R}^{n}, b \in \mathbb{R}$.
 $\overline{A} = b$
 $\Rightarrow \overline{Z} \in (halfspace)$

$$B_{to}\left(\begin{bmatrix}1\\1\end{bmatrix},1\right) = \left\{\chi \in \mathbb{P}^{2} \mid \max_{i=1/2} \mid \chi_{i}-1 \mid \leq 1\right\}$$

$$\max\left(2,1\right) \leq |: \operatorname{not}_{toue} ^{2} \left(-1,0\right) \mid 0:01 \quad (2i^{n}) \quad \chi_{i}$$

Consider the Ball
$$B_p(c, R) := \{x \in \mathbb{R}^n | ||x - c||_p \le R\}$$
 where

$$||\mathbf{x}||_p := \begin{cases} \left(\sum_{i \in [n]} |x_i|^p\right)^{\frac{1}{p}}, & 1 \le p < \infty, \\ \max_{i \in [n]} |x_i|, & p = \infty. \end{cases}$$
Recall that norm satisfies triangle inequality and positive homogeneity. We define

Recall that norm satisfies triangle inequality and positive homogeneity. We define $[n] := \{1, 2, ..., n\}.$ $g(x) \neq x \neq 0$

Proposition 1. $B_p(c, R)$ is a convex set.

Let
$$\overline{x}, \overline{y} \in B_p(C, R)$$
. Let $\lambda \in [O, I]$.
need to
 $Show: \overline{z} = A\overline{z} + (I - A)\overline{y} \in B_p(C, R)$
 $\|\overline{z} - C\|_p = \|A\overline{z} + (I - A)\overline{y} - C\|_p$
 $= \|A\overline{z} + (I - A)\overline{y} - AC - (I - A)C\|_p$
 $= \|A\overline{z} + (I - A)\overline{y} - AC - (I - A)C\|_p$
 $(+ A \overline{z} - C) + (I - A)(\overline{z} - C)\|_p$
 $(+ A \overline{z} - C) + (I - A)(\overline{z} - C)\|_p$
 $(+ A \overline{z} - C)\|_p + \|(I - A)(\overline{y} - C)\|_p$
 $(- A \overline{z} - C)\|_p + \|(I - A)(\overline{y} - C)\|_p$
 $(- A \overline{z} - C)\|_p + \|(I - A)(\overline{y} - C)\|_p$
 $(- A \overline{z} - C)\|_p + \|(I - A)(\overline{y} - C)\|_p$
 $(- A \overline{z} - C)\|_p + \|(I - A)(\overline{y} - C)\|_p$
 $(- A \overline{z} - C)\|_p + \|(I - A)(\overline{y} - C)\|_p$
 $(- A \overline{z} - C)\|_p + \|(I - A)(\overline{y} - C)\|_p$
 $(- A \overline{z} - C)\|_p + \|(I - A)(\overline{y} - C)\|_p$
 $(- A \overline{z} - C)\|_p + \|(I - A)(\overline{y} - C)\|_p$
 $(- A \overline{z} - C)\|_p + \|(I - A)(\overline{y} - C)\|_p$
 $(- A \overline{z} - C)\|_p$
 $(- A \overline{z}$

Positive Semidefinite Matrices

Proposition 2. Set of symmetric positive semidefinite matrices, denoted by $S_{n}^{+} := \{X \in S^{n} | X \supseteq_{n \times n}\}, \text{ is a convex set.} \qquad A \geqslant B \iff (A-B) \text{ is}$ $Let \quad X_{1} \& X_{2} \in S_{n}^{+}. \qquad Positive Semi-definite.$ Let $A \in [0, 1]$. We need to show $Z := A X_{1} + (1-A) X_{2} \in S_{n}^{+}.$ Let $V \in IR^{n}$. We evaluate $\sqrt{T}Z V = \sqrt{T} (A \times_{1} + (1-A) \times_{2})V$ $= A \sqrt{T} X_{1} V + (1-A) \sqrt{T} X_{2} V$ $= A \sqrt{T} X_{1} V + (1-A) \sqrt{T} X_{2} V$ $= A \sqrt{T} X_{1} V + (1-A) \sqrt{T} X_{2} V$ $= A \sqrt{T} X_{1} V + (1-A) \sqrt{T} X_{2} V$ $= A \sqrt{T} X_{1} V + (1-A) \sqrt{T} X_{2} V$ $= A \sqrt{T} X_{1} V + (1-A) \sqrt{T} X_{2} V$ $= A \sqrt{T} X_{1} V + (1-A) \sqrt{T} X_{2} V$ $= A \sqrt{T} X_{1} V + (1-A) \sqrt{T} X_{2} V$ $= A \sqrt{T} X_{1} V + (1-A) \sqrt{T} X_{2} V$

