
Slack Variables and Epigraph Form

The following two optimization problems are equivalent:

min
x

kX

i=1

�i(x)

s.t. x 2 X , (A)

min
x,t

kX

i=1

ti

s.t. x 2 X , (B)

�i(x)  ti, i 2 {1, 2, . . . , k}.
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Change of Variables

Consider an optimization problem:

min
x

fo(x)

s.t. fi(x)  0, i 2 {1, 2, . . . , k}
hi(x) = 0, i 2 {1, 2, . . . , p}.

Let F : X ! Y be an invertible mapping with y = F (x). Then, we have the

following equivalent optimization problem with respect to y:

When is convexity preserved?
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Substituting Equality with Inequality Constraints

Consider an optimization problem:

p
⇤ = min

x2X
f(x)

s.t. b(x) = u.

If we replace the equality constraint with an inequality, we obtain:

g
⇤ = min

x2X
f(x)

s.t. b(x)  u.

Proposition. p⇤ = g
⇤ under the following conditions: (i) f0 is non-increasing

over X , (ii) b is non-decreasing over X , and (iii) the optimal values are
attained for both problems.
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Elimination of Inactive Constraints

Consider an optimization optimization problem:

min
x

fo(x)

s.t. fi(x)  0, i 2 {1, 2, . . . ,m}, (1)

Ax = b.

Let x
?
be an optimal solution. We define the set of active and inactive constraints

as follows:

A(x?) := {i 2 {1, 2, . . . ,m} : fi(x
?) = 0},

Ā(x?) := {i 2 {1, 2, . . . ,m} : fi(x
?) < 0}.

The following proposition says that when the problem is convex, we can remove

the inactive constraints without changing the optimal solution.

Proposition. Let x
? be an optimal solution of (1). Then, x

? is also an
optimal solution of

min
x

fo(x)

s.t. fi(x)  0, i 2 A(x?), (2)

Ax = b.
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Linear Programming (LP)

LP is a class of optimization problems where the cost function is linear in

the decision variable and the feasibility set is a polyhedron.

A polyhedron is intersection of finitely many half-spaces:

H = {x 2 Rn|Ax  b} = {x 2 Rn|a>i x  bi, i = 1, 2, . . . ,m}.

Any polyhedron can also be represented as the Minkowski sum of the con-

vex hull of a finite number of extreme points {v1, v2, . . . , vk} and cone

generated by a finite number of extreme rays {r1, r2, . . . , rp}, i.e.,

x 2 H () x =
kX

i=1

�ivi +
pX

j=1

µjrj, µj � 0,�i � 0,
kX

i=1

�i = 1.

If a polyhedron is bounded, it is called a polytope, and the set of extreme

directions is empty.

Example: The probability simplex
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Linear Programming in Standard Forms

LP in standard equality form:

min
x2Rn

c
>
xc

s.t. Ax = b,

x � 0.

LP in standard inequality form:

min
x2Rn

c
>
x

s.t. Ax  b.

We can easily go from one form to the other. Any LP can be represented in each

of the above standard forms.

Example:

min
x2R2

3x1 + 1.5x2

s.t.� 1  x1  2,

0  x2  3.
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Network Flows
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Chebyshev Center of a Polyhedron
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Fundamental Theorem of Linear Programming

Theorem 1

A linear programming problem is either infeasible, or unbounded or has an

optimal solution.

An intersection of a polytope with a supporting hyperplane is called a face

of the polytope. Face includes vertex, edge or facet as special cases.

The optimal solution lies on a face of the polytope, and is unique if it is on

a vertex.

Example:

min
x2R2

3x1 + 1.5x2

s.t.� 1  x1  2,

0  x2  3.
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Obtaining a lower bound on the cost function

Consider a LP in the standard equality form:

min
x2Rn

c
>
x

s.t. Ax = b, (P)

x � 0.
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Finding best possible lower bound

This happens to be another linear program:

max
y2Rm

b
>
y

s.t. A
>
y  c. (D)

The above problem is referred to as the dual of problem (P).

