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ABSTRACT
The present study is aimed at understanding and thoroughly documenting the complex unsteady fluid dynamics in six generations of a model
human bronchial tree, comprising 63 straight sections and 31 bifurcation modules, during a complete breathing cycle. The computational task
is challenging since the complexity of an elaborate network is augmented with adopted stringent criteria for spatial and temporal accuracy
and convergence at each time step (10−8 for each scaled residual). The physical understanding of the fluid dynamics of steady expiratory flow
is taken to a similar level of fine details that have been previously established for steady inspiratory flow in earlier publications of the authors.
The effects of three-dimensional arrangement of the same branches on the oscillatory flow structure are determined. It is found that the
quasisteady assumption is approximately valid in the neighborhood of the peak flow rate, both during inspiration and expiration. Unsteady
effects are at their maximum during the changeover from expiration to inspiration and inspiration to expiration. At these time instants,
regions of bidirectional flow are observed in all branches with significant secondary motion at various cross sections (none of these features
can be predicted by steady state simulations). It is described how the symmetry of the solution with respect to both space and time—found in
the oscillating, fully developed flow in a pipe—are destroyed in the unsteady effects that occur in the oscillating flow in a branching network.
As the Womersley number is increased, the unsteady effects at all branches increase, and bidirectional flow exists over a greater portion
of a cycle. The flow division at a bifurcation module during inspiratory flow generates large asymmetry in the flow field with nonuniform
mass flow distribution among the branches of a generation (even in a geometrically symmetric network), whereas flow combination at the
same bifurcation module during expiratory flow tends to produce more symmetry in the flow field, displaying essential irreversibility of fluid
dynamics.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5093724

I. INTRODUCTION

The process of breathing is an unsteady flow phenomenon
involving periodic reversal of the predominant flow direction. A
single breathing cycle comprises an inhalation/inspiratory phase
during which air is drawn into the respiratory system and an exhala-
tion/expiratory phase during which air is released to the surround-
ings. The present study aims to develop a physical understanding
of the complex fluid dynamic changes that occur in the human
bronchial network during a breathing cycle. Such a study requires
careful numerical simulation of temporally oscillating flow in the
intricate three-dimensional flow passages of the bronchial tree.

There are many studies on the flow in bifurcating net-
works representing the human bronchial tree, which consider the
flow to be steady (or quasisteady). In two recent publications,1,2

the flow in three-dimensional branching networks comprising six
generations of branches was comprehensively analyzed, specifying
and systematizing the complex primary flow field, and quantify-
ing the generation and evolution of secondary motion. Zhao and
Lieber3,4 performed comprehensive experiments to study the veloc-
ity profiles obtained in a single bifurcation for both steady inspira-
tory and expiratory flows. Correlations for the pressure loss across
a model bifurcation were proposed by Kang et al.5 They found that
the pressure loss coefficient shows a power-law dependence on the
Reynolds number and the length-to-diameter ratio, and a very weak
dependence on the bifurcation angle. Comer et al.6 studied the air
flow in symmetric branching networks comprising three genera-
tions. Wilquem and Degrez7 performed a two-dimensional study
of the flow in three generations of human airways. They concluded
that the nonuniform flow distribution in the network rendered
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a resistance model of flow partitioning (based on Kirchoff’s law)
inadequate. Zhang et al.8 considered the flow in a symmetric triple
bifurcation network. Recently, studies of fluid flow and particle
deposition have been performed in patient-specific models devel-
oped from computed tomography (CT) imaging data9–11 and in
computer generated asymmetric lung models.12,13 However, such
studies apply to specific individuals, and thus, generalized geometric
models are normally used in studies where understanding general
fluid dynamic features is the priority.

It is important to realize that apparent symmetry in the geom-
etry of any two branches does not automatically imply symme-
try in the flow field in those two branches. The combined effects
of flow path curvature in the bifurcation module, flow division
at a bifurcation, and inertia of the flow result in skewed veloc-
ity profiles (with maximum velocity near the inner edge of bifur-
cation) in the daughter branches even when the velocity field
in the mother branch is symmetric about the bifurcation ridge
between that mother and its daughter branches. Viscous effects try
to establish a circumferentially symmetric paraboloidal velocity pro-
file in the straight portion of a branch but usually its length is
insufficient for the complete removal of asymmetry, and the flow
encounters the next bifurcation module where further asymme-
try is introduced. Thus, even though each bifurcation appears to
divide into two geometrically similar branches, the flow distribu-
tion is nonuniform. A detailed explanation and results are given in
Ref. 1.

In comparison to the volume of available literature on theo-
retical and experimental studies of the steady flow in a branching
network, the available literature on the unsteady/oscillatory flow
is sparse. Although the steady flow results help to understand the
effects of the branching geometry, the study of temporally oscil-
lating flow in the human airways is interesting from the point
of view of fundamental fluid dynamics as well as imperative for
understanding the transport and deposition of particles in the respi-
ratory tract. The knowledge of particle transport is, in turn, impor-
tant for understanding the causation of certain diseases and for
targeted drug delivery. (A lucid but comprehensive description of
the flow of fluid and particles in the human bronchial tree is given by
Guha.14)

Before embarking upon a study of oscillating flow in elabo-
rate branching networks, it is important to acknowledge the known
knowledge regarding oscillating flow in a pipe. Sexl15 gave an ana-
lytical solution for the oscillating flow in a pipe following the exper-
imental measurements of cross-sectional velocity distributions by
Richardson and Tyler.16 Lambossy17 derived an analytical expres-
sion for the velocity profile considering a sinusoidal pressure vari-
ation across a pipe and gave relations for determining the friction
forces. Later, Womersley18,19 showed that the interaction between
inertial and viscous effects in oscillatory pipe flow would alter the
velocity profile such that it would not remain parabolic as in steady
laminar flow. Moreover, he showed that a phase-lag developed
between the motion of the fluid and the driving pressure gradient.
Ray and Durst20 developed semianalytical solutions for laminar fully
developed pulsating flow through ducts of arbitrary cross sections.
Recently, there have been studies on oscillatory pipe flows consider-
ing enhancement of axial heat transfer,21 design of novel vortex flow
meters,22 and the flow of rarefied gases in rectangular ducts.23

The theories of Sexl,15 Lambossy,17 and Womersley18 assume
that the velocity vectors are aligned to the axis, there is no variation
in velocity in the axial direction (fully developed) and the flow field
is axisymmetric. Velocity at any instant is then a function of radius
alone. Analytical solution for such an unsteady flow is possible.
Although certain flow features such as the presence of bidirectional
flow in the neighbourhoods of changeover from inspiration to expi-
ration (and vice versa) and the existence of phase difference between
velocity and pressure oscillations are common, it is established in
the present work that the oscillating flow in a branching network is
much more complex. The flow field is developing and nonaxisym-
metric, and, is a function of all three space coordinates and time.
The presence of flow division (or combination), flow path curvature
and inertia give rise to complex variation of flow field, including the
presence of strong secondary motion. Present computations show
that there may be bidirectional flow in some branches even at the
instant of peak expiration and the symmetry between the inspira-
tory and expiratory phases (that is present in the pipe solution) is
lost.

Since the geometric complexity of branching networks renders
an analytical solution nearly impossible, the oscillatory flow in such
networks has been studied mostly through experiments and numer-
ical simulations. The oscillatory flow in a model bifurcation was
studied by Jan et al.24 using an order-of-magnitude analysis and
flow visualizations. They developed a flow regime map in which
three regimes were classified, viz., viscous-dominated, convective
acceleration-dominated, and unsteady effects-dominated. Menon
et al.25 performed experiments for oscillatory flow in models of
the human central airway bifurcations. Their results showed that
for small frequencies of the oscillations, the velocity profiles in
unsteady flow are greatly influenced by the geometry of the bifurca-
tion, and the velocity profiles at peak flow rates resemble the steady
flow profiles at comparable Reynolds numbers. Lieber and Zhao26

experimentally studied the flow in a symmetric bifurcation model
under oscillatory flow conditions, and reported that the quasisteady
assumption is valid only in the vicinity of peak inspiration and peak
expiration. Fresconi and Prasad27 experimentally investigated the
unsteady secondary flow field during inspiration and expiration in
a four-generation branching network. Evegren et al.28 performed
numerical simulations for the unsteady flow in a 90○ bifurcation
and studied the secondary flow in the daughter branches in great
details. Soni and Thompson29 investigated the effects of temporally
varying inlet flow conditions on the flow field in small bronchial
tubes, their study being limited to only a few branches. Zhang and
Kleinstreuer30 numerically studied the oscillating laminar flow in
a symmetric triple bifurcation network. Adler and Brücker31 per-
formed experiments to study the oscillatory flow in a realistic model
of the upper human airways. Nagels and Cater32 performed large
eddy simulations of high frequency oscillating flow in an asymmet-
ric airway model. Recently, studies have been performed to analyze
the partitioning of red blood cells at a bifurcation using direct
numerical simulations33 and to determine local viscosity distribu-
tions in bifurcating blood flows34 The above-mentioned previous
studies considered rigid wall of the tubes and the flow downstream
of the trachea (i.e., did not involve the effects of any geometrical
complexity upstream of the trachea). The same spirit of keeping the
discussion focused is maintained here.
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The present computational study attempts to capture the com-
plex fluid dynamics associated with the oscillatory flow in three-
dimensional branching networks, involving periodic reversal of the
flow direction, through accurate unsteady simulations of the flow
field (with experimental validation of both steady and unsteady com-
putational results). For generalization of the results, dimensions
of branches are selected according to the first six generations of
a symmetric model of the human bronchial tree,35 comprising 63
straight sections and 31 bifurcation modules, The effects of three-
dimensional arrangement of the same branches on the flow struc-
tures occurring at various time instants of a breathing cycle are
systematically studied here by considering both in-plane and out-of-
plane configurations of branches. The flow field is asymmetric even
in a geometrically symmetric network, and hence all branches of the
six generations are included in the computation, with appropriate
meshes for the three-dimensionally complex internal passages. The
computational task of generating (and analyzing) unsteady flow is
challenging since the complexity of such an elaborate network is
augmented with adopted stringent criteria for spatial and tempo-
ral accuracy (with double precision arithmetic) and convergence at
each time step (10−8 for each scaled residual) with 14 × 106 com-
putational cells, 500 time steps within a cycle and about 500 h of
computation time per cycle on parallelized four i-5 processors. Two
cycles are simulated for each set of geometry and flow parameters;
three such complete simulations are reported in the present work
(in-plane at α = 2.64, out-of-plane at α = 2.64, and in-plane at α
= 10, α being the Womersley number, thus totalling about 3000 h
of computation time). Spatial and temporal accuracy of the solu-
tions is demonstrated by comparing them with experimental results,
and this makes it possible to draw dependable physical conclusions
from the simulations presented. With the help of velocity contours
and vector plots of the primary and secondary flow, a qualitative
and quantitative study is performed on the temporal and spatial
evolution of flow during a breathing cycle. It is shown that sig-
nificant flow asymmetry exists throughout the network during the
inspiratory phase, whereas the flow during the expiratory phase is
characterized by a much smaller level of asymmetry. Although com-
putations are carried out here for a model bronchial tree, the con-
clusions and physical understanding emanating from this study are
also applicable to oscillating flow in a future engineered branching
network.

There are at least three aspects of this study which are distinc-
tive. First of all, the physical understanding of the fluid dynamics
of steady expiratory flow through an elaborate branching network
is taken to a similar level of fine details that have been previously
established for steady inspiratory flow in Refs. 1 and 2. Second,
the unsteady effects during both inspiration and expiration in an
elaborate network are explored, relating to the known physics of
unsteady effects exhibited by fully developed flow in a single pipe
established through the theoretical work of Sexl,15 Lambossy,17 and
Womersley.18 The manifestation of the unsteady effect may be
appreciated in several ways. As an example, the unsteady effect may
be quantified in terms of the difference of the actual unsteady solu-
tion at a particular instant and the steady solution computed with
the same boundary conditions at that instant. (For example, at the
instants t = 0, t = T/2, or t = T of a breathing cycle, steady compu-
tations would give no flow in the entire network, but the unsteady
computations give rise to oppositely directed regions of flow at

various cross sections of the network.) The unsteady effects may also
be appreciated by quantifying the difference of the unsteady flow
solution at a particular location of the network at a time instant of the
accelerating part of the (inspiratory or expiratory phases of) breath-
ing cycle and the unsteady solution at the corresponding time instant
of the decelerating part of the breathing cycle. Third, powerful and
effective methods of pictorial representation are innovated, through
which stunning visualizations of the accurately computed flow fields
have been made possible.