Operations that preserve convexity of sets

$$\begin{bmatrix} m \end{bmatrix} = \begin{cases} \lfloor 1/2, \dots, m \end{bmatrix}$$
Proposition 3 (Intersection). $If X_1, X_2, \dots, X_m$ are convex sets, then $\bigcap_{i \in [m]} X_i$
is a convex set.

$$\begin{bmatrix} et \quad \neq := \ \cap \ X_i \ i \in [m]^i, \ i et \quad \neq_1/z_2 \in [n]^i, \ et \quad A \in [n]^i \end{bmatrix}.$$
We need to show that $\exists = A z_1 + (1 - A) z_2 \in [n]^i$.
We need to show that $\exists = A z_1 + (1 - A) z_2 \in [n]^i$.
 $\forall = 2_1 \in X_1, z_1 \in X_2 - \dots, z_1 \in X_m$
 $\vdots z_2 \in X_1, z_2 \in X_2 - \dots, z_2 \in X_m$
Since X_i is a convex set, $\exists e X_i / z_2 e \times i / A \in [n]^i$.
therefore, $\forall i \in a \quad \Rightarrow \forall z \in X_i \quad \forall i \in [m]^i$.
Example: Polyhedron $\{x \in \mathbb{R}^n | Ax \le b\}$ for some $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$ which is an intersection of half-spaces.
 $A = \begin{bmatrix} -a_1^T \\ -a_2^T \\ -a_1^T \end{bmatrix}, b = \begin{bmatrix} b_1 \\ b_2 \\ b_m \end{bmatrix}$
 $X_i = \{x \in \mathbb{R}^n | Ax \le b\} = \begin{bmatrix} \cap X_i \\ i \in [m] \end{bmatrix}$.

Operations that preserve convexity of sets

Proposition 4 (Affine Image). If X is a convex set, f(x) = Ax + b with $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$, then the set $f(X) := \{y | y = Ax + b \text{ for some } x \in X\}$ is a convex set. Let $y_1, y_2 \in f(x)$, and let $\lambda \in [0, 1]$. we need to show $\overline{y} = \lambda y_1 + (1 - \lambda) y_2 \in f(X)$. i.e., JZEX S.t J=AZ+b. $A\bar{x}+b = A(3\pi_1+(1-3)\pi_2)+b = 3A\pi_1+(1-3)A\pi_2+b$ = 3 Azy+ (1-A) Azz+ 36+(1-A)b = 3(AX, +6) + (1-3) (Am2+6) $= 3y_1 + (1 - 3)y_2 = 5$ consequently $\overline{y} \in f(x)$. Hence f(x) is a convex set.

Operations that preserve convexity of sets

Proposition 5 (Product). If
$$X_1, X_2, ..., X_m$$
 are convex sets, then

$$\begin{array}{c} X = X_1 \times X_2 \times ... \times X_m := \{(x_1, x_2, ..., x_m) \mid x_i \in X_i, i \in [m]\} \\
\text{is a convex set.} \quad \subseteq \mathbb{R}^{(n_1 + n_2 + \cdots + n_m)} \\
\begin{array}{c} X \in X, \quad \chi = \left(\begin{array}{c} \chi_1 \\ \chi_2 \\ \vdots \\ \vdots \\ \ddots \\ \chi_m \end{array} \right)
\end{array}$$

Proposition 6 (Weighted Sum). If X_1, X_2, \ldots, X_m are convex sets, then $\sum_{i \in [m]} \alpha_i X_i := \{ y \mid y = \sum_{i \in [m]} \alpha_i x_i, \quad x_i \in X_i \} \text{ is a convex set for } \alpha_i \in \mathbb{R}.$

Example:

$$X_{1} = \{ \mathcal{X} \in \mathbb{R}^{2} \mid \mathcal{X}_{1} = 0, \mathcal{X}_{2} \in [1/2] \}$$

$$X_{2} = \{ \mathcal{X} \in \mathbb{R}^{2} \mid \mathcal{X}_{1} \in [0.5,1], \mathcal{X}_{2} = 0 \}$$

$$X_{1} = 1, \quad \mathcal{X}_{2} = 2$$

$$X_{2} = 1, \quad \mathcal{X}_{2} = 2$$

$$X_$$

Proposition 7 (Inverse Affine Image). Let $X \in \mathbb{R}^n$ be a convex set and $\mathcal{A} : \mathbb{R}^m \to \mathbb{R}^n$ be an affine map with $\mathcal{A}(y) = Ay + b$ for matrix A and vector b of suitable dimension. Then, the set $\mathcal{A}^{-1}(X) := \{y \in \mathbb{R}^m \mid Ay + b \in X\}$ is a convex set.

