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A B S T R A C T

It is established that large errors would be incurred if the average Nusselt number for natural convection above
heated horizontal plates of finite size is determined by the similarity or integral theories which assume the plate is
semi-infinite. Recognizing that boundary layers grow from both edges of a finite plate, correction factors are
mathematically deduced for the isothermal case ( =F 2t

2/5) and for the case of constant heat flux ( =F 2q
1/3).

Correction factors are also developed for near-horizontal orientations of the heated plate. The semi-infinite as-
sumption does not alter the computation of the overall heat transfer rate for inclination angles at which the vertical
mechanism of natural convection is dominant since then, even in the case of a finite plate, a single boundary layer
covers the entire length of the plate. The theoretical rationalization developed in the paper brings the predictions
of explicit algebraic expressions for average Nusselt number in line with those determined accurately by com-
putational fluid dynamics (with extensive experimental verification), and provides physical explanation of the
subtle thermo-fluid-dynamics of natural convection established by the present CFD simulations.

1. Introduction

Natural convective flow is set up in a fluid due to density gradients
that are in turn developed due to temperature differences in the fluid.
Heat transfer by natural convection is an important physical phenom-
enon and is often encountered in engineering devices such as electronic
equipments, nuclear reactors, etc. Natural convection flows adjacent to
plate-like geometries are of interest in a number of industrial applica-
tions such as the heat treatment of materials travelling between a feed
roll and a wind-up roll or on conveyor belts, the hot extrusion of steel,
the lamination and melt-spinning processes in the extrusion of poly-
mers, etc. [1].

Calculation of the overall heat transfer rate in natural convection,
and therefore of the average Nusselt number Nu, for a heated finite
plate is important from a practical point of view. From the value of Nu
one may directly determine by how much the overall heat transfer
changes as the orientation of the plate is altered from the horizontal to
vertical. Recently, Guha and Pradhan [2] applied the integral method to
formulate a set of simple generic equations that represents natural
convection on horizontal, inclined and vertical surfaces subjected to
arbitrary variation in wall temperature or surface heat flux for a wide
range of parameters ( Gr10 103 7, 0. 01 Pr 100 and
0 90 ). They quantified, for the first time, the relative contribu-
tion of the horizontal and vertical mechanisms of natural convection on

an inclined surface. In two recent papers the power of computational
fluid dynamics (CFD) is invoked to obtain accurate solutions of natural
convective flow above a heated finite horizontal plate [3] and that
around a heated finite vertical plate [4]. In the present paper the same
CFD method is applied to finite inclined plates with constant tem-
perature (isothermal) or constant heat flux condition, with an extensive
experimental validation of the computed heat transfer results. The
subscripts t and q are used here to denote the isothermal and iso-heat-
flux conditions respectively. The subscripts h and v are used here to
denote the horizontal and vertical orientations respectively.

Similarity analysis of natural convection past a semi-infinite iso-
thermally heated vertical plate is now a standard element of all books
on convection [5–8]. Laminar natural convection on a vertical plate has
been studied by experiments [9–12], similarity theory [13] and integral
theory [14]. Recently, Guha and Nayek [4] performed a detailed
computational study of the thermo-fluid-dynamics of natural convec-
tion past a finite vertical plate. The mechanism of natural convection
above a horizontal plate is quite different from that around a vertical
plate, and was termed as ‘indirect natural convection’ by Schlichting
and Gersten [8] due to the nature of its generation. Natural convection
over a heated horizontal surface has been studied using similarity
theory [15], integral theory [16] and experiments [17]. Guha and
Sengupta [3] presented a comprehensive CFD analysis of the effects of
the finiteness of a heated horizontal plate on the thermo-fluid-dynamics
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of natural convection above it. Apart from these, several other studies
pertaining to natural convection of different types of fluids (non-New-
tonian fluid, nanofluid, etc.) above horizontal surfaces may be found in
Refs. [18–21]. A numerical study [22] presents detailed non-linear in-
teraction of natural convection with von Kármán's flow on a heated
rotating disc.

While it has been possible to develop self-similarity theory for
vertical plate ( = 90 ) and horizontal plate ( = 0 ), the flow solutions
for all other inclination angles are found to be non-similar. Similarity
theories show that the Nusselt number varies as the one-fourth power of
Grashof number for natural convection on an isothermal vertical sur-
face (Nu Grx x

1/4) while it varies as the one-fifth power of Grashof
number (Nu Grx x

1/5) for isothermal horizontal surfaces. Since the
natural convection mechanisms for both vertical and horizontal con-
figurations are operative in case of inclined surfaces, the development
of a closed-form solution for the Nusselt number, which will reduce to
the known solutions in the two limits of horizontal and vertical sur-
faces, is difficult. Natural convective flow adjacent to inclined plates
has been investigated experimentally [23–25] as well as numerically
[26–29]. While the experimental studies tried to relate the heat transfer
results on inclined surfaces to the limiting cases of vertical and hor-
izontal surfaces, the numerical studies involved the derivation and
subsequent solution of non-similar boundary layer equations for natural
convection on an inclined surface. Recently, a comprehensive compu-
tational study is performed for natural convection adjacent to iso-
thermally heated finite inclined plates [30]. The detailed thermo-fluid-
dynamics of the convective flow near the heated plate as well as that in
the buoyant plume is discussed in Ref. [30]. The paper develops several
new concepts (such as the lift-off point) and provides a thorough de-
scription of the subtle transition in the physical processes as the me-
chanism of natural convection changes from being induced-pressure-
difference-driven to direct-buoyancy-driven as the inclination angle is

changed from zero (horizontal) to 90 (vertical).
All integral and similarity analyses of natural convection adjacent to

flat plates are restricted by some assumptions: (i) the plate is semi-in-
finite, (ii) the boundary layer equations are valid, (iii) there is no
buoyant plume (iv) the plate thickness is negligible, and (v) the flow
occurs on only one side of the plate. In order to ensure self-similarity,
sometimes non-physical boundary conditions may also be used [4]. In
spite of the limitations, some theoretical analyses [2,16] provide alge-
braic expressions for Nusselt number as explicit functions of Grashof
number, Prandtl number and inclination angle (see the Appendix for a
short description of important explicit correlations). This has obvious
practical utility. The theoretical analyses are also useful in compre-
hending results obtained from CFD studies or experiments. With this in
mind, values of average Nusselt number (Nu) for the isothermal and
iso-heat-flux cases are computed by integrating the results for local
Nusselt number Nux given in three previous theoretical work [2,27,28].
When these values of Nu are compared with those obtained from the
present CFD simulations, large differences are found for the horizontal
plate and near-horizontal orientations (0 15 ). There is a second
important difference between the CFD results and predictions of the-
ories. The present CFD results, for both isothermal and iso-heat-flux
cases, show that as the inclination angle is increased gradually from the
horizontal position, the value of average Nusselt number Nu initially
decreases slightly, passes through a minimum point and then onward
increases continuously up to the vertical position of the plate. Nu
constructed by integrating theories of [2,27,28], on the other hand,
show monotonic increase from the horizontal to vertical.

The present paper provides theoretical explanation for the above-
mentioned discrepancy in the values of average Nusselt number Nu
determined by the present CFD simulations and those given by previous
theoretical analyses. It is shown that, since a practical plate is of finite
length, and convective flow may be induced on both sides of the plate,

Nomenclature

cp specific heat capacity (J/kgK)
GrL Grashof number defined as g T T L µ( ) /w

2 3 2 for iso-
thermal case

GrL Grashof number defined as g q L kµ/w
2 4 2 for constant

surface heat flux case
local Grashof number defined as g T T x µ( ) /w

2 3 2 for
isothermal case

Grx local Grashof number defined as g q x kµ/w
2 4 2 for con-

stant surface heat flux case
g acceleration due to gravity (m/s2)
hx local convective heat transfer coefficient (W/m K2 )
h average convective heat transfer coefficient (W/m K2 )
k thermal conductivity (W/mK)
L length of plate (m)
Nux local Nusselt number defined as h x k/x
Nu average Nusselt number defined as hL k/
Pr Prandtl number defined as µc k/p
p static pressure (Pa)
p ambient pressure (Pa)
Q total surface heat flux (W)
qx local heat flux (W/m2)
qw wall heat flux (W/m2)
RaL Rayleigh number defined as Gr PrL for isothermal case
RaL Rayleigh number defined as Gr PrL for constant surface

heat flux case
Rax local Rayleigh number defined as Gr Prx for isothermal

case
Rax local Rayleigh number defined as Gr Prx for constant sur-

face heat flux case

T fluid temperature (K)
Tw temperature of the heated surface (K)
T ambient temperature (K)
tP thickness of plate (m)
u component of velocity along the plate (m/s)
VY component of velocity along Y -direction (m/s)
v component of velocity normal to the plate (m/s)
v velocity vector
X horizontal co-ordinate with origin at left (or trailing) edge

of the heated side of the plate
x co-ordinate along the plate with origin at right (or

leading) edge of the heated side of the plate
x non-dimensional x coordinate defined as x L/
xlift off non-dimensional lift-off distance
xqx,min non-dimensional minimum wall heat flux point
Y vertical co-ordinate with origin at left (or trailing) edge of

the heated side of the plate
y co-ordinate normal to the plate with origin at right (or

leading) edge of the heated side of the plate
y non-dimensional y coordinate defined as y L/

Greek symbols

thermal diffusivity (m /s2 )
coefficient of thermal expansion ()
inclination angle (degree)

µ dynamic viscosity (Pa s)
density (kg/m3)
density at temperature T (kg/m3)
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with a deviation from boundary-layer type of flow (such as formation of
buoyant plume), the afore-mentioned assumptions inherent in previous
theoretical analyses may lead to inability of the solution in capturing all
the intricate features of the flow field. Correction factors are developed
that would bring the theoretical analyses in line with CFD results. The
process of mathematical deduction provides physical insight and helps
in comprehending the CFD results.

