
Example 2: Least Norm Solution

Least norm solution:

min
x2Rn

1

2
x
>
x

s.t. Ax = b.

Find L and d.
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Towards Optimality Conditions

Consider the primal optimization problem:

min
x2Rn

f(x)

s.t. gi(x)  0, i 2 [m] := {1, 2, . . . ,m},
hj(x) = 0, j 2 [p].

Let the dual function be defined as

d(�, µ) := inf
x
L(x,�, µ) = inf

x

⇥
f(x) +

X

i2[m]

�igi(x) +
X

j2[p]

µihj(x)
⇤
.

The corresponding dual optimization problem is:

max
�2Rm,µ2Rp

d(�, µ)

s.t. � � 0,

(�, µ) 2 dom(d).

Consequently, for any (x̄, �̄, µ̄) with x̄ being primal feasible and �̄ � 0, we have

d(�̄, µ̄) = inf
x

⇥
f(x) +

X

i2[m]

�̄igi(x) +
X

j2[p]

µ̄jhj(x)
⇤


⇥
f(x̄) +

X

i2[m]

�̄igi(x̄) +
X

j2[p]

µ̄jhj(x̄)
⇤

 f(x̄).

When do both the above inequalities hold with equality?
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Necessary Conditions for Optimality

Theorem 3

Suppose strong duality holds. Let x
?
be the optimal solution of the primal

problem, and �
?
, µ

?
be the optimal solution of the dual problem. Then, the

following conditions are satisfied.

Primal Feasibility: gi(x?)  0, i 2 [m], hj(x?) = 0, j 2 [p].

Dual Feasibility: �? � 0.

Complementary Slackness: �?
i gi(x

?) = 0 for all i 2 [m].

Lagrangian Stationarity:

rxf(x
?) +

X

i2[m]

�
?
irxgi(x

?) +
X

j2[p]

µ
?
irxhj(x

?) = 0.

The above four conditions are called Karush–Kuhn–Tucker (KKT) optimality

conditions.

When are the above conditions su�cient for optimality?

Essentially, the Lagrangian stationarity conditions must imply that x
?
is the op-

timal solution of the Lagrangian problem. When it is true?
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Su�cient Condition for Optimality for Convex Problems

Theorem 4

Suppose the primal optimization problem is convex. Let x̄, �̄ and µ̄ satisfy

KKT conditions stated above. Then,

d(�̄, µ̄) = f(x̄) (strong duality holds).

x̄ is optimal solution of primal problem.

(�̄, µ̄) are optimal solution of dual problem.

It is still possible for a convex optimization problem to have an optimal solution

but no KKT points. We need additional conditions to make sure that optimal

solutions satisfy KKT conditions.

Let x̄, �̄ and µ̄ satisfy KKT conditions stated above. From primal and dual

feasibility we have

d(�̄, µ̄) = inf
x

⇥
f(x) +

X

i2[m]

�̄igi(x) +
X

j2[p]

µ̄ihj(x)
⇤

 f(x̄) +
X

i2[m]

�̄igi(x̄) +
X

j2[p]

µ̄ihj(x̄)  f(x̄).

Further, both inequalities hold with equality.
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Constraint Qualification and Strong Duality

Theorem 5

Suppose the primal optimization problem is convex which satisfies Slater’s

constraint qualification condition: there exists x̄ 2 int(D) in the domain of

the optimization problem for which gi(x̄) < 0 for all i 2 [m] and hi(x̄) = 0
for all i 2 [p]. Then, strong duality holds with f

⇤ = d
⇤
. Moreover, if

f
⇤
> �1, then, there exist (�?

, µ
?) such that g(�?

, µ
?) = d

⇤ = f
⇤
.

The point x̄ need not be an optimal solution. It is any arbitrary feasible

point.

Relaxed Slater Condition: If some of the inequality constraints are

a�ne, then they need not hold with strict inequality. It is su�cient to find

x̄ 2 relint(D) such that gi(x̄) < 0 for all gi that are not a�ne.

We now have the following result.

Proposition 1. Suppose the primal problem is convex and satisfies Slater’s
condition. Then, if a feasible solution x

⇤ is optimal, then there exist
�
⇤
, µ

⇤ such that (x⇤,�⇤
, µ

⇤) satisfy KKT conditions.

Note that su�ciency part holds even without Slater’s condition.

An alternative condition is Linear Independence Constraint Qualifi-
cation (LICQ) which holds at a feasible solution x

⇤
if the vectors

rhj(x
⇤), j 2 [p],

rgi(x
⇤), i 2 {k 2 [m]|gk(x⇤) = 0}

are linearly independent. If LICQ holds at a point x
⇤
, then KKT conditions

are necessary for the local optimality of x
⇤
.
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Convex Theorem of the Alternative

Consider the following general form of optimization problem:

min
x2Rn

f(x)

s.t. gi(x)  0, i 2 [m] := {1, 2, . . . ,m},

where f and gi are convex functions.

Theorem 6

Let the constraint functions gi satisfy slater’s condition: there exists x̄

such that gi(x̄) < 0 for all i 2 [m]. Then, exactly one of the following two

sets must be empty.

S = {x 2 Rn|f(x) < 0, gi(x)  0, i 2 [m]}

T = {� 2 Rm|� � 0, infx2Rn[f(x) +
P

i2[m] �igi(x)] � 0}.

Case 1: If T is non-empty, then S is empty.

Case 2: If S is empty, then T is non-empty. Can be shown via separating

hyperplane theorem, but bit more involved.
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Strong Duality Theorem

Consider the following general form of optimization problem:

min
x2Rn

f(x)

s.t. gi(x)  0, i 2 [m] := {1, 2, . . . ,m},

where f and gi are convex functions satisfying Slater’s condition.

Theorem 7

x
⇤
is an optimal solution to the above problem if and only if there exists

�
⇤ � 0 such that infx2Rn[f(x) +

P
i2[m] �

⇤
i gi(x)] � f(x⇤).

Since x
⇤
is an optimal solution, the set

S = {x 2 Rn|f(x)� f(x⇤) < 0, gi(x)  0, i 2 [m]}

is infeasible.

It follows from the above theorem that the set

T = {� 2 Rm|� � 0, inf
x2Rn

[f(x)� f(x⇤) +
X

i2[m]

�igi(x)] � 0}

is feasible.
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