Let
$$y_1, y_2 \in A^{-1}(x)$$
, let $\Im \in [0,1]$
 $\Rightarrow Ay_1 + b \in X$
 $Ay_2 + b \in X$.
We need to show $\overline{y} = \Im y_1 + (1 - \Im) y_2 \in A^{-1}(x)$
or equiv. $A\overline{y} + b \in X$.

We evaluate
$$A\bar{y}tb = A(Ay_1 + (1 - A)y_2) + b$$

$$= AAy_1 + (1 - A)Ay_2 + Ab + (1 - A)b$$

$$= A[Ay_1tb] + (1 - A)[Ay_2 + b]$$

$$\stackrel{\leftarrow}{=} X \qquad \stackrel{\leftarrow}{=} X \qquad$$

Problem: Let X_1 and X_2 be convex sets. Determine if $X_1 \setminus X_2$ is convex.

Ellipsoid

Proposition 8. Let A be a symmetric positive definite matrix. Then, the set $\mathcal{E} := \{ x \in \mathbb{R}^n | (x - c)^\top A^{-1} (x - c) \le 1 \} \text{ is convex.}$ Let us try to show f(x)- $\mathcal{E} = \int (B_2(c, \pi))$, $A^{-1} = \Sigma^{T} \Sigma$ Find f(x) = Gixth such that when $x \in B_2(C, \pi)$, then $f(x) \in E$. G=2-1 h=C Ne need to see if I'x+C belongs to E. 5.e., $(z^{-1}x + q - q)^{T} A^{-1} (z^{-1}x + r - 9)$ $= \chi^{T} (\Sigma^{-1})^{T} A^{-1} \Sigma^{-1} \chi$ $= \alpha^{T} (\Sigma^{-1})^{T} \Sigma^{T} \Sigma \Sigma^{-1} \alpha = \alpha^{T} \alpha.$ Letus choose C=O& N=1. I Then, we have shown that $\chi \in B_2(0,1) \Rightarrow \Xi^{\dagger} \chi + C \in E$. Thus, E is a convex set.

Given a collection of points x_1, x_2, \ldots, x_k , the combination $\lambda_1 x_1 + \lambda_2 x_2 + \ldots + \lambda_k x_k$ is called Convex if $\lambda_i \ge 0$ and $\sum_{i=1}^n \lambda_i = 1$.

Equivalent Definition:

Definition 4 (Convex Set). A set is convex if it contains all convex combinations of its points.

Definition 5 (Convex Hull). The convex hull of a set $X \in \mathbb{R}^n$ is the set of all convex combinations of its elements, i.e.,

$$\underbrace{\texttt{conv}(X)}_{i \in \mathbb{R}^n} \mid y = \sum_{i \in [k]} \lambda_i x_i, where \lambda_i \ge 0, \sum_{i \in [k]} \lambda_i = 1, x_i \in X \forall i \in [k], k \in \mathbb{N} \right\}$$

Proposition 9 (Convex Hull). *The following are true.*

- $\operatorname{conv}(X)$ is a convex set (even when X is not).
- If X is convex, then conv(X) = X.
- For any set X, conv(X) is the smallest convex set containing X.

Example: Determine the convex hull of $X = [0, 1] \cup [2, 3]$.

Given a collection of points x_1, x_2, \ldots, x_k , the combination $\lambda_1 x_1 + \lambda_2 x_2 + \ldots + \lambda_k x_k$ is called

- Convex if $\lambda_i \ge 0$ and $\sum_{i=1}^n \lambda_i = 1$.
- Conic if $\lambda_i \geq 0$,
- Affine if $\sum_{i=1}^{n} \lambda_i = 1$,
- Linear if $\lambda_i \in \mathbb{R}$.