II. MODEL OF THE HUMAN BRONCHIAL TREE
A three-dimensional model of the human bronchial tree is con-

structed by successively connecting cylindrical sections representing
the airways of a particular generation with those of the next gen-
eration through bifurcation modules.1 A particular generation in
the network is referred here by the symbol Gn, where the index n
denotes the generation number and progressively takes the integer
values 0, 1, 2, etc. The six-generation network considered here con-
sists of generations G0 to G5 (comprising 63 cylindrical sections and
31 bifurcation modules). The dimensions of the branches consid-
ered in this study are shown in Table I. The bifurcation angle (angle
between two daughter branches emanating from the same mother
branch) is set to 70○ for all generations. All the branches are denoted
by four characters “GnBk,” where “Gn” denotes the generation to
which the branch belongs, while “Bk” denotes the branch number in
a particular generation. The cross-sectional plane at the start of the
straight section of a branch (during inspiratory flow) is denoted by
“GnSk” (shown in Figs. 1 and 2), where “k” denotes the branch num-
ber in a particular generation. Similarly, the cross-sectional plane at
the end of the straight section of a branch (during inspiratory flow)
is denoted by “GnPk.”

Figure 1 shows a three-dimensional view of the symmet-
ric model of the human bronchial network with all the branches
arranged in the in-plane configuration. For this arrangement of
branches, the centrelines of all the cylindrical sections and the con-
necting bifurcation modules lie on a single plane (which is denoted
by the term “meridional plane”1). In spite of the planar nature of
this configuration, the complexity of the three-dimensional internal
flow passages makes it necessary to perform three-dimensional com-
puter simulations for determining the fluid flow field. The branches
in a generation in the in-plane configuration are numbered from
left to right as shown in Fig. 1. Since the branching network shown
here is symmetric, only the branches lying in the left half (i.e., those
originating from G1B1) are shown in the figure. However, all

TABLE I. Dimensions for the first six generations of the human bronchial tree
according to Weibel.35

Generation number Diameter dbranch (mm) Length L (mm)

G0 (trachea) 18.00 120.00
G1 12.20 47.60
G2 8.30 19.00
G3 5.60 7.60
G4 4.50 12.70
G5 3.50 10.70
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FIG. 1. Six generations (G0-G5) of a symmetric model of the human bronchial tree;
in-plane configuration. (Only half of the network is shown here. Simulations are run
for the entire network.)

FIG. 2. Six generations (G0-G5) of a symmetric model of the human bronchial tree;
out-of-plane configuration. (Only half of the network is shown here. Simulations are
run for the entire network.)

simulations performed in the course of this study are run for the
entire network.

A branching network comprising six generations of branches
arranged in the out-of-plane configuration is shown in Fig. 2.
Although the dimensions of the branches and the bifurcation angles
for this network are the same as those in the in-plane configura-
tion, the three-dimensional arrangement of the branches is different.
For a comprehensible description of the complex three-dimensional
arrangement consider the orientations of various overlapping units
of the network, each unit comprising a bifurcation module, a pre-
ceding mother branch and two succeeding daughter branches—all of
which must have centrelines lying on a single plane. For a particular
unit Un, suppose this plane is denoted by An. Now, consider a suc-
ceeding unit Un+1,1 for which one of the daughter branches of unit
Un acts as the mother branch. Similarly, one can think of another
unit Un+1,2, considering the second daughter branch of Un. Then, the
planes in which Un+1,1 and Un+1,2 lie are at right angle to plane An,
while maintaining the bifurcation angle between themselves. Since
the complex three-dimensional arrangement of branches makes it
difficult to describe how branches belonging to the same generation
are numbered for the out-of-plane configuration, Fig. 2 provides a
pictorial guide to the system followed for naming the branches.

III. SOLUTION METHODOLOGY
The present analysis considers the laminar three-dimensional

flow of a viscous and incompressible fluid through a branching net-
work comprising generations G0-G5 of a symmetrical model of the
human bronchial tree. The three-dimensional model for the branch-
ing network is built in SolidWorks 2010,36 and the meshing and
numerical simulations are performed on the ANSYS Workbench37

using the ANSYS Mesh Modeler and FLUENT, respectively. All
computations are performed on a desktop computer with i5-3470
processor and 20 GB RAM.

A. Mathematical formulation
The present study pertains to laminar incompressible flow of

a viscous fluid through six generations of a dichotomous branching
network. The conservation equations for mass and momentum are
given as follows:

∇ ⋅ v⃗ = 0, (1)

ρ[∂v⃗
∂t

+ (v⃗ ⋅ ∇)v⃗] = −∇p + µ∇2v⃗, (2)

where v⃗ represents the velocity vector of the fluid, ρ is the fluid
density, p is the static pressure, and µ is the dynamic viscosity of
the fluid. In the present set of simulations, ρ and µ are taken as
1.225 kg/m3 and 1.7894 × 10−5 kg/(m s), respectively.

A time-varying but spatially uniform velocity is prescribed at
the cross-sectional boundary of the first branch (G0B1) of the net-
work. The temporal variation is represented by a sinusoidal function
to model a breathing cycle,29

VG0S1 = Vmax sin(2πft). (3)

Here, VG0S1 is the axial velocity at the cross-sectional plane, Vmax is
the maximum axial velocity at that cross section, f is the frequency
of breathing (per second), and t is the time instant in the oscillatory
flow. Considering resting conditions when the breathing frequency
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is 12 per minute (time period T for one breathing cycle is 5 s), f
is taken as 12/60 s−1. Assuming a tidal volume of 500 ml, all of
which is to be inhaled in the inspiratory phase (0 ≤ t ≤ T/2), the
value of Vmax is set at 1.235 m/s. The branch walls are assumed to
be rigid and smooth. Figure 3 gives a graphical representation of
the temporal variation of the velocity prescribed at the boundary
of the first generation. For the sinusoidal variation considered here,
peak inspiration (VG0S1 = Vmax) occurs at t = T/4 while peak expi-
ration (VG0S1 = −Vmax) occurs at t = 3T/4. The Reynolds number
(Re ≡ 2ρVG0S1RG0B1/µ) in the first generation at maximum flow rate
for Vmax = 1.235 m/s is calculated to be 1522.

It is to be noted that the spatially uniform velocity profile
applies only at the start plane of generation G0; the solution of the
Navier-Stokes equations produces spatial nonuniformity at all other
cross sections of the network. Our computational experience shows
that the prescription of the inlet velocity ensures, in incompressible
flow, the correct volume (and mass) flow rate at all cross sections of
the branch G0B1 (trachea) at any time-instant of the flow cycle but
does not inhibit the development of a realistic nonuniform veloc-
ity profile in this branch even during the expiratory phase. Solu-
tions presented later in Sec. IV D show the existence of nonuniform
velocity distribution over most of the length of G0B1 during the
expiratory phase. The length over which the transition from nonuni-
form to uniform flow occurs is very small, and this small length
may be added before the start plane of G0B1 as a computational
artifice.

Oscillatory flows are often described by the dimensionless
parameter called the Womersley number defined as follows:18

α = R

¿
ÁÁÀ2πf ρ

µ
, (4)

where R is the tube radius, f is the frequency of breathing (per
second), and ρ and µ are the density and dynamic viscosity of
the fluid. The Womersley number gives a measure of the ratio of

FIG. 3. Schematic representation of the oscillatory flow prescribed at the boundary
(start plane) of the first branch G0B1 of the network.

unsteady effects to viscous effects.18,38 In other words, if the value
of α is less than unity, the flow can be considered quasisteady
because the low frequency lets the flow field develop fully during
each cycle. If, on the other hand, the Womersley number is greater
than unity, unsteady effects gain importance. In the present case,
f = 12/60 s−1, ρ = 1.225 kg/m3, µ = 1.7894 × 10−5 kg/(m s), and RG0B1
= 0.009 m; the Womersley number in generation G0 (αG0) turns out
to be 2.64.

B. Mesh generation
The branch diameter gradually decreases from 18 mm in the

first generation to 3.5 mm in the last generation of the three-
dimensional branching network comprising six generations (G0-
G5). Therefore, a multiblock meshing scheme is adopted such that
the relative size of the computational cells with respect to the branch
dimensions remains approximately constant. ANSYS Meshing is
used for generating an unstructured mesh in the three-dimensional
network with sufficiently large number of tetrahedral elements.39

The strong gradients near the solid walls are captured by apply-
ing boundary layer type meshing (inflation layers) there, with suffi-
ciently small thickness of the first layer. The number of layers of the
boundary layer type mesh is selected such that the height of the last
layer is comparable to the size of the neighboring interior cell. The
most critical portion of the geometry from a meshing point of view is
the bifurcation module where complex cross-sectional changes take
place as the single circular tube transforms into two separate circu-
lar tubes.1 While previous studies implementing structured mesh40

have usually not used any boundary layer type meshing, others using
unstructured meshes38 along with boundary layer type meshing suf-
fer from intersection of the inflation layers in the bifurcation mod-
ules. This intersection is due to the fact that the bifurcation module
is usually constructed by combining two separate but overlapping
narrowing tubes (each connecting the mother branch to one of the
daughter branches) and the inflation layers are separately applied to
the two narrowing tubes. In the present work, while constructing
the geometry in SolidWorks,36 the bifurcation modules are created
as a single geometric part connecting the mother and daughters.
This ensures that the inflation layers closely follow the shape of
the walls of the bifurcating module without intersecting with one
another.

C. Numerical method
The governing equations [Eqs. (1) and (2)] are solved numeri-

cally with the help of the commercial computational fluid dynamics
(CFD) package FLUENT that uses a finite volume technique. The
available pressure-based solver is used here. The diffusion terms
are discretized using a central difference scheme. A second order
upwind scheme is used to discretize the advection terms in the
unstructured three-dimensional mesh, so as to reduce the numerical
diffusion.41 An implicit,42 second-order temporal discretization was
employed for the unsteady simulations. A segregated solver is used
to solve the resulting system of equations. The SIMPLE algorithm
is used to couple the velocity and pressure for solving the govern-
ing equations. The default values37 of the under-relaxation factors in
Fluent are used for the simulations. At each time step, iterations are
performed till the scaled residuals37 for continuity and momentum
equations reach 10−8.
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The time-varying sinusoidal velocity [Eq. (3)] at the boundary
of the first generation of the branching network is specified with the
help of a user-defined function in FLUENT. The no-slip and no-
penetration conditions are applied on the walls of the branches using
the “Wall” boundary condition in FLUENT. Since there is a dearth of
knowledge regarding the pressure conditions at the end of the gen-
eration G5 in the human bronchial tree, previous researchers43–45

have resorted to a pressure condition at the end of the branches of
the last generation considered. Taking cue from such studies, a pres-
sure boundary condition has been used in the present study using
the “Pressure Outlet” boundary condition feature of FLUENT. This
feature requires the specification of the gauge static pressure at the
outlet boundary, which is then used as a reference to calculate the
pressure throughout the computational domain. The gauge static
pressure at the outlets is set to zero in the present set of simula-
tions. The CFD simulations determine the change in static pressure
between the inlet and outlet of the network (∆pio). It is assumed that,
for incompressible flow, ∆pio does not vary with the absolute value of
static pressure specified at the outlet. Thus, once the pressure differ-
ence between the inlet and any location in the network is determined
from the CFD simulation, the absolute value of static pressure at that
location can be calculated from the known value of static pressure at
the inlet.

In addition to the unsteady simulation covering the entire
breathing cycle, separate steady state solutions are run at each
selected time instant (with the same boundary condition at G0S1 at
the same time instant as is employed in the unsteady simulation) in
order to determine by what extent the unsteady solutions differ from
their steady flow counterparts. The solver37 uses a time-marching
technique46,47 to obtain a steady-state solution as the limiting process
of an unsteady simulation.

The velocity at a point in the flow domain may be resolved
into two mutually perpendicular components: one along the nor-
mal to the relevant cross-sectional plane (primary velocity v⃗P) and
the other along the cross-sectional plane (secondary velocity v⃗S). The
algorithm used for the determination of the primary and secondary
velocity components is given in Ref. 2.