2. Mathematical formulation

The present study considers steady laminar natural convective flow
around a heated plate inclined at an angle to the horizontal (Fig. 1).
The governing equations for the above-mentioned flow system are
given below:

+ =
t

v. ( ) 0 (1)

+ = + + +v
t

v v p µ v µ v µ v g( ) . ( ) . 2
3

.T

(2)

+ = +T
t

v T k
c

T( ) . ( ) .
p (3)

In equations (1)–(3), v denotes the velocity vector, p is the static
pressure and T is the temperature of the fluid. , µ, cp and k are re-
spectively the density, dynamic viscosity, specific heat capacity at
constant pressure and thermal conductivity of the fluid. g is the gravity
vector. The viscous dissipation term which is usually small [31] for
natural convection is neglected in the present study. Density of the fluid
is considered to be constant except in the body force term in equation
(2). The Boussinesq approximation, which considers a linear variation
of density with temperature rise, is adopted here for the variation of
density in the body force term. According to the Boussinesq approx-
imation,

= T T[1 ( )] (4)

where is the thermal expansion coefficient of the fluid, T and are
respectively the temperature and density of the quiescent fluid far away
from the heated plate. All the other thermo-physical properties of the
fluid like dynamic viscosity, specific heat capacity and thermal con-
ductivity are considered to be constant.

A two-dimensional analysis is performed here for which the width
of the plate perpendicular to the plane of the paper is assumed infinite.
The x -coordinate is taken along the plate and the y-coordinate is
measured normal to the plate (Fig. 1). The origin of the co-ordinate
system is taken at point O which is the lowest point on the heated
surface (right-most point for horizontal configuration). The velocity
component along the x -direction (along the plate) is u. The velocity
component along the y-direction (normal to the plate, pointing away
from the plate on the heated side of the plate) is v. It is to be noted that,
with respect to any globally fixed co-ordinate system, the co-ordinate
axes x and y (and hence u and v) rotate with the plate as its inclination
is varied. Gravity g acts vertically downwards, which is in the negative
y-direction for the horizontal plate orientation ( = 0 ).

The heat transfer results in the study of natural convection adjacent
to a flat plate are usually presented in terms of the Nusselt number (Nu)
or the convective heat transfer coefficient (h). The local heat flux at any
position (x) along the plate is computed using the following expression:

=
=

q k T
yx

y 0 (5)

where x and y are respectively the coordinates along and normal to the
plate.

The local convection heat transfer coefficient hx is given by:

=h
q

T T( )x
x

w (6)

The local Nusselt number (Nux) is evaluated from the local con-
vective heat transfer coefficient (hx) according to the following ex-
pression:

=Nu h x
kx
x

(7)

where x is the distance along the plate from the leading (right) edge and
k is the thermal conductivity of the fluid. The average Nusselt number
(Nu) is evaluated from the following expression:

=Nu hL
k (8)

where L is the length of the plate and h is the average convective heat
transfer coefficient that is calculated from hx using the following ex-
pression:

=h
L

h dx1 L

x
0 (9)

3. Computational fluid dynamic simulations

The governing equations for natural convective flow (equations
(1)–(3)) around an inclined plate are solved using a commercial finite-
volume based CFD solver Fluent [32]. Two-dimensional simulations are
performed with the assumption that the dimension of the plate in the
direction perpendicular to the plane shown in Fig. 1 is infinitely large. A
structured mesh is constructed for the chosen computational domain
using ANSYS Meshing and a systematic grid independence study is
performed.

3.1. Geometry, grid and boundary conditions

A flat plate of length L and thickness tP (= L/100) is considered in
the present study. It is assumed that one side of the plate is maintained
at a temperature Tw (>T ) or subjected to a uniform heat flux qw while
the other three sides are insulated (i.e. adiabatic condition is main-
tained there). In their experiments, Rich [23], Vliet [24] and Sang-Urai
[25] used an insulated surface ( =q 0w ) for the side of the inclined plate
opposite to the heated side. We have also used the adiabatic ( =q 0w )
boundary condition for that side of the plate. However, there is no
explicit mention of the condition on the two edges along the thickness
(tP) of the plate used in the experiments. We have used the adiabatic
condition there so that it does not affect the total heat transfer from the
plate (and hence the Nusselt number calculations). The no-slip and no-
penetration boundary conditions are applied on all the four sides of the
plate. Mathematically, the boundary conditions for the four sides of the
plate may be listed as follows:

Fig. 1. A physical model and coordinate system for the analysis of natural
convection around a heated inclined plate.
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Heated side of plate:

= = =

= =

y x L u v

T T k T
y

q

At 0, 0 : 0,

: (isothermal) or (iso heat flux)w w

(10)

Other three sides of plate:

= = = =x t y u v T
y

At 0, 0: 0, 0.P (11)

= = = =x L t y u v T
y

At , 0: 0, 0.P (12)

= = = =y t x L u v T
y

At , 0 : 0, 0.P (13)

Fig. 2 shows the computational domain for the case = 90 (ver-
tical). The “pressure outlet” boundary condition available in Fluent is
applied at the periphery of the overall computational domain. In Fluent,
when the gravitational acceleration is activated in the simulation of
incompressible flow, the static pressure p at a point is re-defined as

=p p g r [32], where is the ambient density of the fluid
(which is assumed constant), g is the gravitational acceleration and r
is the position vector. The “pressure outlet” boundary condition feature
requires the specification of the re-defined (gauge) static pressure p .
Since the hydrostatic pressure is already contained in the modified
pressure p , setting =p 0 on all the boundaries of the overall compu-
tational domain automatically sets =p p there, p being the ambient
pressure that varies in the direction of gravity according to the hy-
drostatic equation.

In the present study, we have considered laminar flow. The fluid
flow over an inclined plate due to natural convection becomes unstable
above a critical value of RaL. In case of vertical flat plate the critical
value of RaL is ×9 109 [33,34], while the transition from laminar to
turbulent flow takes place at about = ×GrPr 8 106 for a horizontal plate
[35]. The present theoretical study with parametric variation in the
inclination angle is conducted at =Gr 10L

6 (or =Gr 10L
6) and =Pr 0.7

so that the flow remains laminar above the plate. This also ensures that
the flow in the buoyant plume remains laminar [36]. Later, for ex-
perimental verification, several additional CFD simulations are run at
various values of Rayleigh number to match corresponding experi-
mental conditions available in the literature (Sections 4.1 and 4.2).

3.2. Numerical schemes

The governing equations (1)–(3) are solved numerically using the
pressure-based solver available in FLUENT. All transport equations are
discretized to be second order accurate in space. The second order

upwind scheme provided in Fluent is used for the discretization of the
advection terms, while the central difference scheme is used for dis-
cretizing the diffusion terms in the momentum and energy equations.
The SIMPLE algorithm is used for pressure-velocity coupling. Under-
relaxation factors are suitably employed such that numerical in-
stabilities are avoided but computational time does not increase ex-
cessively. A segregated implicit [37] solver is used to solve the resulting
system of discretized equations. The solver uses a time-marching
technique [38,39] to obtain a steady-state solution as the limiting
process of an unsteady simulation. In all simulations, a solution is said
to be converged if the scaled residuals reach 10 6 for all the governing
equations (which is considerably smaller than what is normally set in
much of the reported CFD work). A large number of grid points and
double precision arithmetic are used to obtain high precision of the
computed results.

3.3. Domain independence test

We have performed separate domain independence tests for the
various inclination angles considered in the present work. However,
here we present only the results for the isothermal case at = 45 for
brevity, as an illustrative example of the adopted procedure. In order to
perform a systematic domain independence test, we have used the same
grid structure for all the domains.

Table 1 shows that as the size of the computational domain (in
terms of lx and ly) is systematically increased, the values of the com-
puted average Nusselt number Nu uniformly converge. Between do-
mains D2 and D3, there is no difference in Nu up to the second decimal
place and the relative change in the value is less than 0.01%. Accord-
ingly, domain D2 is considered adequate for = °45 and is used for all
subsequent simulations at = °45 .

Following a similar procedure, separate domain independence tests
are carried out at each angle of inclination, which specify the particular
values of lx and ly that are appropriate for the particular angle of in-
clination. The size of the computational domain therefore varies ac-
cording to the orientation of the plate.

3.4. Grid independence test

A systematic grid independence study is reported below for an in-
clination angle of 45 and =Pr 0.7. Three grid structures are con-
structed—viz., “coarse”, “medium” and “fine” — as shown in Table 2.
The value of y1 is progressively decreased as the grid is progressively
refined from “coarse” to “fine.” A non-uniform grid distribution (with

=x y1 1 and geometric progression ratio of 1.02) is used in both x and
y directions so that the natural convective boundary layer is appro-
priately resolved, and at the same time, a large computational domain
can be utilized so that the boundary conditions for the natural

Fig. 2. The schematic details of the computational domain for = 90 used in the present CFD analysis.
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convective flow can be applied appropriately. The size of the grid is
allowed to grow only up to set limits. Corresponding to the fine grid,
there are 1020 grid points on the heated surface of the plate. Similarly,
the flow fields around the plate corners are finely resolved as the
minimum size of a computational element there is ×y y1 1.

