

Assignment 1

TCP Client-server
Due: August 3, 2009, 1-00 PM

1. Write a simple TCP iterative server and client to evaluate arithmetic expressions.
The client-server system has the following functionalities:

a. The client asks for an arithmetic expression from the user. The user enters

an arithmetic expression containing only positive integers and the binary
operators +, -, *, and /. The arithmetic expression can be at most 100
characters long. There may or may not be spaces before and after the
operators. For example, all of the following are valid expressions to enter:
“13 + 42*5”, “10+2/4”, “5 + 6 - 3”. Assume that all operators
have the same precedence and are left-associative.

b. The client sends the expression to the server. You should send only the

number of bytes needed to send the expression properly and not send the
complete buffer if not needed.

c. The server computes the expression and sends the integer back to the
client.

d. The client displays the result on the screen. It then prompts the user to
enter the next expression.

e. The client terminates when the user enters a –1.

2. Write a TCP concurrent server and client to do the above. Note that more than one
client can connect to the server at the same time.

You can assume that the user always enters a valid expression. To test your program, first run the
client and the server on the same machine. Use the IP address 127.0.0.1 and the port no. = 50000
+ last 4 digits of your roll no. (for ex., if your roll no. is 06CS1001, use port no. = 50000 + 1001 =
51001). Finally, test your program by running the client and the server on two different machines
(set the server IP address appropriately).

You should submit three C files, the client, the iterative server, and the concurrent server. Name
the files client.c, server_it.c, and server_conc.c respectively.

Things to note (not part of assignment):

1. Print out the return values from the send and the recv calls. Look up the man page to see
what they mean. In general, read the man page to understand the send/recv (write/read)

calls thoroughly.
2. Write a small program in which the client waits for the server to send something. Server

does not send anything, but just sleeps for 30 seconds (enough time for you to start the
client after starting the server) and then closes the socket. What do you see happen at the
client?

3. Based on the above, and your general knowledge of programming, can you now devise a
scheme in which the client and the server can send each other arbitrary length data (you
cannot assume any maximum length), but you cannot use any buffer of size more than
100.