D. Grid and time step independence study
A comprehensive grid independence study has been performed

for the G0-G5 networks following the methodology suggested by
Roache.48 Here, the flow in the G0-G5 network is simulated using
four meshes: “coarse,” “medium,” “fine,” and “very fine.” For the
in-plane configuration, the “coarse,” “medium,” “fine,” and “very
fine” meshes, respectively, contain approximately 1020 × 103, 4173
× 103, 14 084 × 103, and 30 942 × 103 computational elements (finite
volume cells). For the out-of-plane configuration, the “coarse,”
“medium,” “fine,” and “very fine” meshes, respectively, contain 1028
× 103, 4211 × 103, 14 214 × 103, and 31 229 × 103 computational ele-
ments. A grid convergence index (GCI) was defined for the refined
mesh by the following expression:48

GCIfine = Fs
εrms

rq
grid − 1

. (5)

Here, q (=2 in the present study) is the order of discretization of
all terms in space, Fs is the factor of safety, and rgrid is the grid
refinement factor defined as rgrid = (Nfine/Ncoarse)1/3, where N is the

number of elements in the mesh. εrms is the root-mean-square value
of the relative error [ε = ('i ,coarse − 'i ,fine)/'i ,fine] calculated over a
sufficiently large number of points. Usually, a value of εrms around
2% is assumed to indicate a high quality grid-converged solution.39

For rgrid = 1.5, q = 2, and Fs = 3, the value of GCI corresponding to
εrms = 0.01 can be calculated to be 2.4%. In the course of our present
series of studies1,2 on the topic, we found that for GCI ≤ 5%, the flow
field changes negligibly with further grid refinements.

Celik et al.49 proposed a formulation for calculating an appar-
ent order of discretization from values of εrms and rgrid. They stated
that an agreement of the apparent order with the formal order of the
used scheme can be taken as a good indication of the grids being in
the asymptotic range. Accordingly, here we have used the two val-
ues each of εrms and rgrid, for the two sets of three meshes (coarse,
medium, and fine; and medium, fine, and very fine), to iteratively
find a value of q.49 The closer the value of q comes to its original
value (i.e., q = 2 for the adopted second-order spatial discretization),
the better the grid independence.

We find that for the in-plane configuration, the value of GCI for
the medium mesh is 9.82%, that for the fine mesh is 2.58%, and that
for the very fine mesh is 1.76%. Hence, the change in GCI between
fine and very fine mesh is small. The value of q is calculated49 to
be 1.92 for the two sets of three meshes (coarse, medium, and fine;
and medium, fine, and very fine). Similarly, for the out-of-plane con-
figuration, we find that the value of GCI for the medium mesh is
11.68%, that for the fine mesh is 3.30%, and that for the very fine
mesh is 2.18%. Hence, the change in GCI between fine and very fine
mesh is small. The value of q is calculated to be 2.05 for the two sets
of three meshes (coarse, medium, and fine; and medium, fine, and
very fine). Hence, for both configurations, the “fine” mesh (contain-
ing about 14 × 106 computational elements) is used for subsequent
simulations.

A systematic study has also been performed to ensure that the
solutions reported in the paper are independent of the size of the
time step. For this purpose, we have run simulations using the “fine”
mesh for both configurations using three values of the time step size
∆t, viz., ∆t = 0.025 s, ∆t = 0.01 s, and ∆t = 0.005 s. It is found that
the velocity magnitudes along a diameter on the end plane of G1B1
obtained by using ∆t = 0.025 s and ∆t = 0.01 s show a maximum dif-
ference of about 5%, while that obtained by using ∆t = 0.01 s and ∆t
= 0.005 s show a maximum difference of less than 1%. Similar
findings are made for the solutions at other locations of the net-
work. Based on such calculations, we have used ∆t = 0.01 s for all
subsequent simulations reported here.

All simulations are performed on a desktop computer with
i5-3470 processor and 20 GB RAM, using the parallel processing
feature of FLUENT (four processors are utilized here). The use of
double-precision arithmetic and small value of the convergence cri-
teria (10−8) ensures the accuracy of the solution at all instants of
the oscillatory cycle, especially at those instants when the net mass
flow rates in the network are small. The time taken to achieve spa-
tially converged solution, for the “fine” mesh containing 14 × 106

elements, at each time step is approximately 1 h. For an oscillatory
cycle of time period T = 5 s, and a time step size of ∆t = 0.01 s, cal-
culations need to be performed for 500 time steps. The time taken
to obtain a converged solution for the complete cycle is about 500 h.
Since we have simulated two cycles to ensure that start-up effects
are absent, the total time taken to obtain the results reported here is
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about 1000 h. Three such complete simulations are reported in the
present work (in-plane at α = 2.64, out-of-plane at α = 2.64, in-plane
at α = 10, thus totaling 3000 h of computation time). The task is
therefore computationally challenging and time-consuming. Spatial
and temporal accuracy of the solution is demonstrated in Sec. III E
so that dependable physical conclusions can be made from the
simulations presented.

E. Validation of results
The present numerical method was validated through compar-

isons with the experiments of Lieber and Zhao26 on oscillatory flow
in a bifurcation. The geometry of Zhao and Lieber17 is reproduced
here, and the velocity profile is compared along the diameter lying
on the meridional plane at the outlet of the left daughter branch
(Fig. 4). At t = 2T/10, flow is in the inspiration phase and the velocity
profile in the meridional plane is skewed toward the inner edge of the
bifurcation because of the flow path curvature. At t = 7T/10, flow is
in the expiration phase and the diametrical velocity profile is nearly
parabolic with a maximum velocity at the center of the cross-section.
It is found that the present CFD results agree well with the experi-
mental measurements.26 A comparison of the CFD results obtained
by using the same numerical methodology with experimental data3

for the steady flow through a bifurcation may be found in Ref. 1.
The critical Reynolds number in a branching network is likely

to be lower than that in a straight pipe50,14 though we have been
unable to find any systematic study of instability in a bifurcating net-
work or any definitive value of the relevant critical Reynolds number
in the literature. The excellent matching of the computed results
at various time instants of the cycle having a maximum Reynolds
number of 2077 with the experimental data gives confidence on the
dependability of the present computations and suggests that the lam-
inar assumption works well up to such Reynolds number which is
comfortably greater than the maximum value ReG0S1 = 1522, at the
peak inspirational flow rate, used for the reported computations in
the rest of the paper.

FIG. 4. Comparison of the present CFD results with previous experiments on
oscillatory flow in a bifurcation at Remax = 2077.

IV. RESULTS AND DISCUSSION
In the present work, we have simulated the oscillatory flow in

a six-generation (G0-G5) branching network, the adopted geometry
being a generalized model of the human bronchial tree. A breathing
frequency of 12 breaths per minute has been assumed which cor-
responds to the resting condition in a normal human adult. Two
breathing cycles (each of 5 s duration) were simulated, of which
results for the second cycle are reported below so that any small
start-up effect is avoided. All computations given in Secs. IV A–IV D
are performed at αG0 = 2.64.

A. Spatial evolution of the velocity field during
a breathing cycle

Results are presented here at four instants in the breathing
cycle, viz., peak inspiration (t = T/4), end of inspiration/beginning
of expiration (t = T/2), peak expiration (t = 3T/4), and end of expi-
ration/beginning of inspiration (t = T or t = 0). Here, the primary
velocity is taken positive for flow in the direction G0-G5 (inspira-
tory flow), while it is taken negative when flow occurs from G5 to
G0 (expiratory flow). The representational convention is such that,
in all the diagrams of flow cross sections given in Secs. IV A 1 and
IV A 2, positive value of primary velocity indicates that the flow
is toward the reader and the downstream bifurcation ridge would
appear as a vertical line on the plane of cross sections.

1. Results for the in-plane configuration
Figure 5 shows the flow field at the end planes of the branches

of generations G0-G3 at t = T/4 (peak inspiration). The vectors of the
secondary velocity are superposed on the contours of primary veloc-
ity at the selected cross-sectional planes. The instantaneous value
of the Reynolds number at t = T/4 is found to be 1522. The pri-
mary velocity contour at plane G0P1 is characterized by concentric
circles with the maximum velocity at the center of the cross sec-
tion (similar to the flow in a pipe). The secondary velocity at G0P1
shows inward motion of fluid from the periphery toward the cen-
ter, which may be attributed to the change of cross-sectional shape
as the first bifurcation module is approached.2 The primary veloc-
ity at plane G1P1 is characterized by a skewed distribution with the
maximum velocity shifted toward the inner edge of the preceding
bifurcation. Since the fluid traverses only one bifurcation along its
path from the inlet to plane G1P1, Dean-type secondary motion2

is observed here with the fluid being pushed toward the inner edge
of the preceding bifurcation along the horizontal diameter and back
toward the outer edge of that bifurcation along the top and bottom
edges.

The contours of primary velocity at planes G2P1 and G2P2 at
t = T/4 (peak inspiration) show a skewed distribution with maxi-
mum velocity shifted toward the inner edge of the preceding bifurca-
tion. Moreover, owing to the asymmetry in the velocity distribution
at plane G1P1 about the downstream bifurcation ridge, the maxi-
mum (and average) velocity at plane G2P2 is significantly greater
than that at G2P1. The secondary velocity field at the end planes of
the G2 branches is characterized by two pairs of vortices2 as com-
pared to the single pair found at G1P1. The primary velocity dis-
tribution at the end planes of all the G3 branches appear skewed
toward the inner edge of the preceding bifurcation with the aver-
age velocity being greatest in branch G3B3. The secondary flow
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FIG. 5. Distribution of primary and secondary velocities at
the specified planes in branches of generations G0-G3 at
peak inspiration for in-plane configuration. (Vectors indicate
secondary velocity, while the contours show magnitude of
primary velocity.)

patterns in the G3 branches are characterized by typical Dean-type
circulation (with two counter-rotating vortices).

In the Weibel model of human bronchial network as shown in
Table I, the branch diameters for various generations are such that
the total cross-sectional area of a generation decreases from G0 to
G3 but increases from G3 onward, the area at G4 being equal to
that at G0. The average velocity at a generation, therefore, increases
from G0 to G3, which is borne out of the distributions shown in
Fig. 5.

The contours of primary velocity at the end planes of the
branches of generations G0-G3 at t = T/2 (end of inspira-
tion/beginning of expiration) are shown in Fig. 6. As mentioned
previously, negative values of the primary velocity indicate expira-
tory flow (i.e., in the direction G5-G0). Thus, Fig. 6 shows that at
t = T/2, the flow in the branches of generations G0-G3 comprise
both inspiratory and expiratory flows. The magnitude of the primary
velocity at this instant of the breathing cycle is small throughout the
network, but the inspiratory and expiratory flow velocities are of the

FIG. 6. Distribution of primary and secondary velocities
at the specified planes in branches of generations G0-
G3 at the end of inspiration for in-plane configuration.
(Vectors indicate secondary velocity, while the contours
show magnitude of primary velocity. The closed curves are
painstakingly constructed through postprocessing to clearly
demarcate two regions with opposite directions of primary
velocity.)
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same order of magnitude. The locus of change of sign of the pri-
mary velocity, which demarcates the inspiratory flow region from
the expiratory flow region, has been indicated in each diagram. The
reversal of flow direction from inspiratory to expiratory occurs near
the walls where the prevailing inspiratory velocities at earlier instants
were small due to viscous effects. The secondary flow patterns at
most of the planes shown in Fig. 6 are characterized by Dean-type
circulation with two counter-rotating vortices in each half of the
cross section.2

It is to be appreciated that the prescribed volume flow rate at
the computational boundary at t = T/2 is zero; thus, a steady flow
solution would give zero velocity at every point of the computa-
tional domain. The nonuniform flow structure seen in Fig. 6 is thus
entirely due to the unsteady effects. A striking feature of Fig. 6 is
that (unlike how the average and maximum velocities vary down the
generations from G0 to G5 at peak inspiration t = T/4) the range of
velocity magnitude (negative to positive) at t = T/2 is the greatest
in G0 and its value is progressively lower in G1, G2, G3, and so on.
This apparently paradoxical variation can be explained in the fol-
lowing manner. The diameters of the branches progressively reduce
down the generations from G0 to G5, and therefore, according to
Eq. (4), the relevant Womersley number is the greatest in G0 and
progressively reduces down the generations. Since the flow velocities
at t = T/2 arise solely due to unsteady effects, the range of velocity
(i.e., amplitude) displays the above-mentioned variation in different
generations of a branching network.

Figure 7 shows the flow field at t = 3T/4 (peak expiration). A
comparison of Figs. 5 and 7 show two important differences between
the flow structures at peak inspiration and that at peak expiration.
First, peak expiration (Fig. 7) is characterized by more symmet-
ric velocity distributions (symmetry about both vertical and hori-
zontal diameters in the diagrams), as compared to the significant
asymmetry found in the cross-sectional distribution of the primary

velocity at the end planes of the branches of generations G1-G3 at
peak inspiration, Second, during peak expiration, small regions of
oppositely directed flow (i.e., inspiratory flow) are seen to occur near
the walls in generations G0-G2. (No bidirectional flow is observed at
this time instant in generations G3, G4, or G5. There is no bidirec-
tional flow at peak expiration in the pipe solution of Womersley.18)
However, the magnitudes of the positive velocities in these regions
are an order of magnitude smaller than the expiratory flow velocities
at the same cross section. The secondary flow at all the cross sections
shown here (except G1P1) show four vortices in the four quarters
of the cross section. At plane G1P1, eight vortices are found; four
occurring at locations similar to that in the other planes and four
occurring near the center of the cross section. While the occurrence
of four vortices during expiratory flow has been reported previ-
ously,26 the occurrence of eight vortices at G1P1 is reported here
for the first time. The magnitude of prescribed volume flow rate at
the computational boundary is the same at t = T/4 and t = 3T/4.
The stunning visual difference between the flow structures in Figs. 5
and 7 thus displays the fundamental difference between the fluid
dynamics of successively bifurcating flow and that of successively
combinatory flow.