Table 2 shows that as the grid size is systematically refined (fol-
lowing the method described above) from “coarse” to “fine”, the values
of the computed average Nusselt number Nu uniformly converge. Be-
tween the “medium” and “fine” grid structures for =Gr 10L

6 or
=Gr 10L

6 (at which the parametric study for inclination angle is con-
ducted in the present paper), the relative change in the value of Nu is
less than (or of the order) 0.05%. Although the “medium” grid would
have been considered adequate on the basis of the grid independence
data alone (Table 2), the “fine” grid with 799,784 computational ele-
ments is used for all subsequent simulations for = 45 for improved
precision of computed results and quality of the flow visualization
diagrams.

4. Results and discussion

CFD simulations are run for various combinations of the Grashof
number and Prandtl number at various values of the inclination angle in

the range 0 90 for a thorough understanding of the thermo-
fluid-dynamics of natural convection on a heated (isothermal or con-
stant heat-flux condition) inclined plate. Comparisons are made with
existing experimental and theoretical results. For streamlining the dis-
cussion, the results are divided into a few subsections.

4.1. Natural convection around heated inclined plates for isothermal
condition

The present study with parametric variation in the inclination
angle is conducted at =Gr 10L

6 and =Pr 0.7 so that the flow
remains laminar above the plate. The following constant values of
the parameters are used to obtain the above-mentioned values
of the non-dimensional parameters: =T 325 Kw , =T 300 K,

= 1.1614 kg/m3, = 0.00333 K 1, = ×µ 3.32 10 Pa s5 , =k
0.04773 W/(mK), =c 1007 J/(kgK)p and =L 0.1 m. It was shown in
Guha and Pradhan [2] that for Pr~1, the natural convection mechanism
for a vertical surface is the dominating factor for a large range of in-
clination angles except for near-horizontal configurations. Accordingly,
here we have chosen the three inclination angles at which the velocity
and temperature contours are presented; = 0 (horizontal), = 5
(where horizontal mechanism dominates) and = 90 (vertical).

The contours of velocity for three inclination angles are shown in
Fig. 3. For the horizontal ( = 0 ) and near-horizontal ( = 5 ) or-
ientations, two boundary layers develop from the two edges of the plate
on its heated side. For the vertical ( = 90 ) orientation, a single
boundary layer starting from the bottom edge of the plate (on its heated
side) covers its entire length. The convective velocities in the boundary
layer near the plate for the vertical orientation are significantly greater
than those for the horizontal and near-horizontal orientations. The fi-
niteness of the size of the plate results in the formation of a buoyant
plume that occurs at the trailing (top) edge for = 90 and above the
centre of the plate for = 0 . For = 5 , the buoyant plume rises from
the plate at a location (defined as the lift-off point [30], the procedure
of its determination being fully described also in Ref. [30]) in between
the left edge and the centre of the plate. The distance of the lift-off point
from the left edge is referred to as LLE while that from the right edge of
the plate is defined as LRE . It is noted that the location of the lift-off
point is sensitive to inclination angle . For an inclination angle as small
as 5 , the thermo-fluid-dynamics changes significantly from what exists
in the horizontal position, and the lift-off point shifts by a large distance
towards the trailing edge of the plate. Fig. 3 shows that as the vertical

Table 1
Results of the domain independence test for three computational domains at

= 45 ( =Gr 10L
6, =Pr 0.7).

Name of the computational domain l L/x l L/y Nut

D1 2 2 14.7999
D2 4 4 14.8284
D3 8 8 14.8299

Table 2
Results of the grid independence test for three grid distributions in domain D2
( = 45 , =Pr 0.7, =Gr 10L

6 for isothermal or =Gr 10L
6 for iso-heat-flux case).

Grid
distribution

First grid size
adjacent to
plate, y1 (m)

Number of
computational
elements

Nut(isothermal) Nuq(iso-
heat-flux)

Coarse 0.0001 394272 14.7911 9.9670
Medium 0.000075 489804 14.8243 9.9779
Fine 0.00005 799784 14.8284 9.9834

Fig. 3. Contours of velocity magnitude at three inclinations for isothermal case: prediction of present CFD simulations ( =Pr 0.7, =Gr 10L
6, =T T 25 Kw ).
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distance above the plate increases, the plume-width and the maximum
velocity in the plume increases due to entrainment of fluid from both
sides. A small movement of the fluid can be observed on the insulated
side of the vertical plate as well. For the horizontal and near-horizontal
orientations, a stagnation region starts developing on the insulated side
of the plate.

Fig. 4 shows the temperature contours for the same three inclination
angles. Unlike the contours of velocity, the temperature is found to
reach the ambient value relatively close to the heated plate (in all re-
gions except in the buoyant plume) for all inclination angles shown.
While it is found from the velocity contours (Fig. 3) that the maximum
velocity in the plume increases as the vertical distance from the plate
increases, Fig. 4 shows that the maximum value of the temperature
inside the buoyant plume decreases as the vertical distance above the
plate increases.

Fig. 5 shows the variation of the non-dimensional wall heat flux on
the isothermally heated side of the inclined plate for four inclination
angles in the range 0 90 . Each curve passes through a minimum
point (qx,min ) whose location (xqx,min ) shifts from the centre of the plate
for the horizontal position ( = 0 ) to near the trailing edge for the
vertical position ( = 90 ). The principal reason for the existence of the
minimum heat flux point may change depending on the inclination
angle. For the horizontal and near-horizontal positions, where the
buoyant plume forms within the heated side of the plate, reduced heat
transfer underneath the plume (due to uplifting of the fluid as a result of
confluence of two oppositely moving streams) is responsible. However,
for such orientations of the plate where the vertical mechanism of
natural convection is dominant [2], the surface heat flux steadily de-
creases toward the trailing edge due to the continuous thickening of the
boundary layer (the temperature difference T Tw remaining con-
stant) until a point is reached close to the trailing edge where edge-
effects increase the wall heat flux. The minima shown for = 0 and

= 5 occur due to the first effect, while the minima shown for = 45
and = 90 exist due to the second effect.

It is observed that the value of qx,min increases as the orientation of
the plate is changed from the horizontal to the vertical. However, the
rate of increase of qx,min as well as the rate of shift of xqx,min decreases
with increasing values of . For near-horizontal inclinations, where the
buoyant plume lifts off from the heated surface before the trailing (left)
edge of the plate is reached, xqx,min approximately coincides with x̄lift off
(location of lift-off point on the heated surface of the plate). However,
unlike x̄lift off , the minimum heat flux point never quite reaches the
trailing edge of the plate because of the finiteness of the real plate

which results in high heat transfer rate at the trailing edge of the plate.
The average Nusselt number for an isothermally heated plate can be

determined from the following formulation:

= = =Nu hL
k

L
k L

h dx
k T T

q dx1 1
( )

.t

L

x
w

L

w
0 0 (14)

For accurate determination of the Nusselt number, a large number
of grid points, approximately 0.7–0.9 million points depending on the
inclination angle, is used in the present CFD simulations. Table 3 shows
that both local and average Nusselt numbers determined by the present
CFD simulations agree well with experimental values.

4.1.1. Correction factor for isothermal horizontal plate
Table 4 shows the present CFD results for Nut vis-à-vis the values of

Nut that can be computed by integrating the results for Nux given in
two previous theoretical work [2,27]. Yu and Lin [27] had numerically
solved, by finite-difference method, the boundary layer equations for
natural convection around a semi-infinite heated inclined plate, using a
complex co-ordinate transformation. Guha and Pradhan [2] formulated
a unified integral theory for arbitrary inclination, in which the orders of
polynomial representing the velocity and temperature profiles could be
optimized. Table 4 shows that in the range of angles 15 90 the

Fig. 4. Contours of temperature at three inclinations for isothermal case: prediction of present CFD simulations ( =Pr 0.7, =Gr 10L
6, =T T 25 Kw ).

Fig. 5. Variation of non-dimensional local wall heat flux along the plate at
various angles of inclination in the range 0 90 (at =Gr 10L

6, =Pr 0.7).
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results from the previous two methods are indicative of that from the
present computations though the magnitudes of Nut obtained from the
previous theoretical methods were slightly lower than the values ob-
tained from the present computations. Table 4, however, shows that the
values of Nut determined by the approach of Yu and Lin [27] and that
determined by the unified integral method of Guha and Pradhan [2] are
significantly different from the values of Nut determined by CFD in the
range 0 15 . There are two reasons for this difference.

The first reason (which is actually valid over the entire range from
0 to 90 ) is that the present method solves the full Navier-Stokes
equations in a carefully constructed computational domain and grid,
the solutions carried to high level of precision. The semi-analytical
formulations use approximate equations. There is a second, more subtle
reason for the greater deviations in the range 0 15 . In the pre-
sent unified CFD approach, the length scale used in the analysis (for
example in defining the Grashof number Gr g T T L µ[ ( ) ]/L w

2 3 2) is
taken to be the plate length L at all values of inclination angle . The
same approach is also taken for the values shown in Table 4 for the
entries corresponding to Refs. [2,27]. Equation (14) establishes that the
average Nusselt number, Nut, computed through the present CFD so-
lutions is directly indicative of the dependence of the overall heat
transfer as a function of the inclination angle. This may not be the case
for the values of Nut computed through the approaches of refs [2,27].
We provide the following physical explanation. Ref [3] established that,
for a study of natural convection specifically on a horizontal plate, the

most relevant length scale is L/2 (since convective boundary layers
form on two halves of the plate with a plume in the middle, analytical
theories based on semi-infinite assumption can be compared with CFD
results up to a maximum limit of L/2). Since there is left-right symmetry
in the fluid flow field and heat transfer characteristics in the CFD so-
lution for the case of a horizontal plate, the average heat transfer
coefficient h calculated over any one-half is the same as the arithmetic
mean of the h values calculated over the left and right halves of the
plate. This is not the case for the solutions given by similarity or in-
tegral theories which adopt the semi-infinite description. Suppose,
these theories predict a total heat transfer rate of QL semi infinite, (defined

as q dx
L

w
0

) over a plate of length L (where the value of L is fixed by the

same value of GrL used either in the theories or in the CFD simulation),
then the actual total heat transfer rate should be calculated from

=Q Q2L corrected L semi infinite, /2, (where QL semi infinite/2, is the total heat
transfer rate through half of the plate starting from the leading edge,

given by q dx
L

w
0

/2
). Using the similarity theory [15], integral theories

[2,16] or a more realistic theoretical treatment [3] for a horizontal
plate, it can be shown that for the isothermal case qw is given by

=q C x/w
2/5, where C is a function of Pr, T T( )w and other properties,

but C does not depend on x . Integration of this relation shows that
= =Q CL k T T Nu(5/3) ( )L semi infinite w ht theory,

3/5
, . Therefore, for a hor-

izontal isothermal plate, the relation between the corrected average

Table 3
Comparison of Nusselt number obtained by present CFD simulations with experimental results for the isothermal boundary condition.