A set is convex/convex cone/ affine subspace/linear subspace if it contains all convex/conic/affine/linear combinations of its elements.

A set which is convex and a cone, then it is called a convex cone.

Definition 6. A set X is a cone if for any $x \in X$, $\alpha \ge 0$, we have $\alpha x \in X$.

Note: Every cone must include the origin. Union of two cones is a cone.

 $X_{j} = \{ \chi \in \mathbb{R}^{2} | \chi_{1}, \pi 0, \chi_{2}, \pi 0 \}$ $\Rightarrow is a cone., in fact a convex cone.$ $X_2 = \{ \chi \in \mathbb{R}^2 \mid \chi_1 \chi_2 \neq 0 \}$ > is a cone; but not a \mathcal{X}_{1} convex Set.

Projection

Theorem 5: Supporting Hyperplane Theorem

If C is a convex set and $z \in \delta C$ is a boundary point, then there exists a supporting hyperplane for C at z.

$$\underbrace{ Example : } X = \left\{ X \in \mathbb{R}^{2} \mid X_{1} \neq 0, x_{2} \neq 0, x_{1} \neq x_{2} \leq 1 \right\}$$

$$find supporting hyperplances at (8), \left(\frac{h_{2}}{h_{2}} \right) \neq \left(\frac{0}{h_{1}} \right)$$

$$H = \left\{ X \in \mathbb{R}^{2} \mid a^{T}x = b \right\}$$

$$at(8): H = \left\{ x \in \mathbb{R}^{2} \mid [1 \circ]^{T}x = 0 \right\}$$

$$at(6): H = \left\{ x \in \mathbb{R}^{2} \mid x_{1} + x_{2} = 1 \right\}$$

$$at(6): H = \left\{ x \in \mathbb{R}^{2} \mid x_{1} + x_{2} = 1 \right\}$$

$$at(6): H = \left\{ x \in \mathbb{R}^{2} \mid x_{1} + x_{2} = 1 \right\}$$

$$at(6): H = \left\{ x \in \mathbb{R}^{2} \mid x_{1} + x_{2} = 1 \right\}$$

$$at(6): H = \left\{ x \in \mathbb{R}^{2} \mid x_{1} + x_{2} = 1 \right\}$$

$$at(6): H = \left\{ x \in \mathbb{R}^{2} \mid x_{1} + x_{2} = 1 \right\}$$

$$at(7): H = \left\{ x \in \mathbb{R}^{2} \mid x_{1} + x_{2} = 1 \right\}$$

Separating Hyperplane

Definition 9 (Separating Hyperplane). Let X_1 and X_2 be two nonempty sets in \mathbb{R}^n . A hyperplane $H = \{x \in \mathbb{R}^n \mid a^{\top}x = b\}$ with $a \neq 0$ is said to separate X_1 and X_2 if • $X_1 \subseteq H^- := \{x \in \mathbb{R}^n \mid a^{\top}x \leq b\},$ • $X_2 \subseteq H^+ := \{x \in \mathbb{R}^n \mid a^{\top}x \geq b\}.$

Separation is said to be strict if $X_1 \subset \{x \in \mathbb{R}^n \mid a^{\top}x \leq b'\}, X_2 \subset \{x \in \mathbb{R}^n \mid a^{\top}x \geq b''\}$ with b' < b''. $X_1 \subseteq H$, $X_2 \subseteq H$

Equivalently

$$\sup_{x \in X_1} (a^\top x) \le \inf_{x \in X_2} a^\top x$$

with the inequality being strict for strict separation.

$$\phi(\lambda) = \| \lambda (\chi - p \infty j_{\chi}(\chi_{0})) + p \infty j_{\chi}(\chi_{0}) - \chi_{0} \|_{2}^{2}$$

$$= \lambda^{2} \| \chi - p \infty j_{\chi}(\chi_{0}) \|_{2}^{2} + \| p \infty j_{\chi}(\chi_{0}) - \chi_{0} \|_{2}^{2} + 2\lambda (\chi - p \infty j_{\chi}(\chi_{0}))^{T}.$$