Figure 8 shows the flow field at t = T (end of expiration/
beginning of inspiration). As explained previously, the nonuniform
flow structure seen in Fig. 8 is entirely due to the unsteady effects
since a steady flow solution with the same boundary condition would
have resulted in zero velocity everywhere in the flow field. As in
Fig. 6 (t = T/2), the flow in the branches of generations G0-G3 at
t = T (Fig. 8) comprise both inspiratory and expiratory flows.
Although the magnitude of the primary velocity at this instant of the
breathing cycle is small throughout the network, the inspiratory and
expiratory flow velocities are of the same order of magnitude. The
locus of change of sign of the primary velocity, which demarcates
the inspiratory flow from the expiratory flow, has been indicated in

FIG. 7. Distribution of primary and secondary velocities at
the specified planes in branches of generations G0-G3 at
peak expiration for in-plane configuration. (Vectors indicate
secondary velocity while the contours show magnitude of
primary velocity. The closed curves are painstakingly con-
structed through postprocessing to clearly demarcate two
regions with opposite directions of primary velocity.)
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FIG. 8. Distribution of primary and secondary velocities at
the specified planes in branches of generations G0-G3 at
the end of expiration for in-plane configuration. (Vectors
indicate secondary velocity while the contours show mag-
nitude of primary velocity. The closed curves are painstak-
ingly constructed through postprocessing to clearly demar-
cate two regions with opposite directions of primary
velocity.)

each diagram. The range of velocity magnitude (negative to positive)
at t = T is the greatest in G0 and its value is progressively lower in G1,
G2, G3 and so on. As explained in connection with Fig. 6, this reduc-
tion in range in velocity (i.e., amplitude) is caused by a reduction in
the Womersley number down the generations.

Although the prescribed volume flow rate at the computational
boundary is zero both at t = T/2 and at t = T, there are important dif-
ferences between the unsteady flow solutions at these two instants.
First, the distribution of the primary velocity over the cross section
is quite different at the two time instants. Second, a comparison of
Figs. 6 and 8 shows that while inspiratory flow occurred in the cen-
tral regions (which are shifted toward the inner edge of the preceding
bifurcation modules) with expiratory flow in the peripheral regions
at t = T/2, the inspiratory flow is restricted to the peripheral regions
while the expiratory flow occupies central regions (around the axis
of the branch) at t = T. Third, the patterns of secondary flow at all
the cross-sectional planes at t = T shown in Fig. 8 are character-
ized by four vortices, while that at t = T/2 (shown in Fig. 6) were
generally characterized by two vortices. It is thus established that
the secondary flow patterns at t = T/2 and t = T are related to the
secondary flow structure occurring in the respective preceding part
of the cycle. Thus, the secondary flow patterns at the end of inspi-
ration (Fig. 6) appear similar to that observed at peak inspiration
(Fig. 5), while the secondary flow at the end of expiration (Fig. 8) are
qualitatively similar to that found during peak expiration (Fig. 7).

The positions of the vortices can be determined by visual
inspection of the secondary flow patterns at a cross section shown in
Figs. 5–8. In addition to this method, a second quantitative method,
using the λ2 criterion,51 is used to confirm the number and locations
of the vortices. According to the λ2 criterion, any point in the flow
field, for which λ2 < 0, is part of a vortex. Here, λ2 is the median
eigenvalue of the tensor S2 + Ω2, where S is the symmetric part
and Ω is the antisymmetric part of the velocity gradient tensor. The

method and its outcome in describing vortical structures in bifur-
cating networks are described in Ref. 2. The method is used here for
the purpose of double-checking, but the outcome is not included in
Figs. 5–8 to keep them less cluttered.

Although the branching network considered in the present
study comprises generations G0 to G5, Figs. 5–8 show the cross-
sectional velocity distribution in the branches up to generation G3
only. While the method of representation in the above-mentioned
figures allows the simultaneous discussion of the primary and sec-
ondary flow patterns, it is difficult to include results for generations
G4 and G5 (which would require the inclusion of 24 more cross-
sectional diagrams: 8 for G4 branches and 16 for G5 branches).
Hence, we have included the three-dimensional vector plots of
velocity at the end planes of branches of generations G0 to G5 in
the following four figures which provide complementary informa-
tion regarding the flow structure. The colors of the vectors represent
the magnitude of velocity, while the direction is borne by the ori-
entation of the vectors themselves. It is to be noted that the lengths
of the vectors do not signify the actual velocity magnitude but are
suitably adjusted to avoid overlapping in the diagram.

Figure 9 shows the velocity vector plots at the end planes of
branches of generations G0-G5 at t = T/4 (peak inspiration). At this
instant, the flow is entirely inspiratory throughout the network with
no flow reversal (expiratory flow) in any branch. As discussed in the
context of Fig. 5, the velocity distributions at all the planes in Fig. 9
show a skewed nature with the maximum velocity shifted toward the
inner edge of the preceding bifurcation module. The velocity distri-
butions at most of the cross-sectional planes shown in Fig. 9 show a
single peak. It is also found that the average (and maximum) veloc-
ity is greatest along the path G0B1-G1B1-G2B2-G3B3-G4B6-G5B11
for the G0-G5 network considered in the present work. On the other
hand, the average (and maximum) velocity is the smallest along the
path G0B1-G1B1-G2B1-G3B1-G4B1-G5B1. Along the maximum
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FIG. 9. The vectors of velocity at selected cross-sectional
planes showing the three-dimensional evolution of the flow
field at peak inspiration; in-plane configuration.

flow path, the nonuniformity in the cross-sectional velocity distri-
bution is found to be the greatest at plane G1P1, and it decreases
slowly as the cross-sectional area in the individual branches become
smaller down the generations.

The velocity vectors at the end planes of the branches of gen-
erations G0-G5 at t = T/2 (end of inspiration/beginning of expira-
tion) are shown in Fig. 10. The average (and maximum) velocities
decrease from generation G0 to G5. The magnitudes of velocity at
this instant of the breathing cycle are significantly smaller than those
at peak inspiration. As discussed in the context of Fig. 6, both inspi-
ratory and expiratory flows exist at this instant of the breathing cycle.
The velocity field at all the cross-sectional planes shown in Fig. 10 are
characterized by a region of inspiratory flow which is located near
the wall aligned with the inner edge of the preceding bifurcation,
and expiratory flow surrounding the inspiratory flow region on all

sides. Since this figure corresponds to end of inspiration/beginning
of expiration (t = T/2), the inspiratory flow prevails in those regions
where the velocity magnitude was significant during the inspiratory
phase, while expiratory flow develops in regions where the velocity
was small during inspiration. Thus, the simultaneous existence of
inspiratory and expiratory flow may be attributed to the effects of
flow inertia.

Figure 11 shows the velocity vectors at t = 3T/4 (peak expira-
tion). The cross-sectional velocity distributions in branches of all
the generations appear to be more symmetric as compared to that
observed for inspiratory flow (Fig. 9). Moreover, the differences
between the velocity distributions in the branches of a particular
generation in Fig. 11 are also considerably smaller than that dur-
ing peak inspiration, thus indicating that the degree of mass-flow
asymmetry1 is smaller during peak expiration than that at peak

FIG. 10. The vectors of velocity at selected cross-sectional
planes showing the three-dimensional evolution of the flow
field at the end of inspiration; in-plane configuration.
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FIG. 11. The vectors of velocity at selected cross-sectional
planes showing the three-dimensional evolution of the flow
field at peak expiration; in-plane configuration.

inspiration. This may be attributed to the changed geometry of the
flow path during inspiration and expiration. During inspiration, as
the flow traverses a bifurcation module joining a mother branch
(generation Gn) to its two daughter branches (generation Gn + 1),
the curvature in the flow path is such that the maximum cross-
sectional velocity is shifted toward the inner edge of the bifurcation
module in both daughter branches. This skewed velocity distribution
in the daughter branches leads to asymmetric mass-flow distribu-
tion among the downstream branches of the daughters. On the other
hand, during expiration, as the flow traverses a bifurcation module
joining two branches of generation Gn + 1 to a branch of genera-
tion Gn, the curvature of the flow path pushes the maximum velocity
toward the center of the cross section in the Gn branch. This results
in more symmetric velocity distribution in the Gn branch leading to
a reduction in the asymmetry in the mass flow distribution among

the downstream (Gn − 1) branches. An interesting observation that
may be made in Fig. 11 is that the velocity distributions at most of
the planes show four central peaks (which merge along the straight
length of a branch to give a plateaulike distribution) as compared
to the single peak occurring during the inspiratory phase. This may
again be attributed to the joining of the two fluid streams at each
bifurcation module during expiration as opposed to the division into
two streams during inspiration.

Figure 12 shows the velocity vectors on specified planes at
t = T (end of expiration/beginning of inspiration). The magni-
tudes of velocity at this instant of the breathing cycle are signif-
icantly smaller than that at peak expiration. As discussed in the
context of Fig. 8, both inspiratory and expiratory flows exist at this
instant of the breathing cycle. The velocity field at all the cross-
sectional planes shown in Fig. 12 are characterized by a region of

FIG. 12. The vectors of velocity at selected cross-sectional
planes showing the three-dimensional evolution of the flow
field at the end of expiration; in-plane configuration.
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expiratory flow which is located near the center of the cross sec-
tion, and inspiratory flow surrounding the expiratory flow region.
Since this figure corresponds to end of expiration/beginning of
inspiration (t = T), the expiratory flow prevails in those regions
where the velocity magnitude was significant during the expiratory
phase, while inspiratory flow develops in regions where the veloc-
ity was small during expiration. Thus, the simultaneous existence
of inspiratory and expiratory flow may be attributed to flow inertial
effects.

A comparison of Figs. 10 and 12 show that bidirectional flow
exists at both time instants t = T/2 and t = T, but there are differences
in the details of the velocity distribution. At t = T/2, one inspira-
tory peak and one expiratory peak are observed at a cross section. At
t = T, two expiratory peaks and two inspiratory peaks are observed.
This difference is the manifestation of different degrees of cross-
sectional flow asymmetry developed in the respective preceding part
of the cycle.

2. Results for the out-of-plane configuration
In this section, we present the evolution of the velocity field

in the out-of-plane configuration of the branching network. The
velocity contours and vectors are located at similar locations in the
branching network as was presented in Sec. IV A 1 to make com-
parisons easier. The adopted representational convention is also
similar to that used in Sec. IV A 1; the positive primary veloc-
ity indicates that the flow is toward the reader and the down-
stream bifurcation ridge would appear as a vertical line in the
diagram.

Figure 13 shows the flow field at the end planes of the branches
of generations G0-G3 at peak inspiration (t = T/4). The vectors of
secondary velocity are superposed on the contours of primary veloc-
ity at the selected cross-sectional planes. The instantaneous value
of the Reynolds number at t = T/4 is 1522. The primary velocity

contours as well as the secondary flow pattern at plane G0P1 are
identical with those found for in-plane configuration (Fig. 5). The
flow structures at G1P1 are also qualitatively same as was found in
Fig. 5 but appear rotated through 90○ due to the adopted represen-
tational convention. While the velocity contours at planes G2P1 and
G2P2 were found to be different from one another (Fig. 5) for the
in-plane configuration, it is found in Fig. 13 that the same are mirror
images of one another for the out-of-plane configuration. This is due
to the fact that the 90○ rotation of successive flow units1 in the out-
of-plane configuration leads to symmetry of the velocity distribution
at G1P1 and G1P2 about their downstream bifurcation ridges; as a
consequence, the flow structures at G2P1 and G2P3 are identical,
those at G2P2 and G2P4 are identical, while the flow structures at
G2P1 and G2P2 (and those at G2P3 and G2P4) are mirror images
to one another. However, unlike what happens for in-plane counter-
parts, the velocity fields at any of the four planes (G2P1, G2P2, G2P3,
G2P4) in out-of-plane configuration do not possess any line of sym-
metry, thus indicating that the velocity fields in all of their respective
downstream branches are different from one another. Hence, the
primary velocity contours at planes G3P1 and G3P2 in Fig. 13 are not
only different from one another but also possess no line of symmetry
in the cross section. The velocity contours at G2P1 and G2P2 being
mirror images to one another, the velocity contours at G3P1 and
G3P4, and those at G3P2 and G3P3 are, respectively, mirror images
of one another.