A LP stated as above is called standard inequality form.

We can show that the dual of (D) is (P).
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Properties

Theorem 2

For the primal-dual pair of optimization problems stated above, the following

are true.

1. If (P) is infeasible, and (D) is feasible, then (D) is unbounded.

2. If (P) is unbounded, then (D) is infeasible.

3. Weak Duality: For any feasible solution x̄ and ȳ of the respective

problems, we always have c
>
x̄ � b

>
ȳ.

4. Strong Duality: Suppose both (P) and (D) are feasible. Show

that for the respective optimal solutions x
?
and y

?
, we must have

c
>
x
? = b

>
y
?
.

HW: Give an example of (P) and (D) where both are infeasible.

Lemma 1 (Farkas’ Lemma). Let A 2 Rm⇥n and b 2 Rm. Then, exactly one
of the following sets must be empty:

1. {x 2 Rn | Ax = b, x � 0}

2. {y 2 Rm | A>
y  0, b>y > 0}.
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Proof
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Proof
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Lagrangian Function

Consider the following optimization problem in standard form:

min
x2Rn

f(x)

s.t. gi(x)  0, i 2 [m] := {1, 2, . . . ,m},
hj(x) = 0, j 2 [p].

The Lagrangian function L : Rn ⇥ Rm ⇥ Rp ! R is defined as

L(x,�, µ) := f(x) +
X

i2[m]

�igi(x) +
X

j2[p]

µjhj(x),

where

�i is the Lagrange multiplier associated with gi(x)  0

µj is the Lagrange multiplier associated with hj(x) = 0.

Lower Bound Property:

Lemma 2. If x̄ is feasible and �̄ � 0, then f(x̄) � L(x̄, �̄, µ).
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Lagrangian Dual

From the previous lemma, we know that if x̄ is feasible and �̄ � 0, then

f(x̄) � L(x̄, �̄, µ) � inf
x
L(x, �̄, µ) =: d(�̄, µ).

where

d(�, µ) := inf
x

⇥
f(x) +

X

i2[m]

�igi(x) +
X

j2[p]

µihj(x)
⇤
.

d(�, µ) requires solving an unconstrained optimization problem.

Given any � � 0, µ, d(�, µ)  f
⇤
where f

⇤
is the optimal value.

d(�, µ) may take value �1 for some choice of � and µ.

d(�, µ) is concave in � and µ.
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Lagrangian Dual Optimization Problem

Let us compute the best lower bound on f
⇤
:

max
�2Rm,µ2Rp

d(�, µ)

s.t. � � 0,

(�, µ) 2 dom(d).

The above is a convex optimization problem since d(�, µ) is concave in �

and µ irrespective of whether the original problem is convex or not.

Let the optimal value of the dual optimization problem be denoted d
⇤
.

�
⇤ = f

⇤ � d
⇤
is called the duality gap.

Weak Duality: d
⇤  f

⇤
always holds (even for non-convex problems).

Strong Duality: d
⇤ = f

⇤
is guaranteed to hold for convex problems satisfying

certain conditions, referred to as constraint qualification conditions.
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Example 1: Lagrangian Dual of LP

min
x2Rn

c
>
x

s.t. Ax = b, x � 0.

Find L, d and dom(d).
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Example 2: Least Norm Solution

Least norm solution:

min
x2Rn

1

2
x
>
x

s.t. Ax = b.

Find L and d.
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Example 3

min
x2R

� x
2

s.t. x� 1  0, �x  0.

Find the optimal value of the above problem, derive the dual and determine

whether strong duality holds.
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Example 4

min
x2R2

� x
2
1 � x

2
2

s.t. x
2
1 + x

2
2 � 1  0.

Find the optimal value of the above problem, derive the dual and determine

whether strong duality holds.
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