Rayleigh number
RaL

Inclination angle Reference no. for experiment Experimental average Nusselt number
Nu

Average Nusselt number from Present CFD
Nu

×7 105 90 [40] 16.00 15.75

×7 106 90 [23] 28.00 27.28

Rayleigh number
Rax

Experimental local Nusselt number
Nux

Local Nusselt number from Present CFD
Nux

×5 105 90 [25] 10.22 10.31
×5 105 75 [25] 9.92 9.99

×5 105 60 [25] 9.62 9.69
×5 105 45 [25] 9.00 9.14

×5 105 30 [25] 8.00 8.19

×3 106 90 [23] 17.06 17.54

×3 106 70 [23] 16.79 17.27

×3 106 60 [23] 16.46 16.92

Table 4
Comparison of average Nusselt number obtained by present CFD simulations, numerical analysis, similarity theory and integral analysis for =Gr 10L

6 and =Pr 0.7.

(in degree) Nut(for semi-infinite plate
- similarity theory)

Nut(for semi-infinite plate
-numerical solution) [27]

Nut theory, (for semi-infinite plate
- integral analysis) [2]

Nut corrected, ( F Nut t)
Theoretical Nut established in the
present work

Nut CFD, (for finite plate -
CFD, present study)

0 9.3589 [15] 9.2685 9.6573 12.7429 12.4953
2.5 9.7210 9.9830 12.7415 12.4610
5 10.2099 10.4284 12.6635 12.4237
7.5 10.6315 10.8451 12.4727 12.3759
10 11.0013 11.2317 12.3191 12.3858
12.5 11.3310 11.5890 12.2703 12.4963
15 11.6286 11.9189 12.2906 12.6704
17.5 11.9460 12.2239 12.3753 12.8774
20 12.1958 12.5062 12.5683 13.0883
22.5 12.4261 12.7681 12.7934 13.2951
25 12.6391 13.0119 13.0119 13.5117
30 12.9686 13.4483 13.4483 13.8999
45 13.8256 14.4420 14.4420 14.8284
60 14.3612 15.0691 15.0691 15.4232
75 14.6456 15.4014 15.4014 15.7248
90 14.875 [4] 14.8750 15.5714 15.5714 15.7503
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Nusselt number and the average Nusselt number determined from si-
milarity or integral theories may be established as follows:

= = =Nu
Q
k T T

Q
k T T

Nu
2

( )
2 1

2 ( )
2ht corrected

L semi infinite

w

L semi infinite

w
ht theory,

/2, 3/5 , 2/5
,

(15)

The correction incorporated in equation (15) accounts for the fact
that boundary layers grow from both edges of a finite plate. Two further
corrections are needed to the boundary layer approach [3], viz. the
edge-effect and the alteration of the thermo-fluid-dynamics due to the
presence of lift-off point and the plume. Ref [3] gives the details that
heat transfer from the wall increases at the edges but decreases un-
derneath the plume. So the combined effect of these two corrections
may produce a rather small change in the overall heat transfer rate.
Applying the transformation derived above (i.e. equation (15)) to the
CFD result for horizontal plate (Table 4), we obtain

=12.4953/2 9.46972/5 ; then the present CFD result comes closer to the
previous theoretical values [2,28].

4.1.2. Rationalization for near-horizontal orientations
The transformation for horizontal configuration, equation (15), is

rigorously derived. For non-zero values of for which significant dis-
crepancy in the theoretical analyses is present (Table 4), however, the
exact transformation is not known, and the correspondence between
the previous theoretical values and the CFD results cannot be directly
established. The corrected value of Nusselt number Nut corrected, (for the
isothermal case) can be constructed from,

=Nu F Nu ,t corrected t t theory, , (16)

where Nut theory, is the known theoretical value and Ft is a correction
factor. Nut theory, may be computed directly from the unified integral
theory [2] or from the correlation equation (A3) given in the Appendix.
An approximate theoretical treatment for expressing the correction
factor Ft as a function of the inclination angle is developed below.

Fig. 3 contains the velocity and temperature contours for a value of
inclination angle in the range <0 15 . The plume is found to
form as two opposite streams moving predominantly parallel to the
solid surface transform, at the point of confluence, into a stream moving
at right angle to the original streams. The lift-off point is defined as that
point where the plume first forms (at which the boundary layers merge)
and the distance of that point from the leading (right) edge is called the
lift-off distance. Mathematically, the lift-off distance is defined as that
particular value of x where the curve of v u/ (the ratio which gives the
orientation of the overall velocity vector relative to the plate) makes a

sharp transition. It is noted that the location of the lift-off point, at
which the boundary layers merge into a plume, is not symmetric with
respect to two edges of the plate. Let us assume LLE and LRE are the
distances of the lift-off point respectively from the left edge and right
edge of the plate, as shown in Fig. 3. Taking cue from equation (15),
one may write the general expression for the correction factor for the
asymmetric location as follows:

= +F
Nu
Nu

L L( ˆ ) ( ˆ )t
t corrected

t theory
LE

r
RE

r,

, (17)

where, L L Lˆ ( / )LE LE and L L Lˆ ( / )RE RE are the corresponding non-di-
mensional distances, L being the length of the plate. Theories [2] show
that the overall heat transfer varies as L3/5 for the horizontal plate, and
as L3/4 for the vertical plate. Using transformations similar to what is
used for a validated heat transfer correlation in Ref. [2], it is postulated
that

= +r 3
5

cos 3
4

sin . (18)

Equation (18) shows that when = 0 , =r 3/5, and when = 90 ,
=r 3/4. Thus the correct limiting values are obtained. For the hor-

izontal configuration, = =L Lˆ ˆ 0.5LE RE . Equation (17) then shows that
the correction factor reduces to =F 2t

2/5 , the same implied by equation
(15). For the vertical configuration, the right edge of the plate (in our
adopted geometry) is the leading edge and the left edge represents the
trailing edge; i.e. =L̂ 1RE , =L̂ 0LE . Equation (17) then shows that the
correction factor reduces to =F 1t . This makes physical sense since,
even in the case of a finite plate, a single boundary layer covers the
entire length of a vertical plate (i.e. the physical situation is the same as
that assumed in the theories for semi-infinite plates).

The values of L̂LE and L̂RE as a function of inclination angle are
computed in small steps of 2. 5 in the range <0 25 . Corrected
values of average Nusselt number Nut corrected, are therefore calculated as
per equations (17) and (18) and are shown in Table 5 and in Fig. 6.
Values of Nut theory, shown in Table 5 are calculated by the unified in-
tegral theory [2]. The corrected values of the average Nusselt number
are reasonably close to the CFD results; moreover Nut corrected, shows the
existence of the minimum. Fig. 6 shows the rather dramatic improve-
ment in the theoretical analyses as a result of the introduction of the
factor Ft . The utility of Ft is not just in improved predictive power but
also in the comprehension of the deviation of the theoretical analyses
from reality.

Table 5
Correction of theoretical average Nusselt number and comparison with CFD
result for the isothermal plate ( =Gr 10L

6 and =Pr 0.7).

degree
L̂RE L̂LE Ft

Eqn (17)
Nut theory,
Ref [2]

Nut corrected,
Eqn (16)

Nut CFD,

0 0.5 0.5 22/5

= 1.319508
9.6573 12.7429 12.4953

2.5 0.6514 0.3486 1.276321 9.9830 12.7415 12.4610
5 0.7805 0.2195 1.214326 10.4284 12.6635 12.4237
7.5 0.8722 0.1278 1.150080 10.8451 12.4727 12.3759
10 0.9289 0.0711 1.096818 11.2317 12.3191 12.3858
12.5 0.9612 0.0388 1.058791 11.5890 12.2703 12.4963
15 0.9816 0.0184 1.031185 11.9189 12.2906 12.6704
17.5 0.9938 0.0062 1.012383 12.2239 12.3753 12.8774
20 0.9977 0.0023 1.004964 12.5062 12.5683 13.0883
22.5 0.9991 0.0009 1.001981 12.7681 12.7934 13.2951
25 1 0 1 13.0119 13.0119 13.5117
30 1 0 1 13.4483 13.4483 13.8999
45 1 0 1 14.4420 14.4420 14.8284
60 1 0 1 15.0691 15.0691 15.4232
75 1 0 1 15.4014 15.4014 15.7248
90 1 0 1 15.5714 15.5714 15.7503

Fig. 6. Variation of average Nusselt number as a function of inclination angle
for isothermal plate (at =Gr 10L

6, =Pr 0.7).
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It is to be realized that the correction factor Ft addresses only the
semi-infinite restriction of the theories but not other restrictions (such
as absence of edge effects and plume in the theoretical treatment, use of
boundary layer equations, use of non-physical [4] boundary condition
such as =u 0 at =x 0. Ref [3] also discusses the difference between
two-dimensional and three-dimensional computations). For inclination
angles in which the vertical mechanism of natural convection is
dominant [2], =L̂ 0LE . The edge effects on the leading and trailing
edges always increase the local Nusselt number there. For inclination
angles where =L̂ 0LE , the average Nusselt number given by CFD is thus
always greater than the theoretical values, even after the application of
the correction factor Ft (Fig. 6). For the horizontal and near-horizontal
configurations, the additional mechanisms (which are not accounted for
in Ft) have opposing effects on the overall heat transfer. The edge ef-
fects increase the heat transfer whereas there is a reduction in heat
transfer underneath the plume. Nut corrected, can thus be above or below
Nut CFD, for the horizontal and near-horizontal configurations (Fig. 6).