$$(p \infty j_{\chi}(\chi_{0}) - \chi_{0})$$

To

$$\begin{aligned} \phi'(A)|_{A=0} &= 2(x - pooj_{x}(x_{0}))^{T} (pooj_{x}(x_{0}) - x_{0}) \neq 0 \\ &= 2 a^{T} pooj_{x}(x_{0}) - 2a^{T} \times \neq 0, \quad \Rightarrow a^{T} \times \leq a^{T} pooj_{x}(x_{0}) = a^{T}(x_{0} - a) \\ &\text{Theorem of the Alternative (Farkas' Lemma)} = a^{T} \times -a^{T} a \\ &\text{Suppose } S_{1} \neq \emptyset \Rightarrow \exists \vec{x} \in \mathbb{R}^{N} \text{ satisfying } (A\vec{x} = b) \vec{a} \neq 0. \\ &\text{Suppose } S_{2} \text{ is also non-empty} \text{ for } \forall f \in g \in S_{2}. \\ &(\vec{y})^{T} A \vec{x} = (\vec{y})^{T} b \neq 0 \\ &\Rightarrow (\vec{y})^{T} A \vec{x} = 0 \\ &\text{Thus, we have a confradiction, and hence we must have } S_{2} \neq 0. \\ &\text{Lemma 1 (Farkas' Lemma). Let } A \in \mathbb{R}^{m \times n} \text{ and } b \in \mathbb{R}^{m}. Then, exactly one of the following sets must be empty: \\ &1. \{x \in \mathbb{R}^{n} \mid Ax = b, x \geq 0\} = S_{1} \\ &2. \{y \in \mathbb{R}^{m} \mid (A^{T} y \leq 0) b^{T} y > 0\} = S_{2} \end{aligned}$$

Main Idea:

1. Easy to show that if (2) is feasible, (1) is infeasible.

2. For the converse, suppose (1) is infeasible. Then, $b \notin \text{cone}(a_1, a_2, \dots, a_n)$ where a_i is the *i*-th column of A. Find a hyperplane separating b from $\text{cone}(a_1, a_2, \dots, a_n)$ and show that (2) is feasible.

there is no
$$\overline{\mathcal{X}}_{\mathcal{T}}^{\mathcal{T}}O$$
 satisfying $\underline{A}\overline{\mathcal{X}}=b = \begin{bmatrix} a_1 \\ a_1 \end{bmatrix} \underbrace{\mathcal{X}}_1 + \begin{bmatrix} a_2 \\ a_2 \end{bmatrix} \underbrace{\mathcal{X}}_2 + \cdots + \begin{bmatrix} a_n \\ a_n \end{bmatrix} \underbrace{\mathcal{X}}_n$
 $= cone \begin{bmatrix} a_1, a_2 & \cdots & a_n \end{bmatrix}$
 $s_1 = \phi \iff b \notin cone \begin{bmatrix} a_1, a_2 & \cdots & a_n \end{bmatrix} \xrightarrow{} convex set, can be shown to be a closed set.$
then, there exists a hyperplane $H = \{ \mathcal{X} \in \mathbb{R}^n \mid gT \mathcal{X} = h \}$
that structly separates b from $cone (a_1, a_2 & \cdots & a_n)$

$$\overrightarrow{Proof}$$

It remains to show that $h=0$.
Since oreigin $\overline{0} \in \text{cone}(a_1, \dots, a_N)$, we always have $g^{T}(0) \leq h$
Suppose $h \neq 0$.
 $(g^{T}b \geq 5, g^{T}x \leq 5 \text{ for all } x \in \text{cone}(a_1 \dots a_N))$
Suppose $\overline{x} \in \text{cone}(a_1, a_2 \dots a_N)$, and $g^{T}\overline{x} \neq 0$
Since X is a cone, $q, \overline{x} \in \text{cone}(a_1, \dots, a_N) \neq d \neq 0$
we will be able to find a large enough st.
 $g^{T}(q, \overline{x}) \geq h$ which will violate
strict separation condition of the
hyperplane, \Rightarrow we can always choose
Thus $q \neq \overline{x} \in \text{cone}(a_1 \dots a_N), g^{T}\overline{x} \leq 0$
 $\Rightarrow g^{T}a_1 \leq 0, \dots = g^{T}a_n \leq 0$
 $\Rightarrow g^{T}a_1 \leq 0, \dots = g^{T}a_n \leq 0$