While the secondary flow pattern at the end planes of the G2
branches were characterized by two pairs of vortices2 for the in-
plane configuration (Fig. 5), it is observed in Fig. 13 that plane G2P1
(and G2P2) shows the presence of three vortices. The secondary flow
at the end planes of the G3 branches again show the existence of
two vortices. These observations are in-line with those reported in
Ref. 2 for steady inspiratory flow in the same branching network. As
in the case of Figs. 5–8, the positions of the vortices in Figs. 13–16 are

FIG. 13. Distribution of primary and secondary velocities at
the specified planes in branches of generations G0-G3 at
peak inspiration for out-of-plane configuration. (Vectors indi-
cate secondary velocity while the contours show magnitude
of primary velocity.)
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FIG. 14. Distribution of primary and secondary velocities
at the specified planes in branches of generations G0-
G3 at the end of inspiration for out-of-plane configura-
tion. (Vectors indicate secondary velocity while the contours
show magnitude of primary velocity. The closed curves
are painstakingly constructed through postprocessing to
clearly demarcate two regions with opposite directions of
primary velocity.)

confirmed by using the λ2 criterion in addition to a visual inspection
of the secondary flow patterns at the cross section.

Figure 14 shows the velocity fields at the end planes of
the branches of generations G0-G3 at t = T/2 (end of inspi-
ration/beginning of expiration). As mentioned previously, nega-
tive values of the primary velocity indicate expiratory flow. Thus,
Fig. 14 shows that at t = T/2, the flow in the branches of gener-
ations G0-G3 comprise both inspiratory and expiratory flows. It
is to be appreciated that the prescribed volume flow rate at the

computational boundary at this time instant of the cycle is zero and
thus the nonuniform flow structures seen in Fig. 14 are entirely due
to the unsteady effects. While the magnitude of the primary velocity
at this instant of the breathing cycle is small throughout the network,
the inspiratory and expiratory flow velocities are of the same order.
The locus of change of sign of the primary velocity, which demar-
cates the inspiratory flow from the expiratory flow, has been indi-
cated in each plot. The range of velocity magnitude (negative to
positive) at t = T/2 is the greatest in G0 and its value is progressively

FIG. 15. Distribution of primary and secondary velocities at
the specified planes in branches of generations G0-G3 at
peak expiration for out-of-plane configuration. (Vectors indi-
cate secondary velocity while the contours show magnitude
of primary velocity. The closed curves are painstakingly
constructed through postprocessing to clearly demarcate
two regions with opposite directions of primary velocity.)
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FIG. 16. Distribution of primary and secondary velocities
at the specified planes in branches of generations G0-
G3 at the end of expiration for out-of-plane configuration.
(Vectors indicate secondary velocity while the contours
show magnitude of primary velocity. The closed curves
are painstakingly constructed through postprocessing to
clearly demarcate two regions with opposite directions of
primary velocity.)

lower in G1, G2, G3, and so on. As explained in connection with
Fig. 6, this reduction in range in velocity (i.e., amplitude) is caused
by a reduction in the Womersley number down the generations.

A comparison of Figs. 6 and 14 shows that the flow field is
almost identical for the in-plane and out-of-plane configurations up
to the end plane of branches of generation G1. Positive velocities
(i.e., inspiratory flow) are observed in those regions of the cross sec-
tion where the primary velocity was high during inspiration. On the
other hand, those regions in the cross sections which showed low
velocities during inspiration are characterized by negative velocities
at the time instant t = T/2 (i.e., at the end of inspiration). Thus,
the reversal of flow direction from inspiratory to expiratory may
be attributed to the effects of flow inertia. Although the velocity
contours at the end planes of the G2 and G3 branches for the out-
of-plane configuration are significantly different from those for the
in-plane arrangement of branches, the same generic trend of positive
velocities in regions where the velocity was high during inspiration
holds true there as well.

The secondary flow patterns at planes G1P1 in Fig. 14 are char-
acterized by Dean-type circulation.2 However, the secondary flow
in branches of generations G2 and G3 show a single vortex in the
cross section. This is in contrast to the existence of a pair of vor-
tices at all these locations for the in-plane configuration (Fig. 6). It is
interesting to note that, for the out-of-plane configuration, the three-
and two-vortex systems in the G2 and G3 branches, respectively, at
peak inspiration (t = T/4) are replaced by the relatively less com-
plex single vortex system at the end of inspiration (t = T/2). This
may be attributed to the significantly smaller velocities at t = T/2 as
compared to that at t = T/4 (peak inspiration).

Figure 15 shows the velocity fields at t = 3T/4 (peak expira-
tion). At this time instant, the flow predominantly occurs in the
direction G5-G0. The velocity fields presented in Fig. 15 for the out-
of-plane configuration show significant qualitative and quantitative

differences from those in Fig. 7 for the in-plane configuration. The
primary velocity contours at the end planes of G2 and G3 branches
for the out-of-plane configuration (Fig. 15) show a cross-shaped
region of high expiratory velocity in the center of the cross section
as compared to the relatively larger elongated regions of high veloc-
ity observed for the in-plane configuration (Fig. 7). Figure 15 shows
that the patterns of secondary flow at G1P1 for the out-of-plane
configuration comprises four vortices as compared to the eight vor-
tices observed at the same location for the in-plane configuration.
Although regions of oppositely directed (inspiratory) flow of rela-
tively small magnitudes are seen at peak expiration in the branches
of generations G2-G0 of the out-of-plane configuration as was found
for the in-plane configuration, their extents are appreciably differ-
ent in the two cases. (No bidirectional flow is observed at this time
instant in generations G3, G4, or G5. There is no bidirectional flow
at peak expiration in the pipe solution of Womersley.18)

While the cross-sectional distribution of the primary velocity
at the end planes of the branches of generations G1-G3 for the out-
plane configuration show significant asymmetry at peak inspiration
(Fig. 13), peak expiration (Fig. 15) is characterized by more symmet-
ric velocity distributions. Such reduced asymmetry in the velocity
contours during expiration was also observed in Fig. 7 for the in-
plane configuration. This reduced asymmetry in the cross-sectional
flow field thus displays the fundamental difference between the fluid
dynamics of successively bifurcating flow and that of successively
combinatory flow.

The velocity fields at the end planes of the branches of gener-
ations G0-G3 at t = T (end of expiration/beginning of inspiration)
are shown in Fig. 16. As in Fig. 14 (t = T/2), the flow in the branches
of generations G0-G3 at t = T (Fig. 16) are characterized by bi-
directional flows, the magnitudes of primary velocity in the two
directions being of similar strengths. As explained previously, the
nonuniform flow structures seen in Fig. 16 are entirely due to the
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unsteady effects since a steady flow solution with the same bound-
ary condition would have resulted in zero velocity everywhere in the
flow field. A comparison of Figs. 14 and 16 shows that the distribu-
tion of the primary velocity over the cross section is quite different
at the two time instants. While the inspiratory flow occurred in
the central region with expiratory flow in the peripheral regions at
t = T/2, the inspiratory flow is restricted to the peripheral regions
while the expiratory flow occupies central regions at t = T. This may
be attributed to the effects of inertia of the flow. At the end of inspi-
ration (t = T/2), the flow in the central regions of the cross section
is dominated by the inertia of inspiratory flow, while that near the
walls begin to show expiratory flow features; the reverse happens
at the end of expiration (t = T). The range of velocity magnitude
(negative to positive) at t = T is the greatest in G0 and its value is
progressively lower in G1, G2, G3 and so on. As explained previ-
ously, this reduction in range in velocity (i.e., amplitude) is caused
by a reduction in Womersley number down the generations. The
secondary flow patterns at all the cross-sectional planes shown in
Fig. 16 for t = T are characterized by four vortices, similar to that
observed at peak expiration. Thus, the secondary flow field is related
to the secondary flow structure occurring in the preceding part of the
cycle.

While the cross-sectional velocity distribution at different loca-
tion in generations G0-G3 of the out-of-plane configuration were
shown in Figs. 13–16, the following four figures show the three-
dimensional evolution of the velocity field in the G0-G5 network
during a breathing cycle. The colors represent the magnitude of
velocity, while the direction is borne by the orientation of the vectors
themselves. These three-dimensional vector plots provide comple-
mentary information regarding the flow structures which were not
revealed in Figs. 13–16. Only this information is presented below for
the sake of brevity.

Figure 17 shows the velocity vector plots at the end planes
of the branches of generations G1-G5 at t = T/4 (peak inspi-
ration). A comparison of Figs. 17 and 9 shows that at peak
inspiration, the nonuniformity of flow distribution among the
branches of a particular generation is significantly smaller for the

out-of-plane configuration as compared to that for the in-plane
configuration.

The velocity vectors at the end planes of the branches of gen-
erations G1-G5 at t = T/2 (end of inspiration/beginning of expira-
tion) are shown in Fig. 18. The simultaneous existence of inspira-
tory and expiratory flow may be attributed to flow inertial effects,
as explained previously. The amplitude of velocity variation is the
greatest in G0 and its value is progressively lower in G1, G2, G3,
and so on. This reduction is caused by a reduction in Womersley
number down the generations. Figure 18 shows that the nonunifor-
mity in flow distribution among the branches of generation G5 is
small, with the region of inspiratory flow (positive primary veloc-
ity) shifting toward the center of the cross section as one traverses
form G3 to G5. A comparison of Figs. 10 and 18 shows that although
the flow field is almost unaffected by the configuration of branches
up to the end plane of generation G1, the nonuniformity in the
distribution of flow among the branches of a particular generation
is significantly reduced in the out-of-plane configuration beyond
generation G1.

Figure 19 shows the velocity vectors at the end planes of the
branches of generations G1-G5 at t = 3T/4 (peak expiration) for the
out-of-plane configuration. The present computation reveals that
the velocity distributions have four peaks in G0, four in G1, two
peaks (though not well-defined) in G2, followed by a single peak in
generation G3 onward. This variation is in contrast to the existence
of a single peak in all generations at peak inspiration (for both in-
plane and out-of-plane configurations), and to the existence of four
peaks (which merge along the straight length of a branch to give a
plateaulike distribution) in all generations at peak expiration for the
in-plane configuration (Fig. 11).

Figure 20 shows the velocity vectors on the end planes of
branches of generations G1-G5 at t = T (end of expiration/beginning
of inspiration). The simultaneous existence of inspiratory and expi-
ratory flow may be attributed to flow inertial effects, as explained
previously. The amplitude of velocity variation is the greatest in
G0 and its value is progressively lower in G1, G2, G3 and so
on. This reduction is caused by a reduction in the Womersley

FIG. 17. The vectors of velocity at selected cross-sectional
planes showing the three-dimensional evolution of the flow
field at peak inspiration; out-of-plane configuration.
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FIG. 18. The vectors of velocity at selected cross-sectional
planes showing the three-dimensional evolution of the flow
field at the end of inspiration; out-of-plane configuration.

number down the generations. It is interesting to note that the level
of nonuniformity in the flow distribution among the branches of
a particular generation is much smaller at the end of expiration
(Fig. 20) as compared to that at the end of inspiration (Fig. 18).
This may be attributed to the smaller asymmetry in the flow distri-
bution during the expiratory phase as compared to that during the
inspiratory phase.

The present computations reveal that bidirectional flow exists
at both time instants t = T/2 and t = T, but there are differences in the
details of the velocity distribution. At t = T/2, one inspiratory peak
and one expiratory peak are observed at a cross section. At t = T, two
expiratory peaks and two inspiratory peaks are observed, though all
peaks are not well-defined. This difference is the manifestation of
different degrees of cross-sectional flow asymmetry developed in the
respective preceding part of the cycle.

B. Temporal evolution of the flow field: Quantification
of “unsteady effects”

Until now, we have discussed about the evolution of the veloc-
ity field as the flow traverses from generation G0 to G5 (during
inspiration) or from G5 to G0 (during expiration) at some partic-
ular instants in the breathing cycle. Now, we focus on the temporal
evolution of the flow field at a fixed location in the branching net-
work during a complete breathing cycle. Results for the in-plane
configuration only are reported below to save space. In the present
study, we have considered a breathing rate of 12/min which corre-
sponds to a breathing cycle time period (T) of 5 s. We have carefully
analyzed the data of a breathing cycle at intervals of T/10 s, but
presented the data only at t = T/10, t = 4T/10, t = 5T/10 = T/2,
t = 6T/10, t = 9T/10, and t = 10T/10 = T in Figs. 21 and 22 to keep

FIG. 19. The vectors of velocity at selected cross-sectional
planes showing the three-dimensional evolution of the flow
field at peak expiration; out-of-plane configuration.
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FIG. 20. The vectors of velocity at selected cross-sectional
planes showing the three-dimensional evolution of the flow
field at the end of expiration; out-of-plane configuration.

them uncluttered. Additionally, the velocity data at peak inspira-
tion (t = T/4) and peak expiration (t = 3T/4) are included. In the
inspiratory phase of the breathing cycle, the flow at plane G0S1 accel-
erates during t = 0 to t = T/4 (peak inspiration) and decelerates from
t = T/4 to t = T/2 (Fig. 3). Thus, although the magnitudes of veloc-
ity at the boundary of the first generation (G0S1) of the network at
t = T/10 and at t = 4T/10 are equal, the flow at G0S1 is accelerating
at t = T/10, while it is decelerating at t = 4T/10. Again, in the expi-
ratory phase, the flow accelerates during t = T/2 to t = 3T/4 (peak
expiration) and decelerates from t = 3T/4 to t = T.