A simpler approach for the correction factor for isothermal case, Ft,2,
is postulated below,

= +F
Nu

Nu
1 2 1 exp / ,t

t corrected

t theory
m,2

, 2

,

2/5

(19)

where, m is a constant (whose value may depend on the Grashof
number and Prandtl number). The form of the correction factors Ft,2 is
based on the fact that the required semi-infinite correction is the
greatest for = 0 and that the correction should reduce to zero for

= 90 . Moreover, the correction is expected to change rapidly as
increases from zero, since the present investigation shows that the lift-
off point shifts toward the trailing edge rapidly with increasing in the
near-horizontal positions. Thus the exponential function in equation
(19) is postulated to account for the expected limiting values ( =F 2t,2

2/5

at = 0 and F 1t,2 at = 90 ) and sensitivity at small . The appro-
priateness of the postulation can be judged from the acceptability of its
predictions. The prediction of equation (19) is also included in Fig. 6
with = 10m . The comparison with the CFD curve is reasonable. An
advantage of equation (19) over (17) is that any knowledge about the
location of the lift-off point is not required, and equation (19) can
therefore be used without any a priori knowledge, but the formulation
is postulatory.

Table 5 and Fig. 6 show that, for an isothermally heated plate, there
is significant difference between the average Nusselt number (hence the

overall heat transfer rate) for the horizontal and vertical orientation of
the plate. For example, at =Gr 10L

6 and =Pr 0.7, =Nu 12.4953ht and
=Nu 15.7941vt , i.e. the overall heat transfer rate from a plate of finite

length would increase by more than 25% if the orientation of the plate
is changed from the horizontal to the vertical. This trend is maintained
at other values of Grashof number also. For example, when the present
CFD simulations are run at =Gr 10L

7 and =Pr 0.7, it is found that
=Nu 19.7297ht and =Nu 27.2746vt , i.e. the increase is more than 35%.

4.2. Natural convection around heated inclined plates for constant heat flux
condition

Several CFD simulations are run here for another surface boundary
condition, viz., the constant heat flux boundary condition for the sake
of completeness. Such additional computations show that although the
numerical values of the various parameters such as the Nusselt number
are slightly different from their isothermal counterparts, the broad
physical picture of natural convective heat transfer, the physics of en-
trainment, and the evolution of the buoyant jet remain essentially the
same. Therefore a brief theoretical study at various inclination angles is
reported below. The definition of Grashof number needs to be changed
from the isothermal case. The modified local Grashof number Grx is
defined as =Gr g q x kµ( )/( )x w

2 4 2 . The modified Grashof number based
on the plate length L is therefore given by =Gr g q L kµ( )/( )L w

2 4 2 .
Figs. 7 and 8 respectively show the computed velocity and tem-

perature contours for an assumed constant surface heat flux of
=q 100 W/mw

2 in a fluid with =Pr 0.7. All parameters including the
plate length are kept at the same values as mentioned for the isothermal
study, only the values of k and µ are adjusted to obtain the modified
Grashof number as =Gr 10L

6. The contours of velocity for three in-
clination angles in the range 0 90 are shown in Fig. 7. The
general characteristics of the velocity field in the vicinity of the plate
subjected to constant heat flux remain similar to those observed for the
isothermal case (Fig. 3).

There is an important difference in the general characteristics of the
temperature field between the isothermal case (Fig. 4) and the constant
heat flux case (Fig. 8). While the surface temperature for the heated side
of the plate was kept fixed (at Tw) in the isothermal case, the value of Tw
varies along the length of the plate for the constant heat flux case
(Fig. 8). This is reflected in the distribution of the fluid temperature
inside the convective boundary layer. However, the tendency of the

Fig. 7. Contours of velocity magnitude at three inclinations for constant wall heat flux case: prediction of present CFD simulations ( =Pr 0.7, =Gr 10L
6,

=q 100 W/mw
2).
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temperature inside the buoyant plume to decrease with vertical dis-
tance from the plate that is observed for the isothermal case prevails
here as well.

When the plate surface heat flux is constant, the surface tempera-
ture varies along the x -direction. The computed variation in plate
surface temperature (in non-dimensional form) is shown in Fig. 9 for
three inclination angles. Each curve passes through a maximum point
(Tw,max ) whose location shifts from the centre of the plate for the hor-
izontal orientation ( = 0 ) to near the trailing edge for the vertical
( = 90 ). It is observed that the value of Tw,max decreases as the or-
ientation of the plate is changed from the horizontal to the vertical.
However, the rate of decrease of Tw,max as well as the rate of shift of the
maximum decreases with increasing values of . The principal reason
for the existence of the maximum surface temperature point may
change depending on the inclination angle. For the horizontal and near-
horizontal positions, where the buoyant plume forms within the heated
side of the plate, reduced heat transfer underneath the plume (due to
uplifting of the fluid as a result of confluence of two oppositely moving
streams) is responsible for the rise of wall temperature (qw remaining
the same at all points on the wall). However, for such orientations of the
plate where the vertical mechanism of natural convection is dominant
[2], the wall temperature steadily increases toward the trailing edge
due to the continuous thickening of the boundary layer (the wall heat
flux qw remaining constant) until a point is reached close to the trailing
edge where edge-effects increase the heat transfer rate (with associated
decrease of wall temperature). The maxima shown for = 0 and = 5
occur due to the first effect, while the maxima shown for = 45 and

= 90 exist due to the second effect.
A comparison of Figs. 5 and 9 shows that the heat flux profiles for

isothermal case exhibit inverse relation with the surface temperature
profiles for constant heat flux case. The locations of low surface heat
flux in Fig. 5 correspond to those of high surface temperature in Fig. 9
and vice versa.

Table 6 shows a few experimental values of local Nusselt number
and the corresponding values determined from the present CFD method
at various values of modified Raleigh number ( =Ra Gr Prx x ) given in
the experiments. The agreement is good.

4.2.1. Determination of average Nusselt number
As a result of the variable wall temperature, caution (and con-

sistency) is needed in the determination of average Nusselt number
which, for the constant heat flux case, is denoted here by Nuq. The
following formulation for Nuq is used here (other definitions have also

been used in the literature [41]):

= = =Nu hL
k

L
k L

hdx
q
k T T

dx1 1
( )

.q

L
w

L

w0 0 (20)

Table 7 shows the present CFD results for Nuq vis-à-vis the values of
Nuq that can be computed by integrating the results for Nux given in
two previous theoretical work [2,28]. Yu and Lin [28] had numerically
solved, by finite-difference method, the boundary layer equations for
natural convection around a semi-infinite heated inclined plate, using a
complex co-ordinate transformation. Guha and Pradhan [2] formulated
a unified integral theory for arbitrary inclination, in which the orders of
polynomial representing the velocity and temperature profiles could be
optimized. For accurate determination of the Nusselt number, a large
number of grid points, approximately 0.7–0.9 million points depending
on the inclination angle, is used in the present CFD simulations.

4.2.2. Correction factor for constant-heat-flux horizontal plate
It is recognized that the main difference between the semi-infinite

approach assumed in the integral theory and the treatment of finite
plate in CFD (and experiments) is that boundary layers grow from both

Fig. 8. Contours of temperature at three inclinations for constant wall heat flux case: prediction of present CFD simulations ( =Pr 0.7, =Gr 10L
6, =q 100 W/mw

2).

Fig. 9. Variation of non-dimensional surface temperature along the heated side
of the plate at various angles of inclination in the range 0 90 (at

=Gr 10L
6, =Pr 0.7).
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edges of a finite horizontal plate and there is a plume at the middle.
Table 7 shows (in line with the isothermal case dealt with in Section
4.1) that, for = 0 , there is a large discrepancy in the average Nusselt
number calculated by CFD and that calculated from theories based on
the semi-infinite assumption. In order to rectify this deficiency, we first
calculate the average heat transfer coefficient hL/2 between the leading
edge and the mid-point of the plate. The formulation given in Ref. [16]
shows that for the constant-heat-flux case the local heat transfer

coefficient hx is given by =h C x/x
1/3, where C is a function of

Pr, qw and other properties, but C does not depend on x .

Integration of this equation shows that = = =h h dx C L( /2)L L

L

x L/2
2

0

/2
2 3

2
2/3

=h dx h(2/2 ) 2L

L

x L
2/3 1

0

1/3 . The corrected average Nusselt number for a

horizontal plate for constant heat flux case then becomes,

= = =Nu h L
k

h L
k

Nu2 2hq corrected
L L

hq theory,
/2 1/3 1/3

, (21)

where, Nuq theory, shown in Table 7 is computed by using the unified
integral theory [2]. Applying the transformation derived above (i.e.
equation (21)) to the CFD result for horizontal plate (Table 7), we ob-
tain =9.7017/2 7.70021/3 ; then the present CFD result comes closer to
the previous theoretical values [2,28].

