“Two-phase Flows with Phase Transition”, In 
VKI Lecture Series 1995-06,
Guha A.,
von Karman Institute for Fluid Dynamics, Belgium, 1995, p 1-110. (110 pages)
ISSN 0377 8312
VKI, Chaussee de Waterloo, 72
B 1640 Rhode Saint Genese, Belgium. 
www.vki.ac.be



Email: A.Guha@bristol.ac.uk
TABLE OF CONTENTS
 

PART I
Nucleation, droplet growth and condensation in pure steam flows

1.0 Introduction  p 1
1.1  Some fundamental concepts  p 1
 1.1.1  Vapour pressure  p 1
 1.1.2  Clausius-Clapeyron equation  p 2
 1.1.3  Metastable states  p 2
 1.1.4  Equilibrium of droplets in vapour and bubbles in liquid  p 4

2.0  Elements of condensation  p 5
2.1  Thermodynamics of homogeneous nucleation  p 6
2.2  Kinetics of homogeneous nucleation  p 8
2.3  Heterogeneous nucleation  p 10
2.4  Growth of established droplets : continuum treatment  p 10
2.5  Growth (or evaporation) of droplets at arbitrary Knudsen number  p 11
2.6  Spontaneous condensation in nozzles  p 14

3  Numerical solution for condensation shock and comparison with experiments  p 17
3.1  Gas dynamic equations  p 17
3.2  Numerical scheme  p 18
3.3  Numerical solution of various regimes of condensation  p 20
3.4  Comparison of numerical solutions with experiments  p 25
3.5  Integral analysis : condensation wave theory  p 33
3.6  Thermal choking due to non-equilibrium condensation  p 38
 

PART II
Fluid dynamics with interphase transport of mass, momentum and 
energy in pure vapour-droplet mixtures

4  Relaxation gas dynamics for vapour-droplet mixtures  p 43
4.1  Relaxation phenomena  p 43
 4.1.1  Introduction  p 43
 4.1.2  Relaxation processes in a vapour-droplet medium  p 45
 4.1.3  Comparative magnitudes of different relaxation times  p 47
4.2 Gas dynamics  p 48
 4.2.1  Conservation equations  p 48
 4.2.2  Numerical solution of the equations  p 49
 4.2.3  Speeds of sound  p 50
         (i)  in a simple relaxing medium with one internal variable  p 50
         (ii) in a pure vapour-droplet mixture  p 50
 4.2.4  Qualitative aspects of shock structure  p 51
         (i)  in a simple relaxing medium with one internal variable  p 51
         (ii) in a pure vapour-droplet mixture  p 52
4.3  Shock waves  p 54
 4.3.1  Structure of stationary shock waves  p 54
         (i)   Type I fully dispersed wave  p 54
         (ii)  Type II fully dispersed wave  p 55
         (iii) Type III fully dispersed wave  p 56
         (iv) Partly dispersed shock wave  p 57
         (v)  Role of coupled relaxation processes  p 58
 4.3.2  Shock waves in unsteady flow  p 59

5  Integral analysis : jump conditions  p 62
5.1  Stationary shock waves  p 62
5.2  Unsteady development of shock waves  p 64

6  Coupled relaxation processes and thermal choking  p 66

7  Interpretation of total pressure and temperature in two-phase flow  p 68
 

PART III
Application of the non-equilibrium theory to steam turbines

8.1 Introduction to the flow through steam turbines  p 73
 8.1.1  Steam turbines and the occurrence of wet stem  p 73
 8.1.2  The form of the liquid phase  p 74
 8.1.3  The formation of the liquid phase  p 76
 8.1.4  Impact of the liquid phase  p 78
 8.1.5  Economic incentive for research in non-equilibrium wet steam flow  p 79

8.2 Two-dimensional studies  p 79
 8.2.1  Blade-to-blade calculations and comparison with experiments  p 79
 8.2.2  Throughflow calculations  p 85

8.3 Effects of unsteadiness on the homogeneous nucleation of water droplets in steam turbines   p 86
 8.3.1  A theory of temperature fluctuations  p 86
 8.3.2  Theoretical predictions of phase-change in turbines  p 90
 8.3.3  Conclusions   p 101

8.4 Wetness loss in steam turbines  p 102
 

REFERENCES  p 106
 
 

VKI Book Image