FIG. 21. Variation of the primary velocity at plane G1P1 along the diameter AB
which lies on the meridional plane at different time instants during the inspiratory
phase; in-plane configuration.

In addition to the unsteady simulation covering the entire
breathing cycle, separate steady state solutions are run at each
selected time instant (with the same boundary condition at G0S1 at
the same time instant as is employed in the unsteady simulation) in
order to determine by what extent the unsteady solutions differ from
their steady flow counterparts. Figure 21 shows the variation of the
primary velocity vP along a diameter lying on the meridional plane
at the plane G1P1. The primary velocity during the inspiratory phase
shows a skewed nature with the maximum shifted toward the inner
edge of the preceding bifurcation. The unsteady and steady solutions
at t = T/4 nearly coincide thus leading to the conclusion that the
quasisteady approximation is valid at peak inspiration. Although
not plotted, the velocity profiles at t = 2T/10 and t = 3T/10 (when the

FIG. 22. Variation of the primary velocity at plane G1P1 along the diameter AB
which lies on the meridional plane during the expiratory phase and at instants of
changeover (t = T /2, t = T); in-plane configuration.
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prescribed velocity at the boundary G0S1 are equal) nearly overlap
indicating that unsteady effects are limited near the peak inspiration
point (t = T/4). Similarly, the time instants t = T/10 and t = 4T/10
are selected such that the magnitudes of velocity at the G0S1 at these
time instants are equal, and one instant falls within the accelerat-
ing part and the other instant falls within the decelerating part of
inspiratory flow. The two steady solutions at these two instants are
identical since the boundary condition remains the same. Figure 21
shows that there are considerable differences between the unsteady
solution at t = T/10, unsteady solution at t = 4T/10 and the common
steady solution. These (asymmetric) differences signify a method of
quantification of the unsteady flow effect in a branching network.
According to the theories of Sexl,15 Lambossy,17 and Womersley18

for the oscillating fully developed flow in a pipe, velocity contours
at any time instant are concentric circles and the above-mentioned
unsteady effect is axisymmetric (i.e., not a function of the cylindri-
cal coordinate θ). This symmetry in space is destroyed in the present
solutions, the nonuniformity displayed in Figs. 5, 6, 13, and 14 bear-
ing testimony to that. Thus, the asymmetry in the unsteady effects
during inspiration is peculiar to the oscillating flow in a branched
network.

Figure 22 shows that the primary velocity during the expira-
tory phase possesses an M-shaped profile which is approximately
symmetric about the center of line AB. The unsteady solution and
the steady solution nearly coincide at t = 3T/4, thus leading to the
conclusion that the quasisteady approximation is valid at peak expi-
ration. It is further seen that there is little difference between the
unsteady solution at t = 6T/10, the unsteady solution at t = 9T/10
and the common steady solution. Similar behavior occurs at other
instants during the expiration phase. It is thus concluded that the
unsteady effects are not significant during the entire duration of
expiration through an elaborate network at the Womersley number
of simulation (2.64 at generation G0). This considerable difference
in the unsteady effects during inspiration and that during expiration
is peculiar to the branching network, since, according to the theo-
ries of Sexl,15 Lambossy,17 and Womersley18 for the oscillating fully
developed flow in a pipe, the magnitude of unsteady effect at a time
instant during inspiration is identical to the same at a correspond-
ing time instant during expiration. This symmetry in time is also
destroyed in the present solutions.

Figure 22 also shows the unsteady solutions at t = T/2 and at t
= T. The steady flow solutions at these two instants give zero veloc-
ity everywhere since the prescribed velocity at the boundary G0S1
is zero. Both unsteady solutions consists of bidirectional flow (there
are regions of a cross section where flow occurs in the direction G0
to G5, the flow occurring in the opposite direction, i.e., from G5 to
G0, over the rest of the cross section) as is predicted in the theoreti-
cal work of Sexl,15 Lambossy,17 and Womersley18 for the oscillatory
fully developed flow in a pipe. However, unlike the flow in pipe, the
two unsteady solutions for the branching network, particularly the
solution at t = T/2, are not symmetric with respect to the radius (i.e.,
not axisymmetric) and are not mirror images to one another. Since
the flow structure at an instant is shown to be related to that in the
preceding part of the cycle, the greater symmetry in the profile at
t = T is caused by the greater symmetry found in the expiratory phase
as compared to the inspiratory phase. Since the steady flow solutions
at these two instants would predict no flow at all, it is concluded that
the unsteady effects are at their maximum during the changeover

from expiration to inspiration (t = 0 or t = T) and inspiration to
expiration (t = T/2).

When the flow solution is analyzed along a diameter CD which
is perpendicular to AB shown in Figure 21, it is found that the pri-
mary velocity during both the inspiratory and expiratory phases
shows an M-shaped profile which is approximately symmetric about
the center of CD. The unsteady effects on the velocity profiles along
CD at various instants of the breathing cycle show similar general
behaviors as are discussed above for velocity profiles along AB. The
results of the computation at various other branches are also ana-
lyzed in the same manner as above, though these are not plotted to
save space. It is found that unsteady effects, in the sense described
above, diminish in the direction G0 to G5. This is consistent with the
fact that the local Womersley number diminishes in the direction G0
to G5 with progressively smaller branch diameters.

Figure 23 shows the variation with time of the average veloc-
ity through a particular branch Vbranch. It may be interpreted as
the area-averaged velocity.52,53 When Vbranch is multiplied with the
cross-sectional area of the branch, one obtains the net volume flow
rate through the same branch. Instead of plotting the time vari-
ation of average velocity in all of the 63 branches present in the
network, which will make the figure cluttered, we have selected those
branches in the six generations such that the branches lie either on
the maximum flow path or the minimum flow path at peak inspira-
tion. The maximum flow path consists of the branches G0B1-G1B1-
G2B2-G3B3-G4B6-G5B11. The minimum flow path consists of the
branches G0B1-G1B1-G2B1-G3B1-G4B1-G5B1. It is found that the
difference in Vbranch between the two selected branches of any gen-
eration (G2B2 and G2B1, G3B3 and G3B1, G4B6 and G4B1, and
G5B11 and G5B1) during the inspiratory phase is significant and
the difference increases with increasing generation number (this
is consistent with the variation of δGn described later in Sec. IV
D). The corresponding difference in each generation during the

FIG. 23. Variation of the average velocity in various branches with time; in-plane
configuration.
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expiratory phase is very small. This shows that the mass flow dis-
tribution between various branches of a generation is nearly uni-
form during expiration. During inspiration, Vbranch in a particular
branch in a specific generation depends on two factors—the change
of branch diameter with generation and the asymmetry of mass flow
distribution among the various branches (all of same diameter) of a
particular generation. It is for these two factors that Vbranch in G2B2
and G5B11, and, Vbranch in G2B1 and G1B1 are close during the
inspiratory phase.

C. Spatial evolution of the secondary flow field
at peak inspiration and expiration

In a branching network, the curvature of the flow path in the
bifurcation module, flow division at the bifurcation ridge, and com-
plex change of cross-sectional shape and area as the mother branch
divides into two daughter branches gives rise to a secondary flow
field. In addition to this, the repeated switch-over from clockwise to
anticlockwise curvature and vice versa in the flow path also consid-
erably affect the secondary flow field. A detailed account of the sec-
ondary flow field in a branching network may be found in Ref. 2. The
changes in the secondary flow field across a bifurcation as well as that
across the straight section following a bifurcation were illustrated in
that paper. General qualitative features of secondary flow pattern
at four characteristics time steps of oscillatory flow are discussed
in previous sections of this paper—in Figs. 5–8 for in-plane con-
figuration and in Figs. 13–16 for out-of-plane configuration. In this
section, we compare the evolution of the secondary flow field quan-
titatively during peak inspiration and peak expiration for the two
configurations (in-plane and out-of-plane). It is to be noted that the
positions of the vortices are identified by using the λ2 criterion51 in
addition to a visual inspection of the secondary flow patterns at the

cross section. In addition to the contours and flow patterns, the val-
ues of average secondary velocity vs(≡

√
∫ ∣v⃗s∣2dA/πR2)2 at a cross

section are also quoted to indicate the variation of the secondary flow
strength along the flow direction.

Figure 24 shows the secondary velocity vectors superposed on
the contours of secondary velocity magnitude at plane G0P1 and
those at equidistant planes between the start plane (G1S1) and end
plane (G1P1) of G1B1 for the in-plane configuration. The adopted
representational convention is such that the bifurcation ridge just
downstream of the concerned cross-section appears as a vertical line
in the diagram. During inspiration, the predominant direction of
motion of fluid is from G0 to G2 and the flow divides at each bifurca-
tion module into two streams. For this configuration, the secondary
velocity field is symmetric about a horizontal centerline in the dia-
gram (i.e., the longitudinal symmetry plane1). The characteristics of
the secondary flow field at peak inspiration are qualitatively similar
to those reported in Ref. 2 for steady flow at a comparable Reynolds
number. A comparison of the flow patterns and vs values at planes
G0P1 and G1S1 illustrates the changes caused by the bifurcation
module: a significant increase of secondary flow magnitude, and the
development of Dean-type circulation. As the fluid travels along the
straight portion of branch G1B1, the magnitude of the secondary
velocity (indicated by the quoted values of vs) decreases consider-
ably and the locations of the maximum secondary velocity tend to
shift from a central region to near the top and bottom walls. The
cores of the Dean vortices, on the other hand, tend to shift from
the peripheral regions on the plane G1S1 to more central regions
on the plane G1P1. Similar changes in the secondary flow pattern
are also found (not shown here) to occur across the straight por-
tions of branches G2B1 and G2B2. In spite of these changes, the
basic flow structure (i.e., number of vortices and sense of rotation

FIG. 24. Secondary velocity vectors
superposed on the contours of sec-
ondary velocity magnitude at numerous
cross-sectional planes in branch G1B1
during peak inspiration and peak expira-
tion; in-plane configuration.
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in the vortices) remains unaltered across the straight portion of a
branch.

During expiration, the predominant flow direction is from G2
to G0 and the flow streams from two branches of generation Gn
unite in a branch of generation Gn − 1. It is found in Fig. 24 that
the secondary flow at G1P1 (which is the start plane of G1B1 during
expiration) is characterized by four pairs of vortices and maximum
velocity near the top and bottom walls. As the fluid traverses along
the straight portion from G1P1 to G1S1, the secondary flow strength
decreases up to plane A, and the vortices seem to disappear from
the cross section. The combination of the two streams coming from
G1B1 and G1B2 is felt upstream of the bifurcation module and the
streamlines at plane G1S1 itself are significantly bent, with corre-
sponding increase in the value of vs there, as evidenced in Fig. 24.
This explains the increased intensity of secondary motion directed
away from the inner edge of the bifurcation at G1S1. A comparison
of the secondary flow at G1S1 and G0P1 during expiration shows
that the bifurcation module regenerates vortical secondary motion,
giving rise to four vortices at plane G0P1. However, the magnitude
of vs is smaller at G0P1 as compared to that at G1S1. This may be
understood from the much gentler local curvature of the flow at
G0P1 as compared to that at G1S1.

While Fig. 24 applies to the in-plane configuration, Fig. 25 high-
lights the corresponding scenario for the out-of-plane configuration,
showing the secondary velocity vectors superposed on the contours
of secondary velocity magnitude at planes G0P1, G1S1, G1P1, and
G2S1 during peak inspiration and peak expiration. At peak inspira-
tion, the characteristics of the secondary flow field are qualitatively
similar to those reported in Ref. 2 for steady flow at a comparable
Reynolds number. A comparison between the flow patterns and vs

values (given in Fig. 25) at plane G0P1 and those at G1S1 (and that
between G1P1 and G2S1) illustrates the changes caused by the bifur-
cation module, while the differences between the secondary flow at
planes G1S1 and G1P1 depict the changes across a straight section.
At peak inspiration, the value of vs increases across a bifurcation
module due to the introduction of fresh secondary motion. More-
over, the qualitative nature of the secondary flow pattern may be
altered altogether. As an example, it is observed that the two-vortex
flow pattern at G1P1 changes to a three-vortex pattern at G2S1. On
the other hand, the straight section of a branch only attenuates sec-
ondary flow strength without affecting the qualitative nature of the
vortex pattern.