4.2.3. Correction factor for non-zero inclination angles with focus on near-
horizontal orientations

Table 7 shows that the difference of average Nusselt number be-
tween the horizontal and vertical configurations for the constant-heat-
flux case is rather modest, as compared to the isothermal case. On the
other hand, for the range of inclination angle <0 15 , while we had
concluded for the isothermal case that the flow field changes drastically
but the variation in average Nusselt number is modest (Table 4),
Table 7 shows that the change in average Nusselt number for the
constant-heat-flux case is more significant. There exists a minimum in
average Nusselt number both in the isothermal and constant heat flux
cases.

The corrected value of Nusselt number Nuq corrected, (for constant-
heat-flux case) can be constructed from,

=Nu F Nu ,q corrected q q theory, , (22)

where Nuq theory, is the known theoretical value which may be computed
directly from the unified integral theory [2] or from the correlation
equation (A6) given in the Appendix. An approximate theoretical
treatment for expressing the correction factor Fq as a function of the
inclination angle is developed below.

Figs. 10 and 11 contain respectively the velocity and temperature
contours for three values of inclination angle in the range

<0 15 . It is noted that the location of the lift-off point, at which
the boundary layers merge into a plume, is not symmetric with respect
to two edges of the plate. Let us assume LLE and LRE are the distances of

Table 6
Experimental validation of present CFD results at various angles of inclination
for the constant heat flux boundary condition.

Rax (in
degree)

Nux Experimental value (ref no. is
given within bracket)

Nux Present CFD
results

×0.7 106 90 11.55 [10] 11.77

×4.97 106 60 12.73 [24] 12.61

×4.97 106 45 12.24 [24] 12.15

×4.97 106 30 11.41 [24] 11.41

Table 7
Comparison of average Nusselt number obtained by present CFD simulations,
numerical analysis, similarity theory and integral analysis ( =Gr 10L

6 and
=Pr 0.7).

(in
degree)

Nuq(for semi-
infinite plate
- similarity
theory)

Nuq(for semi-
infinite plate
-numerical
solution) [28]

Nuq theory, (for
semi-infinite
plate - integral
analysis) [2]

Nuq CFD, (for
finite plate -
CFD, present
study)

0 7.8238 [15] 7.8109 7.6179 9.7017
2.5 7.8848 7.7252 9.6512
5 8.1060 7.8972 9.5283
7.5 8.2931 8.0575 9.2450
10 8.4537 8.2068 8.9984
12.5 8.5945 8.3457 8.9864
15 8.7194 8.4749 9.0157
17.5 8.8314 8.5953 9.0820
20 8.9324 8.7074 9.1638
25 9.1071 8.9090 9.3648
30 9.2515 9.0839 9.5746
45 9.5439 9.4755 9.9834
60 9.6642 9.7026 10.2414
75 9.6252 9.7852 10.3370
90 9.5769 [42] 9.5497 9.7569 10.3027

Fig. 10. Contours of velocity magnitude at three near-horizontal positions for constant wall heat flux case: prediction of present CFD simulations ( =Pr 0.7, =Gr 10L
6,

=q 100 W/mw
2).
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the lift-off point respectively from the left edge and right edge of the
plate, as shown in Fig. 10. Following the methodology for the iso-
thermal case (Section 4.1.2), one may write the general expression for
the correction factor for the asymmetric location as follows:

= +F
Nu
Nu

L L( ˆ ) ( ˆ )q
q corrected

q theory
LE

rq
RE

rq,

, (23)

where, L L Lˆ ( / )LE LE and L L Lˆ ( / )RE RE are the corresponding non-di-
mensional distances, L being the length of the plate. Relations given in
the Appendix show that the average Nusselt number varies as L2/3 for
the horizontal plate, and as L4/5 for the vertical plate. Using transfor-
mations similar to what is used for a validated heat transfer correlation
in Ref. [2], it is postulated that

= +rq 2
3

cos 4
5

sin . (24)

Equation (24) shows that when = 0 , =rq 2/3, and when = 90 ,
=rq 4/5. Thus the correct limiting values are obtained. For the hor-

izontal configuration, = =L Lˆ ˆ 0.5LE RE . Equation (23) then shows that
the correction factor reduces to =F 2q

1/3 , the same implied by equation
(21). For the vertical configuration, the right edge of the plate (in our
adopted geometry) is the leading edge and the left edge represents the

trailing edge; i.e. =L̂ 1RE , =L̂ 0LE . Equation (23) then shows that the
correction factor reduces to =F 1q . This makes physical sense since,
even in the case of a finite plate, a single boundary layer covers the
entire length of a vertical plate (i.e. the physical situation is the same as
that assumed in the theories for semi-infinite plates).

The values of L̂LE and L̂RE as a function of inclination angle are
computed for the constant wall heat flux case in the present work, in
small steps of 2. 5 in the range <0 25 . Corrected values of
average Nusselt number Nuq corrected, are therefore calculated as per
equations (23) and (24) and are shown in Table 8 and in Fig. 12. Values
of Nuq theory, shown in Table 8 are calculated by the unified integral
theory [2]. The corrected values of the average Nusselt number are
reasonably close to the CFD results; moreover Nuq corrected, shows the
existence of the minimum. Fig. 12 shows the rather dramatic im-
provement in the theoretical analyses as a result of the introduction of
the factor Fq. The utility of Fq is not just in improved predictive power
but also in the comprehension of the deviation of the theoretical ana-
lyses from reality.

It is to be realized that the correction factor Fq addresses only the
semi-infinite restriction of the theories but not other restrictions (such
as absence of edge effects and plume in the theoretical treatment, use of
boundary layer equations, use of non-physical [4] boundary condition

Fig. 11. Contours of temperature at three near-horizontal positions for constant wall heat flux case: prediction of present CFD simulations ( =Pr 0.7, =Gr 10L
6,

=q 100 W/mw
2).

Table 8
Correction of theoretical average Nusselt number and comparison with CFD result for the constant wall heat flux case ( =Gr 10L

6 and =Pr 0.7).

degree
L̂RE
Present CFD

L̂LE
Present CFD

Fq
Eqn (23)

Nuq theory,
Ref [2]

Nuq corrected,
Eqn (22)

Nuq CFD,
Present CFD

0 0.5 0.5 21/3 = 1.259921 7.6179 9.5980 9.7017
2.5 0.3875 0.6125 1.223739 7.7252 9.4536 9.6512
5 0.2715 0.7285 1.176703 7.8972 9.2927 9.5283
7.5 0.1825 0.8175 1.129085 8.0575 9.0976 9.2450
10 0.1145 0.8855 1.086171 8.2068 8.9140 8.9984
12.5 0.0775 0.9225 1.057243 8.3457 8.8234 8.9864
15 0.0475 0.9525 1.034224 8.4749 8.7649 9.0157
17.5 0.0217 0.9783 1.0158 8.5953 8.7311 9.0820
20 0.0061 0.9939 1.004662 8.7074 8.7480 9.1638
25 0.0007 0.9993 1.000405 8.9090 8.9126 9.3648
30 0 1 1 9.0839 9.0839 9.5746
45 0 1 1 9.4755 9.4755 9.9834
60 0 1 1 9.7026 9.7026 10.2414
75 0 1 1 9.7852 9.7852 10.3370
80 0 1 1 9.7812 9.7812 10.3413
85 0 1 1 9.7608 9.7608 10.3279
90 0 1 1 9.7569 9.7569 10.3027
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such as =u 0 at =x 0. Ref [3] also discusses the difference between
two-dimensional and three-dimensional computations). For inclination
angles in which the vertical mechanism of natural convection is
dominant [2], =L̂ 0LE . The edge effects on the leading and trailing
edges always increase the local Nusselt number there. For inclination
angles where =L̂ 0LE , the average Nusselt number given by CFD is thus
always greater than the theoretical values, even after the application of
the correction factor Fq (Fig. 12). For the horizontal and near-horizontal
configurations, the additional mechanisms (which are not accounted for
in Fq) have opposing effects on the overall heat transfer. The edge ef-
fects increase the heat transfer whereas there is a reduction in heat
transfer underneath the plume. Fig. 12 shows that the increase due to
edge effects exceeds the reduction due to the presence of the plume, and
Nuq CFD, is generally greater than Nuq corrected, even for the horizontal and
near-horizontal configurations. This is subtly different from the beha-
viour of relative magnitudes of Nut CFD, and Nut corrected, shown in Fig. 6.

A simpler approach for the correction factor for the constant-heat-
flux case, Fq,2, is postulated below,

= +F
Nu

Nu
1 (2 1) exp( / ).q

q corrected

q theory
m,2

, 2

,

1/3

(25)

The rationale for the postulation contained in equation (25) is si-
milar to that given after equation (19), and its appropriateness can be
judged from the acceptability of its predictions. According to equation
(25), Fq,2 reduces to the correct limiting value at = 0 compatible to
equation (21) which is rigorously derived. For the vertical configura-
tion, i.e. at = 90 , equation (25) gives F 1q,2 which corresponds to
physical reality as explained in Section 4.1.2. The prediction of equa-
tion (25) is also included in Fig. 12 with = 10m . The comparison with
the CFD curve is reasonable. An advantage of equation (25) over (23) is
that any knowledge about the location of the lift-off point is not re-
quired, and equation (25) can therefore be used without a priori
knowledge, but the formulation is postulatory.