Domain of a Function

- We consider *extended real-valued* functions $f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\} =: \overline{\mathbb{R}}$.
- The (effective) domain of f, denoted $\operatorname{dom}(f)$, is the set $\{x \in \mathbb{R}^n \mid |f(x)| < +\infty\}$. $+\infty\}$. $\mathfrak{i} \cdot \mathfrak{e} \cdot \mathfrak{o} \prec \mathfrak{f}(\mathfrak{a}) \prec +\infty$
- Example: $f(x) = \frac{1}{x}$. What is dom(f)? $f: \mathbb{R} \to \mathbb{R}$ $dom(f) = \mathbb{R} \setminus \{0\}$ $f(x) = \sum_{i=1}^{n} x_i \log(x_i)$. What is dom(f)? $\lim_{x \to 0} x \log x = 0$ $\Re \in \mathbb{R}^n$ When $dom(f) \neq \phi$, we say that the function f is proper. $dom(f) = \{x \in \mathbb{R}^n \mid x_i \neq 0\}$

Definition 10 (Convex Function). A function $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ is convex if

- 1. $\operatorname{dom}(f) \subseteq \mathbb{R}^n$ is a convex set, and
- 2. for every $x, y \in \text{dom}(f), \lambda \in [0, 1]$, we have $f(\lambda x + (1 \lambda)y) \leq \lambda f(x) + (1 \lambda)f(y)$.

The Line segment joining (x, f(x)) and (y, f(y)) lies "above" the function. f(y), Examples: • $f(x) = x^2$, dom (f₁) = IR f(2) • $f_{\mathbf{z}}(x) = e^{x}$: Home work • $f(x) = a^{\top}x + b$ for $x \in \mathbb{R}^{n}$ x (Xxf(1-A)y) y ** $f_1(\lambda x + (1 - \lambda)y) = (\lambda x + (1 - \lambda)y)^2 = \lambda^2 x^2 + (1 - \lambda)^2 y^2 + 2\lambda (1 - \lambda)xy$ $\leq \lambda x^2 + (1 - \lambda)y^2$ (we want to show) $\lambda^2 \leq \lambda$, $(1 - \lambda)^2 \leq (1 - \lambda)$ since $\lambda \in [0, 1]$. (Homework) $+ dom(f_3) = \mathbb{R}^n$ $f_3(\lambda a + (1 - A)\gamma) = a^T(\lambda a + (1 - A)\gamma) + b$ = $\lambda(aTx+b) + (1-\lambda)(aTy+b) = \lambda f_3(\lambda) + (1-\lambda) f_3(\lambda)$. ⇒ f_3 is a convex function.

Definition 11 (Norms). A function $\pi : \mathbb{R}^n \to \overline{\mathbb{R}}$ is a norm if

• $\pi(x) \ge 0$, $\forall x \text{ and } \pi(x) = 0 \text{ if and only if } x = 0$,

 $\widehat{\pi}(\alpha x) = |\alpha| \pi(x) \text{ for all } \alpha \in \mathbb{R}, \text{ : positive homogeneity}$ $\widehat{\pi}(x+y) \leq \pi(x) + \pi(y). \text{ : truangle inequality.}$

Examples:

- $||x||_p := (\sum_{i=1}^n |x_i|^p)^{\frac{1}{p}}$ for $p \ge 1$.
- $||x||_Q := \sqrt{x^\top Q x}$ where \overline{Q} is a positive definite matrix.
- $||A||_F := (\sum_{i=1}^m \sum_{j=1}^n |A_{i,j}|^2)^{1/2}$ Frobenius norm on $\mathbb{R}^{m \times n}$.

Proposition 10. A Norm is a convex function. Lef $\chi, \chi \in \text{dom}(\mathbb{T})$, $\chi \in [0,1]$ $\mathbb{T}(\chi \chi \in [-\Lambda) \chi) \leq \mathbb{T}(\chi \chi) + \mathbb{T}[(1-\Lambda) \chi]$ $\leq \chi \oplus (\chi) + (1-\Lambda) \oplus (\gamma)$.

Definition 12. Indicator function $I_C(x)$ of a set C is defined as

$$I_C(x) := \begin{cases} 0, & x \in C, \\ \infty, & x \notin C. \end{cases}$$

Proposition 11. Indicator function $I_C(x)$ is convex if the set C is a convex set. $dom(\underline{T}_c(x)) = C$ which is a convex set.

Let $x, y \in C$., $\lambda \in [0,1]$. $I_{C}(\lambda x + (1 - \lambda)y) = O$ $I_{I} = C$ $\lambda I_{C}(x) + (1 - \lambda)I_{C}(y) = O$ Hence $I_{C}(\lambda)$ is a convex function.