During peak expiration, the secondary flow pattern in the out-
of-plane configuration (Fig. 15) is characterized by a four-vortex
system at the GnPk planes for branches of generations G0-G3. This
is significantly different from the two or three-vortex secondary flow
patterns observed during peak inspiration in the same branching
network (Fig. 13). Figure 25 shows that the secondary velocity dis-
tributions (i.e., the contours of secondary velocity magnitude) in the
G0-G2 branches are considerably different from those during peak
inspiration. This may be attributed to the location of the selected
cross-sectional planes with respect to the inlet of the network; while
plane G0S1 is the inlet to the network during inspiration, the planes
G5Pk (where k = 1, 2, 3, . . ., 32) are the inlets to the network during
expiration. As an example, during peak inspiration, the flow does not
encounter any bifurcation module up to plane G0P1 and hence only
small values of secondary velocity are found at that plane. On the
other hand, during expiration, the same plane is reached by the flow
after traversing several generations and bifurcation modules and
hence comparatively greater secondary velocities are observed there.

FIG. 25. Secondary velocity vectors
superposed on the contours of sec-
ondary velocity magnitude at selected
cross-sectional planes in generations
G0-G2 during peak inspiration and peak
expiration; out-of-plane configuration.
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In contrast to the observation made for peak inspiration, it is found
that during peak expiration qualitative changes in the secondary flow
pattern may occur along the straight section of a branch (such as the
change of the four-vortex system at G1P1 to a two-vortex pattern at
G1S1).

The effects of the three-dimensional arrangement of the
branches on the secondary flow can be studied by comparing the
solutions for in-plane and out-of-plane configurations. During peak
inspiration, the secondary velocity field is qualitatively similar in
either configuration up to the end plane of the branches of gener-
ation G1. However, from generation G2, the secondary flow pattern
in the out-of-plane configuration (Fig. 13) is significantly different
from that in the in-plane configuration (Fig. 5). For example, the sec-
ondary flow pattern at G2P1 is characterized by a four-vortex system
for the in-plane configuration, whereas a three-vortex flow pattern
is observed at a similar location in the out-of-plane configuration.
It has been established in Ref. 2 that, during peak inspiration, the
secondary flow strength (indicated by vs) is greater in out-of-plane
configuration than that at a corresponding location in in-plane con-
figuration, the difference being appreciable as one focuses attention
to higher generation number Gn. This may be attributed to the more
tortuous flow path in the out-of-plane configuration. Figures 24 and
25 demonstrate that, during peak expiration, this (i.e., the fact that
vs has a greater magnitude in out-of-plane configuration) is true
even at planes G0P1 and G1P1. The secondary velocity contours for
the in-plane configuration in Fig. 24 (for both peak inspiration and
peak expiration) are symmetric about a horizontal centreline in the
diagram. For the out-of-plane configuration, although a line of sym-
metry is observed up to plane G1P1 during peak inspiration, no line
of symmetry exists during peak expiration.

D. Spatial and temporal evolution
of the flow asymmetry

Figure 26 shows the velocity distribution on the meridional
plane (a plane passing through the center of the geometry and

containing the centerlines of all the generations) at peak inspiration
(t = T/4) and peak expiration (t = 3T/4). Inspiratory flow velocities
are considered positive while expiratory flow velocities are consid-
ered negative. As the length of G0B1 is smaller than the entrance
length (corresponding to the Reynolds number for peak inspiration),
the velocity profile is still developing when the first bifurcation is
reached during inspiration. Although the velocity distributions in
branches G1B1 and G1B2 are mirror images of one another, the
combined effects of flow path curvature and flow inertia result in
the velocities becoming skewed with maxima near the inner edges of
the preceding bifurcation.1 As a result of this skewed velocity distri-
bution in the G1 branches, the maximum (and average) velocity in
branch G2B2 is found to be significantly greater than that in branch
G2B1. This characteristic of the mass-flow distribution, whereby
the branch (say, G2B2) aligned with its grandmother (G0B1) shows
greater maximum (and average) velocities than its sister branch
(G2B1), is found to be generically true for all dichotomously branch-
ing networks. Due to the above-mentioned generic flow distribution
characteristic, the maximum (and average) velocity is the greatest
in branch G3B3 (in generation G3), G4B6 (in generation G4) and
G5B11 (in generation G5). Thus, the velocity distribution on the
meridional plane at peak inspiration shows that even for the geo-
metrically symmetric network there exists significant asymmetry in
the mass flow distribution.

The velocity contours on the meridional plane at peak expira-
tion shown in Fig. 26 reveal that the flow distribution at any gen-
eration is much more symmetric as compared to that during inspi-
ration. During expiration, as the flow traverses a bifurcation joining
two branches of generation Gn to a branch of generation Gn − 1,
the curvature of the flow path pushes the maximum velocity toward
the center of the cross-section in the Gn − 1 branch. This results
in more uniform velocity distribution in the Gn − 1 branch lead-
ing to a reduction in the asymmetry in the mass flow distribution
among the branches lying further downstream. Thus, flow division
at a bifurcation during inspiratory flow generates nonuniformity in

FIG. 26. Contours of primary velocity
on the meridional plane (which contains
the centerlines of all the branches) dur-
ing peak inspiration and peak expiration;
in-plane configuration.
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the flow distribution, whereas flow combination at the same bifurca-
tion during expiratory flow tends to increase symmetry in the flow
field. Figure 26 vividly demonstrates this essential irreversibility of
fluid dynamics.

In the branching network considered in the present study,
the total flow area decreases from generation G0 to G3 and then
increases from G3 to G5. Hence, for a given mass flow rate at the
boundary of the first generation, the average velocity is greatest in
generation G3 at both peak inspiration and peak expiration. Due to
the greater symmetry in the mass flow distribution in branches of
a generation during expiration, the maximum velocity during peak
expiration also occurs in generation G3. However, the mass flow
distribution is highly asymmetric during peak inspiration and the
asymmetry grows in downstream generations (see below). As a con-
sequence, the maximum velocity during peak inspiration occurs in
G5—the last generation of the adopted network.

It was shown in Ref. 1 that even though a mother branch divides
to give rise to two identical daughter branches at each bifurcation
of the symmetric network, the mass flow entering the two daugh-
ters at a bifurcation during steady inspiratory flow are unequal from
generation G2 onward for the in-plane configuration and from G3
onward for the out-of-plane configuration. We have therefore plot-
ted the values of ṁG2B1/ṁG2B2, ṁG3B1/ṁG3B2, and ṁG3B3/ṁG3B4 for
the in-plane configuration, and ṁG2B1/ṁG2B2, ṁG3B1/ṁG3B2 for the
out-of-plane configuration at different instants of the breathing cycle
in Fig. 26. The deviation of the ratio of mass-flow rates for two sister
branches from unity quantifies the level of asymmetry in the
mass-flow distribution. It is found that significant asymmetry in
the mass-flow distribution exists during the inspiratory phase
while the mass-flow distribution becomes almost uniform dur-
ing the expiratory phase. Moreover, the asymmetry in the mass-
flow distribution at all-time instants is significantly smaller for the
out-of-plane configuration as compared to that in the in-plane
configuration.

Figure 27 shows that the level of asymmetry for branches G3B3
and G3B4 is greater than that for branches G3B1 and G3B2 in the
in-plane configuration. It was also found that in generation G4,
the level of asymmetry is greatest for branches G4B5 and G4B6. It
has been established1 that during the inspiratory phase, the max-
imum mass-flow rates occur along the path G0B1-G1B1-G2B2-
G3B3-G4B6-G5B11. From this and many other similar considera-
tions, it is concluded that in a particular generation, the greatest level
of asymmetry usually involves that branch which has the maximum
mass-flow rate in that generation.

A new concept called “degree of mass-flow asymmetry” (δGn)
was introduced in Ref. 1 as a simple quantitative measure of the
nonuniformity in the mass flow rates in various branches of a
particular generation. It is defined as follows:

δGn ≡ (ṁGn,max − ṁGn,min)/ṁGn,avg , (6)

where ṁGn,avg = 1
2n

k=2n

∑
k=1

ṁGn,k is the average mass flow rate per

branch in a generation and, ṁGn,max and ṁGn,min are, respectively,
the maximum and minimum mass flow rates in that generation.
Figure 28 shows the evolution of the degree of mass flow asym-
metry (δGn) in successive generations of the G0-G5 network when
the branches are arranged according to the in-plane configuration.

FIG. 27. Temporal variation of the asymmetry in mass-flow distribution among the
branches of generations G2 and G3.

The value of δGn is zero for generation G1 due to the symmetry of
the flow field.1 δGn during the inspiratory phase is about an order
of magnitude greater than that during the expiratory phase. More-
over, δGn increases as the flow traverses from generation G2 to G5

FIG. 28. Spatial evolution of the degree of mass-flow asymmetry with increas-
ing generation number at various instants of the breathing cycle; in-plane
configuration.
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during inspiration, with values close to unity at G5. This indicates
that the difference between the maximum and minimum mass flow
rates is almost equal to the average mass flow rate in generation
G5 during inspiration. Another interesting observation that may be
made from Fig. 28 is that from generation G2 onward, the value
of δGn at peak inspiration is greater than that at other instants of
the inspiratory phase. Moreover, the difference between δGn values
at t = T/10 (acceleration phase) and t = 4T/10 (deceleration phase)
increases down the generations indicating that the unsteady effects
increase down the generations during inspiration. The value of δGn
is found to be significantly smaller during the expiratory phase. As
an example, at generation G5, δGn is about two orders of magnitude
greater during inspiration than that during expiration.

Figure 29 shows the evolution of δGn down the generations
in the out-of-plane configuration of G0-G5 network. δGn ≅ 0 up
to generation G2 owing to the symmetry of the flow field for this
configuration.1 The value of δGn at a particular generation for this
configuration is found to be significantly smaller than that for the in-
plane configuration. As for the in-plane configuration, the value of
δGn is found to be significantly smaller during the expiratory phase.
However, owing to the smaller values of δGn itself for the out-of-
plane configuration, the variation of δGn over a complete breathing
cycle is smaller for this configuration.

E. Effects of Womersley number on the unsteady
flow in 3D branching networks

All solutions up to Sec. IV D correspond to the breathing cycle
at the resting condition in humans (αG0 = 2.64 in the trachea).
However, in many practical cases (physical stress, artificial respira-
tion), the Womersley number (α) might be higher. Various values of
the Womersley number may also be relevant for future engineered

FIG. 29. Spatial evolution of the degree of mass-flow asymmetry with increas-
ing generation number at various instants of the breathing cycle; out-of-plane
configuration.

branching networks. In the case of high frequency oscillatory ven-
tilation (HFOV), a much higher value of frequency f and a much
higher value of tidal volume per unit time (than the normal human
breathing condition) are employed, which would change both Remax
and αG0 simultaneously. In order to obtain additional insight on
the isolated role of the Womersley number on the unsteady fluid
dynamics in a branching network, an additional unsteady simula-
tion is performed at αG0 = 10, keeping the same in-plane geometry
of the branching network, same properties of the fluid and the same
maximum inlet Reynolds number (Remax = 1522). The change in
αG0 is thus achieved in the computation by changing the frequency
f resulting in a time period of T = 0.35 s. Salient aspects of this
additional simulation are given in this section. The use of the same
Remax ensures that the steady solutions at peak inspiration and peak
expiration remain the same as discussed in previous sections.

Figures 30 and 31 confirm that the previous conclusion (made
in Sec. IV B) that the quasisteady approximation is valid at peak
inspiration as well as at peak expiration is valid even at a value
of αG0 as high as 10. A comparison of Fig. 30 with Fig. 21 shows
that the velocity curve at peak inspiration is basically unaltered and
the unsteady effect (the difference between the unsteady solution at
t = T/10 and that at t = 4T/10) is appreciably increased as the Wom-
ersley number αG0 increases from 2.64 to 10. In contrast to the oscil-
lating fully developed flow in a straight pipe,15–18 where the velocity
contours at any time instant are concentric circles and the above-
mentioned unsteady effect is axisymmetric, the spatial asymmetry in
the unsteady effects during inspiration is peculiar to the oscillating
flow in a branched network.