4.2.4. Behaviour of Nuq in near-vertical orientations
Table 4 for the isothermal case shows that Nut changes significantly

as the inclination angle is increased from 15 to 60 , and the Nut versus
curve continues to rise (though slowly) in the range < <60 90 .

Table 7 shows that Nuq CFD, is quite flat in the range < <60 90 and an
additional feature is noticed that there exists a small maximum at about

= 80 . Since great care is taken in the present CFD simulations to
attain high accuracy in the computed values of the Nusselt number,
further investigation is carried out, the details of which are shown in
Fig. 13, Fig. 14 and Table 9. Fig. 13 shows that the hx versus x dis-
tributions at various angles of inclination in the range < <60 90
nearly coincide with each other on the scale of the graph. There are
three regions in the distribution. Close to the leading edge, the value of
hx is the highest ( =hx x 0) and it then sharply decreases with increasing
x . In the middle of the plate, hx slowly decreases with increasing x ,
thereby reaching a minimum value (hx,min ). In the third region close to
the trailing edge, hx sharply increases with increasing x , thereby
reaching a value =hx x L which, although much greater than the heat
transfer rate in the middle, is always found to be less than the value at
the leading edge ( >= =h hx x x x L0 ). The variation of =hx x 0, hx,min and

=hx x L as a function of inclination angle is shown in Fig. 14. The
extents in x of the regions in which hx for a given inclination angle is
greater or less than the hx at the same x location for a vertical plate,
determined by the present CFD, are given in Table 9.

A detailed study of Fig. 14 and Table 9 highlights the subtle de-
pendence of the three heat transfer regions on the inclination angle for
a finite plate in the near-vertical orientations that causes the existence a
small maximum in Nuq CFD, at about = 80 (at = =Gr 10 , Pr 0.7L

6 ). It

Fig. 12. Variation of average Nusselt number as a function of inclination angle
for constant wall heat flux (at =Gr 10L

6, =Pr 0.7).

Fig. 13. Variation of local heat transfer coefficient along the length of a finite
plate in near-vertical orientations for constant wall heat flux (at =Gr 10L

6,
=Pr 0.7).

Fig. 14. Variation of minimum and maximum heat transfer coefficients as a
function of the plate inclination angle for constant wall heat flux (at =Gr 10L

6,
=Pr 0.7).
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is noted that, at = 80 , the leading edge region in which
> =h h ( 90 )x x extends beyond three-fourth of the plate ( =x 0.794),

and
= ° = ° > = ° = °= =h h h h( 80 ) ( 90 ) ( 90 ) ( 80 )x x x x x x min0 0 ,min , .

The data in the third column of Table 7 shows the existence of a
small maximum in Nuq at = 60 ; however, one should not over-in-
terpret this aspect. These values of Nuq have been computed here by
integrating the results for Nux given in a previous theoretical work
[28]. Yu and Lin [28] had numerically solved, by finite-difference
method, the boundary layer equations for natural convection around a
semi-infinite heated inclined plate, using a complex co-ordinate trans-
formation. As a result of the used multi-layered complex transforma-
tion, it is found that when the data are expressed in terms of usual
variables, there are not enough data points in large ranges of x and .
Consequently, the corresponding numerical integration to determine
Nuq is expectedly not carried out to the same level of precision with
which Nuq CFD, is determined in the present work. The values of Nuq
given in the fourth column of Table 7 shows the existence of a small
maximum at = 75 , which nearly coincides with the conclusion from
the CFD simulations. Although the strength of the unified theory of
Guha and Pradhan [2] is now well established, such coincidence still
seems to be a bit surprising since the values of Nux near the leading
edge of the plate are responsible for the existence of the maximum in
Nuq and any boundary layer based theory has its limitation close to the
leading edge.

4.3. Dependence of average Nusselt number on the boundary condition

Fig. 15 sheds light on the influence of the boundary condition -
isothermal versus iso-wall-heat-flux - on the average Nusselt number for
natural convection around a heated finite plate
( = = =Gr Gr 10 , Pr 0.7L L

6 ). At all inclinations, the isothermal case
gives greater average Nusselt number ( >Nu Nut q, for =Gr GrL L). The
average Nusselt number in the vertical orientation is greater than that
for the horizontal orientation of the same finite plate. The difference in
Nusselt number between the vertical and the horizontal orientation is
greater for the isothermal case ( >Nu Nu Nu Nuvt ht vq hq). However,
in the near-horizontal positions, the variation in the average Nusselt
number with inclination angle is more prominent for the constant wall
heat flux boundary condition. The minimum in Nut for isothermal plate
(at = =Gr 10 , Pr 0.7L

6 ) occurs around = 7. 5 , while the minimum in
Nuq for the iso-wall-heat-flux plate (at = =Gr 10 , Pr 0.7L

6 ) occurs
around = 12. 5 .

The rather small range of average Nusselt number for the constant
wall heat flux case is demonstrated here at =Gr 10L

6 and =Pr 0.7; for
which =Nu 9.7017hq and =Nu 10.3027vq , i.e. the overall heat transfer
rate from a plate of finite length would increase only by 6% if the or-
ientation of the plate is changed from the horizontal to the vertical. This
trend is maintained at other values of modified Grashof number also.
For example, when the present CFD simulations are run at =Gr 10L

7

and =Pr 0.7 it is found that =Nu 14.3689hq and =Nu 15.9402vq , i.e. the
range in average Nusselt number remains modest.

4.4. Correction factor at varying Grashof and Prandtl numbers

The correction factors discussed in this paper address the semi-in-
finite restriction of the theories but not other restrictions (such as ab-
sence of edge effects and plume in the theoretical treatment, use of
boundary layer equations, and use of non-physical [4] boundary con-
dition such as =u 0 at =x 0 in the theories). In Tables 4, 5 and 8, and
in Figs. 6, 12 and 15, we have studied the effects of varying inclination
angle on the average Nusselt number Nu for isothermal and iso-heat-
flux conditions while keeping the Grashof and Prandtl numbers fixed
( = =Gr Gr 10L L

6 =Pr 0.7). In this section, we examine the effect of
varying Grashof and Prandtl numbers on Nu for the horizontal or-
ientation of the plate (i.e. is fixed at 0 ). For this purpose, a number of
additional CFD simulations are performed to high degree of precision at
various combinations of Grashof and Prandtl numbers for both
boundary conditions. 10 additional values of Nu thus computed are
given in Table 10, along with the results discussed in previous Sections.
Values of Nu determined by similarity theory [15] and integral theory
[2,16] for the same combinations of Grashof and Prandtl numbers are
also included in Table 10. Relevant equations for these theories are
given in the Appendix for ready reference.

An approximate range of Grashof numbers is selected in Table 10,

Table 9
Analysis of the variation of heat transfer coefficient along the plate length as a function of the plate inclination angle: results of present CFD ( =Gr 10L

6

and =Pr 0.7).

degree
Range of x near leading edge
over which hx is greater than its
corresponding value for = 90

Range of x in the middle of the
plate over which hx is less than its
corresponding value for = 90

Range of x near trailing edge
over which hx is greater than its
corresponding value for = 90

25 n/a 0–0.98613 0.98613–1
30 0–0.01387 0.01387–0.9897 0.9897–1
45 0–0.06 0.06–0.99294 0.99294–1
60 0–0.164 0.164–0.99232 0.99232–1
70 0–0.343 0.343–0.99104 0.99104–1
75 0–0.497 0.497–0.9897 0.9897–1
80 0–0.794 0.794–0.98537 0.98537–1
85 0–0.824 0.824–0.98537 0.98537–1

Fig. 15. Variation of average Nusselt number as a function of inclination angle
for finite plates with constant surface temperature and constant wall heat flux:
prediction of present CFD simulations ( = =Gr Gr 10 ,L L

6 =Pr 0.7).
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where the lower bound is controlled by the appropriateness of the as-
sumption of a boundary layer type flow and the upper bound is con-
trolled by the appropriateness of the assumption of laminar flow [3].
The two selected values of Prandtl number in the limited parametric
study shown in Table 10 are indicative of the natural convection in two
most common fluids - air and water. It is possible to run additional CFD
simulations at varying inclination angles for the combinations of
Grashof and Prandtl numbers given in Table 10 (or at any other re-
levant combination). The appropriate values of L̂LE and L̂RE in equations
(17) and (23), and that of m in equations (19) and (25) for the parti-
cular combination can then be determined following the methodology
established in this paper.

The mathematical deduction procedures leading to equations (15)
and (21) reveal that the correction factors for the horizontal plate
( =F 2t

2/5 for the isothermal and =F 2q
1/3 for the iso-heat-flux boundary

conditions) are independent of the Grashof and Prandtl numbers. The
data given in Table 10, in the range of Grashof and Prandtl numbers
investigated, corroborate this generality of the deduced correction
factors for the horizontal orientation of the heated plate.

5. Conclusion

It is shown that the theoretical average heat transfer coefficients for
a semi-infinite horizontal plate needs to be corrected to account for the
growth of boundary layers from both ends of a finite horizontal plate.
For isothermal condition, it is mathematically deduced that

=Nu Nu2ht corrected ht theory,
2/5

, , and, for constant-heat-flux condition it is
mathematically deduced that =Nu Nu2hq corrected hq theory,

1/3
, . The mathe-

matical deduction procedure reveals that these correction factors
(dealing with the semi-infinite assumption in the similarity or integral
theories) are independent of the Grashof and Prandtl numbers and this
generality is demonstrated within the range of CFD investigation given
in Table 10. It is noted that the deduced correction factors are large -
the theoretical average Nusselt number changes by more than 30% for
the isothermal case and by more than 25% for the iso-heat-flux case.
The theoretical results for the average Nusselt number for a semi-in-
finite vertical plate, on the other hand, are reasonably close to the CFD

results for a finite plate. This is so because, even in the case of a finite
plate, a single boundary layer covers the entire length of a vertical plate
(i.e. the physical situation is nearly the same as that assumed in the
theories for semi-infinite plates).