Definition 13. A function $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ is • strictly convex if property (2) above holds with strict inequality for $\lambda \in (0,1), \Rightarrow f(Aa+(1-A)y) < Af(a)+(1-A)f(y), A \neq y$ • μ -strongly convex if $f(x) - \mu \frac{||x||_2}{2}$ is convex, and $\mu > 0$. • concave if -f(x) is convex. equivalently, a function g is concave if $\forall x, y \in \text{dom } g, A \in [0,1], \qquad \text{Gef}$ g(Ax+(1-A)y) > Ag(x) + (1-A)g(y)If a function is affine, if is both convex and concave.

Examples:

$$g_1(x) = -x^2$$

 $g_2(x) = \sqrt{x}$
 $g_3(x) = \log x$

Proposition 13. For a convex function $f : \mathbb{R}^n \to \overline{\mathbb{R}}$, for any collection of $\begin{array}{c} \text{points } \{x_1, x_2, \dots, x_k\}, \text{ we have } f(\sum_{i=1}^k \lambda_i x_i) \leq \sum_{i=1}^k \lambda_i f(x_i) \text{ when } \lambda_i \geq 0 \\ \text{and } \sum_{i=1}^k \lambda_i = 1. \end{array}$ Proof is straightforward via induction. $E_{X}:=$ For a collection $(\chi_{1},\chi_{2}-\chi_{n})$, $A_{M}=$ $\prod_{i=1}^{n}\chi_{i}$ $G_1M = \left(\prod_{i=1}^{N} \chi_i \right)^{V_{en}}$ $\log\left(\frac{1}{i} + \frac{1}{2} + \frac{1}{2}\right)^{\gamma_{n}} = \frac{1}{n} \left(\log\left(\frac{1}{i} + \frac{1}{2} + \frac{1}{2}\right)\right)$ = $\int_{n} \sum_{i=1}^{n} \log(x_i)$ (see: $\lambda_i = k_n, f: \log$) concare < log (1, Z, xi) (using Jensen's inequality). $\Rightarrow (\underbrace{\Pi}_{x_i})^{l_n} \leq \underbrace{1}_{x_i} \underbrace{2}_{x_i}^{l_n} (as [og(\cdot)] is monotonically inoreasing)$

 $f(x)=\chi^2$, $f:\mathbb{R}\to\mathbb{R}$. $epi'(f) \subseteq \mathbb{R}^2$

Epigraph Characterization

1+<f(x)

Definition 14. A epigraph of a function $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ is defined as the set $epi(f) := \{(x,t) \in \mathbb{R}^{n+1} | f(x) \leq t\}. \subseteq \mathbb{R}^{n+1}$ $(x, f(n)) \in epi(f)$

Example: Norm cone: $\{(x,t)|||x|| \le t\}$ is a convex set. Since $\|\cdot\|$ is a convex function.

Proposition 14. Function $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ is convex in \mathbb{R}^n if and only if its epigraph is a convex set in \mathbb{R}^{n+1} . poorf: Let f be a convex function. Let $\binom{n_1}{t_1}$, $\binom{n_2}{t_2}$ $\in epi(f)$. $\Rightarrow f(n_1) \leq t_1$, $f(n_2) \leq f_2$ we need to show $3\binom{24}{t_1} + (1-3)\binom{2}{t_2} \in epi(f)$, $3 \in [0,1]$. $\begin{array}{c} \begin{array}{c} \langle \lambda \chi_1 + (1 - \lambda) \chi_2 \\ \chi_{t_1} + (1 - \lambda) \chi_2 \end{array} \end{array} \right) \in epi(f) \\ \begin{array}{c} \langle \lambda t_1 + (1 - \lambda) \chi_2 \end{array} \end{array}$ (=) $f(3x_1 + (1-3)x_2) \leq 3t_1 + (1-3)t_2$. (to show). $f(Ax_1 + (1-A)x_2) \leq A f(x_1) + (1-A) f(x_2) \leq A t_1 + (1-A)t_2$ which is what is to show. (=) suppose epif is a convex set. $(x_1, f(x_1)), (x_2, f(x_2))$ then for $\lambda \in [0,1]$, $\int \lambda Y_4 + (1-\lambda) Y_2$, $\int \xi = pif$. $\int \lambda f(x_4) + (1-\lambda) f(x_2) = \xi = pif$. $\Rightarrow f(xy_{+}(1-x)y_{2}) \leq xf(y_{1})r(1-x)f(y_{2}).$