A comparison of Figs. 31 and 22 shows that the increased
value of α leads to greater differences between the unsteady solu-
tion at t = 6T/10, that at t = 9T/10, and their corresponding steady

FIG. 30. Variation of the primary velocity at plane G1P1 along the diameter AB
which lies on the meridional plane at different time instants during the inspiratory
phase for αG0 = 10; in-plane configuration.
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FIG. 31. Variation of the primary velocity at plane G1P1 along the diameter AB
which lies on the meridional plane during the expiratory phase and at instants of
changeover (t = T /2, t = T) for αG0 = 10; in-plane configuration.

solutions. Moreover, bidirectional flow is observed at t = 9T/10
(Fig. 31) whereas flow at the same time instant is unidirectional
at the lower value of the Womersley number (Fig. 22). Thus, it is
concluded that bidirectional flow exists over greater portion of a
cycle as the Womsersley number is increased. However, similar to
the trends at αG0 = 2.64, the unsteady effects during the inspira-
tory phase (Fig. 30) are greater than that during the expiratory phase
(Fig. 31) at αG0 = 10. This considerable difference in the unsteady
effects during inspiration and that during expiration, which is pecu-
liar to the branching network, destroys the temporal symmetry of
the solution prevalent in oscillating pipe flows.

Figure 31 also shows the unsteady solutions at t = T/2 and at
t = T. As explained previously, the flow at these time instants are
solely due to the unsteady effects. As in the case of αG0 = 2.64, bidi-
rectional flow is observed at αG0 = 10. However, a comparison of
Figs. 31 and 22 shows that the magnitudes of the primary velocity
are greatly increased at αG0 = 10, and the velocity distribution at
t = T/2 is highly asymmetric with respect to the radius. Even the
velocity distribution at t = T shows more asymmetry with respect to
radius as compared to that observed at αG0 = 2.64. Thus, the increase
of the Womersley number leads to a considerable increase of flow
velocities and asymmetries during changeover from inspiration to
expiration and vice-versa, where the unsteady effects are at their
maximum.

In Figs. 32 and 33, we have plotted the primary velocity con-
tours and secondary flow patterns at selected cross sections in the
branching network at those time instants of the cycle where the
unsteady effects are maximum (i.e., at t = T/2 and t = T). As
explained previously, the nonuniform flow structure seen in Figs. 32
and 33 is entirely due to the unsteady effects since a steady flow
solution with the same boundary condition would have resulted in
zero velocity everywhere in the flow field. The basic flow features—
viz., the presence of bidirectional primary flow, progressive decrease
of the range of velocity magnitude from G0 to G3, and secondary
flow patterns similar to those occurring in the respective preced-
ing parts of the cycle—are similar to those observed at αG0 = 2.64
(Figs. 6, 8, 14, and 16). However, it is found that the range of
primary velocity magnitude (negative to positive) at αG0 = 10 is
significantly greater than that at αG0 = 2.64. As the Womers-
ley number at G0 is increased from 2.64 to 10, the Womersley
number at generation G3 also increases and this is reflected in
the presence of considerable velocities even at generation G3. The

magnitudes of average secondary velocity vs(≡
√
∫ ∣v⃗s∣2dA/πR2)

at time instants t = T/2 and t = T for the Womersley number

FIG. 32. Distribution of primary and secondary velocities
at the specified planes in branches of generations G0-G3
at the end of inspiration (t = T /2) for αG0 = 10; in-plane
configuration.
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FIG. 33. Distribution of primary and secondary velocities
at the specified planes in branches of generations G0-G3
at the end of expiration (t = T) for αG0 = 10; in-plane
configuration.

αG0 = 10 are also considerably greater than the corresponding values
for αG0 = 2.64.

Figure 34 shows the inter-relationships between the prescribed
oscillation in velocity (VG0S1) and the oscillation in computed static
pressure drop (∆p) across the branching network at two values of
the Womersley number. It is interesting to note that the two curves
for ∆p intersect approximately at peak inspiration (maximum point
in the velocity curve) and at peak expiration (negative maximum in
the velocity curve). We have already shown that at these two points
there is negligible difference between the respective unsteady solu-
tion and steady solution. By virtue of using the same Remax for both

FIG. 34. Inter-relationships between the prescribed oscillation in velocity and the
oscillation in computed static pressure drop across the branching network at two
values of Womersley number.

simulations shown in Fig. 34, the corresponding steady solutions are
the same. This explains why the ∆p curves for different values of αG0
are intersecting approximately at the points of peak inspiration and
peak expiration.

When we constructed the equivalent of Fig. 23 at αG0 = 10, we
found that the figure remained almost the same. We thus conclude
that, for the same maximum inlet Reynolds number, the time vari-
ation of the average velocity through any branch (Vbranch) is almost
independent of the Womersley number αG0. Figure 34, on the other
hand, shows that, for the same VG0S1(t), both the amplitude and
the phase difference of the oscillation in static pressure drop across
the network, ∆p(t), increase with increasing αG0. The oscillations in
velocity and pressure bear similar qualitative inter-relationships in
the analytical formulation of Womersley18 for the oscillating flow
in a pipe. Analytical formulae, however, are not available for an
elaborate 3D branching network, and the inter-relationships have to
be determined either by performing experiments or by conducting
CFD simulations as is done here.

V. CONCLUSION
The present computational study attempts to capture the com-

plex fluid dynamics associated with the oscillatory flow in three-
dimensional branching networks, involving periodic reversal of
the predominant flow direction, through accurate unsteady sim-
ulations of the flow field (with experimental validation of both
steady and unsteady computational results). The geometry of the
network adopted here is based on the first six generations of a
model human bronchial tree comprising 63 straight sections and
31 bifurcation modules. The task is therefore computationally chal-
lenging. Spatial and temporal accuracy of the solution is demon-
strated so that dependable physical conclusions can be made from
the simulations presented. A visual appreciation of the spatial and
temporal evolutions of the three-dimensional velocity field may be
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obtained in Figs. 9–12 for in-plane and Figs. 17–20 for out-of-plane
configurations, contrasting the fluid dynamics in the inspiratory and
expiratory phases and displaying the effects of three-dimensional
arrangement of the same branches on the oscillatory flow struc-
tures. The physical understanding of the fluid dynamics of steady
expiratory flow through an elaborate branching network is taken
to a similar level of fine details that have been previously estab-
lished for steady inspiratory flow in Refs. 1 and 2. The nature
of the unsteady effects is thoroughly discussed in Secs. IV B and
IV E. Although computations are carried out here for a model
bronchial tree, the conclusions and physical understanding emanat-
ing from this study are also applicable to oscillating flow in a future
engineered branching network.

With the help of the present unsteady simulations, the valid-
ity of the frequently used quasisteady assumption is assessed here
(Figs. 21 and 22). It is established that the quasisteady assumption
is approximately valid in the neighborhood of the peak flow rate,
both during inspiration and expiration. However, during inspira-
tion, significant differences in the flow field are possible between
two corresponding instants of accelerating and decelerating parts.
Such differences are smaller during expiration. Unsteady effects are
at their maximum during the changeover from expiration to inspi-
ration (t = 0 or t = T) and inspiration to expiration (t = T/2).
Section IV B describes how the symmetry of the solution with
respect to both space and time—found in the oscillating, fully devel-
oped flow in a pipe—are destroyed in the unsteady effects that occur
in the oscillating flow in a branching network.

The effects of the Womersley number on the unsteady fluid
dynamics in an elaborate branching network (see Figs. 21, 22, 30,
and 31) are established here by performing simulations at two val-
ues of the Womersley number (2.64 and 10 based on the radius of
generation G0), each simulation taking about 1000 h of processor
time on four parallelized i-5 processors. The effects of varying the
Womersley number can also be discerned from either of the two
simulations since its value progressively decreases in the direction
G0-G5, as the radius of the branches decreases. This is reflected,
for example, in the flow solutions at t = T/2 and t = T. The pre-
scribed volume flow rate at these time instants at the computational
boundary is zero; thus, a steady flow solution would give zero veloc-
ity at every point of the computational domain. The nonuniform
flow structures seen in Figs. 6, 8, 10, 12, 14, 16, 18, and 20 are
thus entirely due to the unsteady effects. The progressive decrease
in the amplitude of velocity variation in the direction G0-G5, as seen
in the above-mentioned figures, is due to the decreasing Womers-
ley number. A comparison of Figs. 10 and 12, and that of Figs. 18
and 20, show that at both time instants t = T/2 and t = T, bidirec-
tional flow with almost equal magnitude of velocities in both direc-
tions (with significant secondary motion at a cross section) exists,
but there are differences in the details of the velocity distribution.
During the changeover from expiration to inspiration (t = 0 or
t = T), expiratory flow occurs in the central region within the closed
curve, while inspiratory flow occurs in the peripheral regions. The
reverse flow structure occurs during the changeover from inspira-
tion to expiration (t = T/2). At t = T/2, one inspiratory peak and
one expiratory peak are observed at a cross section. At t = T, two
expiratory peaks and two inspiratory peaks are observed, though all
peaks are not well-defined. This difference is the manifestation of
different degrees of cross-sectional flow asymmetry developed in the

respective preceding part of the cycle. As the Womersley number is
increased, the unsteady effects at all branches increase, and bidirec-
tional flow exists over greater portion of a cycle. However, the time-
variation of the average velocity through any branch is found not
to depend on the Womersley number (for the fixed inlet Reynolds
number).

Significant differences are observed between the velocity fields
during inspiration and expiration (in both configurations), even
though the magnitudes of average velocity at the start-plane of G0B1
(at each corresponding phase) are equal. The velocity distributions
in most of the branches show a single peak during inspiration, with
that peak located near the wall aligned with the inner edge of the
preceding bifurcation (Figs. 5, 9, 13, and 17). During expiration,
the cross-sectional velocity distribution for the in-plane configu-
ration (Fig. 11) is characterized by four centrally located peaks at
the beginning (GnPk) of the straight section of a branch, with the
peaks tending to merge along the straight length to give a plateaulike
velocity distribution toward the end (GnSk) of the straight section.
On the other hand, for the out-of-plane configuration (Fig. 19), the
cross-sectional velocity distribution during expiratory flow is char-
acterized by four peaks in G0, four in G1, two peaks (though not
well-defined) in G2, followed by a single peak in generation G3
onward.

The secondary flow field in both configurations at peak inspi-
ration and peak expiration show qualitatively similar characteris-
tics to their steady-state counterparts. While the secondary velocity
distribution during peak inspiration is similar for the two config-
urations up to the plane G1P1, the effect of the three-dimensional
arrangement becomes appreciable from generation G2 onward. On
the other hand, during peak expiration, the secondary velocity dis-
tributions are different for the two configurations in all genera-
tions. Owing to the more tortuous flow path, the strength of sec-
ondary flow in the out-of-plane configuration (Fig. 25) is greater
than that in the in-plane configuration (Fig. 24). While this is true
for all generations at peak expiration, the secondary flow strength
at peak inspiration is similar for the two configurations up to
plane G1P1 due to identical flow paths from the inlet up to that
plane. At peak inspiration, a bifurcation module alters the qualita-
tive nature of the secondary flow pattern and increases secondary
flow strength, and the straight portion of a branch only attenu-
ates secondary flow strength without affecting the vortex pattern.
On the other hand, during expiration, changes in the vortex pat-
tern occur in the straight portion of a branch, and flow recom-
bination at a bifurcation module regenerates vortical secondary
motion.

The flow field during inspiration for the in-plane configura-
tion is highly asymmetric with nonuniform mass flow distribu-
tion among the branches of a generation even though the adopted
branching network is geometrically symmetric. The asymmetry in
the mass flow distribution during inspiration is significantly lower
for the out-of-plane configuration as compared to its in-plane coun-
terpart. The degree of mass-flow asymmetry during expiration is
about an order of magnitude smaller than that during inspiration for
both configurations. It is concluded that since a bifurcation module
gives rise to flow division during the inspiratory phase, it conse-
quently generates nonuniformity in the flow distribution, whereas
in the same bifurcation module combination of fluid streams takes
place during the expiratory phase, thereby tending to enhance
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symmetry in the flow field. On the other hand, flow at peak
inspiration is unidirectional from G0-G5, while small regions of
oppositely directed flow (i.e., inspiratory flow) of small magnitude
are seen to occur near the walls during peak expiration in gen-
erations G0-G2. Even though the magnitude of prescribed vol-
ume flow rate at the computational boundary is the same at t
= T/4 and t = 3T/4, the stunning visual difference between the flow
structures at the two instants on the meridional plane (shown in
Fig. 26) and on the cross-sectional planes (Fig. 5 vs Fig. 7, Fig. 13
vs Figs. 15, 24, and 25) vividly demonstrates the fundamental dif-
ference between a successively bifurcating flow and a successively
combinatory flow, illustrating the essential irreversibility of fluid
dynamics.
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