An approximate theory (equation (17) or (19)) for the correction
factor Ft is developed for the isothermal case for all near-horizontal
inclination angles for which the lift-off point is located within the ex-
tent of the plate and hence two boundary layers form from the two
edges of the plate. The expression for Ft produces correct limiting va-
lues, viz. 22/5 for horizontal and 1 for vertical configurations, and brings
previous theoretical results reasonably close to the CFD results, as
shown in Fig. 6. Similarly, an approximate theory (equation (23) or
(25)) for the correction factor Fq is developed for the iso-wall-heat-flux
case for all near-horizontal inclination angles. The expression for Fq
produces correct limiting values, viz. 21/3 for horizontal and 1 for ver-
tical configurations, and brings previous theoretical results reasonably
close to the CFD results, as shown in Fig. 12.

The efficacy of the present methodology for near-horizontal in-
clination angles is demonstrated here at specific values of the Grashof
and Prandtl numbers ( = =Gr Gr 10 ,L L

6 =Pr 0.7), but the same meth-
odology may be applied at other values of Grashof and Prandtl numbers
(requiring new CFD simulations at varying angles to determine the
appropriate values of L̂LE and L̂RE in equations (17) and (23), and that
of m in equations (19) and (25) for the particular combination of
Grashof and Prandtl numbers).

Great care is taken in the present work to obtain highly accurate
CFD results that are well validated against experimental values. The
present CFD simulations establish that (at = =Gr Gr 10L L

6, =Pr 0.7)
there exists a minimum at near-horizontal positions both in the Nut
versus and Nuq versus curves. The process of deduction of the
correction factors Ft and Fq helps in the comprehension of the physical
reasons for the existence of a minimum in Nu for either isothermal or
iso-heat-flux boundary condition. Table 4 for the isothermal case shows
that Nut changes significantly as the inclination angle is increased
from 15 to 60 , and the Nut versus x curve continues to increase
(though slowly) in the range < <60 90 . Table 7 shows that Nuq CFD,
is quite flat in the range < <60 90 and an additional feature is

Table 10
Demonstration that the semi-infinite correction factors =F 2t

2/5 and =F 2q
1/3 for the horizontal orientation of the heated plate are independent of the Grashof and

Prandtl numbers.

Isothermal horizontal plate

GrL Pr Nuht(for semi-infinite
plate - similarity theory)
Eqn (A7)

Nuht theory, (for semi-infinite
plate - integral analysis)
Eqn (A2)

Nu2 ht theory2/5 , Nuht CFD, (for finite plate - CFD,
present study)

105 0.7 5.9051 6.0934 8.0402 7.8942

106 0.7 9.3589 9.6573 12.7429 12.4953
107 0.7 14.8329 15.3059 20.1962 19.7297
105 10 11.2841 11.3438 14.9683 15.8474

106 10 17.8841 17.9788 23.7231 24.3467
107 10 28.3444 28.4944 37.5986 37.9710

Iso-heat-flux horizontal plate

GrL Pr Nuhq(for semi-infinite
plate - similarity theory)
Eqn (A8)

Nuhq theory, (for semi-infinite
plate - integral analysis)
Eqn (A5)

Nu2 hq theory1/3 , Nuhq CFD, (for finite plate - CFD,
present study)

105 0.7 5.3303 5.1900 6.5390 6.3955

106 0.7 7.8238 7.6179 9.5980 9.7017
107 0.7 11.4838 11.1816 14.0879 14.3693
105 10 8.9810 8.8477 11.1474 12.3039

106 10 13.1823 12.9866 16.3621 17.4526
107 10 19.3490 19.0617 24.0163 24.9905
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noticed that there exists a small maximum at about = 75 .
The present study establishes the influence of the boundary condi-

tion - isothermal versus iso-wall-heat-flux - on the average Nusselt
number for natural convection around a heated finite plate. At all in-
clinations, the isothermal case gives greater average Nusselt number
( >Nu Nut q, for =Gr GrL L). The present study also establishes that, for
the isothermal case, there is significant difference between the average
Nusselt number (hence the overall heat transfer rate) for the horizontal
and that for the vertical orientation of the plate. For example, at

=Gr 10L
6 and =Pr 0.7, =Nu 12.4953ht and =Nu 15.7941vt , i.e. the

overall heat transfer rate from a plate of finite length would increase by
more than 25% if the orientation of the plate is changed from the
horizontal to the vertical. At =Gr 10L

7 and =Pr 0.7, it is found that
=Nu 19.7297ht and =Nu 27.2746vt , i.e. the increase in overall heat

transfer rate is more than 35%. For the constant-heat-flux case, the

change in average Nusselt number is modest. For example, at =Gr 10L
6

and =Pr 0.7, =Nu 9.7017hq and =Nu 10.3027vq , i.e. the overall heat
transfer rate from a plate of finite length would increase only by 6% if
the orientation of the plate is changed from the horizontal to the ver-
tical. However, in the near-horizontal positions, the variation in the
average Nusselt number with inclination angle is more prominent for
the constant wall heat flux boundary condition as compared to the
isothermal condition (Fig. 15).
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Appendix

Unified Integral Theory Results

Algebraic expressions for local Nusselt number Nux are deduced in Refs. [2,16]. Appropriate integration of these expressions gives the corre-
sponding average Nusselt numbers which are reported below. It is to be noted that the respective Prandtl number dependence in the following
equations is mathematically deduced. and are the orders of polynomials representing respectively the velocity profile and the temperature
profile in the unified integral theory. The optimum values of and for isothermal and constant-heat-flux conditions are determined in Refs. [2,16].

For isothermal vertical surface with = 4, = 2, the Nusselt number (Nuvt) is given by:

=
+

Nu Gr0.623 Pr
Pr

.vt
L

2

5
9

1/4

(A1)

For isothermal horizontal surface with = 4, = 2, the Nusselt number (Nuht) is given by:

=
+

Nu Gr0.722 Pr
Pr

.ht
L

2

4
9

1/5

(A2)

Following the arguments advanced in Ref. [2] regarding local Nusselt number, it is suggested here that the average Nusselt number for arbitrary
inclination for the isothermal plate is calculated from,

= +Nu Gr Nu cos Nu sin[ ( , Pr, )] [ ( ) ] [ ( ) ]t L
n

ht
n

vt
n1/5 1/4 (A3)

The advantage of equation (A3) is that it provides an explicit relation for Nut, since Nuht and Nuvt can be determined from equations (A2) and
(A1). The Nusselt number given by equation (A3) correctly reduces to Nuht at = 0 and to Nuvt at = 90 . Ref [2] shows that =n 5 is a good choice
and keeps the prediction of the correlation within ± 2% of the numerical results for the ranges of parameters investigated ( Gr10 10x

3 7,
0.01 Pr 100, 0 90 ).

For constant-heat-flux vertical surface with = 3, = 2, the Nusselt number (Nuvq) is given by:

=
+

Nu Gr0.77 Pr
Pr

.vq
L

2

4
5

1/5

(A4)

For constant-heat-flux horizontal surface with = 3, = 2, the Nusselt number (Nuhq) is given by:

=
+

Nu Gr0.893 Pr
Pr

.hq
L

2

4
7

1/6

(A5)

The average Nusselt number for arbitrary inclination for the iso-heat-flux case is calculated from,

= +Nu Gr Nu cos Nu sin[ ( *, Pr, )] [ ( ) ] [ ( ) ]q L
n

hq
n

vq
n1/6 1/5 (A6)

The Nusselt number given by equation (A6) correctly reduces to Nuhq at = 0 and to Nuvq at = 90 . Ref [2] shows that =n 6 is a good choice
and keeps the prediction of the correlation within ± 1% of the numerical results for the ranges of parameters investigated ( Gr10 10x

3 7,
0.01 Pr 100, 0 90 ).

Similarity Theory Results

The similarity theory formula for average Nusselt number for an isothermal horizontal plate is derived in Ref. [15]:

=Nu Gr g5
3

(0),ht L
1/5

(A7)

where, g (0) is a function of the Prandtl number and is given in Table A1.
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The similarity theory formula for average Nusselt number for an iso-heat-flux horizontal plate is derived in Ref. [15]:

=Nu
G

Gr6
4

1
18 (0)

( ) ,hq L1/6
1/6

(A8)

where, G (0) is a function of the Prandtl number and is given in Table A1.

Table A1
Values of g (0) and G (0) in equations (A7) and (A8) respectively.

Pr g (0) G (0)

0.01 0.087650 3.65580
0.1 0.196149 1.88540
0.7 0.354304 1.18430
1 0.389570 1.09790
7 0.623621 0.75055
10 0.677046 0.70289
100 1.089644 0.46798
1000 1.747600 0.32039

The similarity theory formula for average Nusselt number for an isothermal vertical plate is derived in Ref. [4]:

=Nu Gr g
4

(Pr),vt
L

1/4

(A9)

where, g (Pr) is a function of the Prandtl number and is given in Table A2.

Table A2
Values of g (Pr) in equation (A9).

Pr g (Pr)

0.01 0.1701510
0.1 0.3071254
0.7 0.6652302
1 0.7894452
10 1.5605743
100 2.2839181
1000 2.7466542
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