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The paper invokes the power of computational fluid dynamics (CFD) for accurate determination of the
detailed thermo-fluid-dynamics of natural convective flow around heated inclined plates, with an exten-
sive experimental validation of the computed heat transfer results. The study provides fundamental
physical insight through a comprehensive understanding of the behaviour of the contours of velocity,
temperature and pressure as a function of inclination angle over the entire range from the vertical
(y = 90°) to the horizontal (y = 0°). In particular, the present study documents, for the first time, quali-
. tative and quantitative behaviour of the lift-off point at which the natural convective boundary layer con-
Natural convection . .. . . . .
Inclined plates verts into a free pl}lme. Similarly, the deFalls of thfe S[.)atlé.ll evolution of the velocity proﬁle and
CFD temperature profile in the plume as a function of the inclination angle of the plate are determined for
the first time. It is shown how the relative importance of indirect pressure difference and direct buoy-
ancy, as mechanisms of natural convection, changes as the inclination angle is gradually altered from
the horizontal to the vertical. Through accurate computation (and ingenious representation) of the veloc-
ity, temperature and pressure fields at small intervals of the inclination angle, the subtle and complex
thermo-fluid-dynamics in near-horizontal configurations is revealed. It is shown that the non-
dimensional lift-off distance changes from 0.5 (middle of the plate) to 0.9816 (nearly the trailing edge)
as the angle of inclination is changed from 0° to 15°. It is established that as the inclination angle is
increased gradually from the horizontal position, the value of average Nusselt number Nu initially
decreases slightly, passes through a minimum point and then onward increases continuously up to the
vertical position of the plate.
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1. Introduction

In a few recent papers the power of computational fluid dynam-
ics (CFD) was invoked to obtain accurate solutions of natural con-
vective flow above a heated horizontal plate [1], natural convection
around a heated vertical plate [2] and mixed convection above a
heated rotating disc [3]. In addition to obtaining accurate compu-
tation of the heat transfer rate, a major objective of these papers
was to establish detailed fundamental physical understanding of
the thermo-fluid-dynamics which is difficult to be obtained
through other methods of investigation such as analytical or exper-
imental. This spirit of CFD investigation is applied in the present
paper to reveal the fine details of the thermo-fluid-dynamics of
natural convective flow around inclined heated plates as the incli-
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nation of the plate is systematically varied from the horizontal to
the vertical configuration. A complementary benefit of the com-
puted results is that the previous work on the subject-matter,
including a recently developed unified integral theory [4], can be
put in perspective.

Natural convective flow is set up in a fluid due to density gradi-
ents that are in turn developed due to temperature differences in
the fluid. Heat transfer by natural convection is an important phys-
ical phenomenon and is often encountered in engineering devices
such as electronic equipments and nuclear reactors. Heated chan-
nel configurations which are cooled by natural convection are
found in electronic cabinets containing circuit cards which are
aligned in vertical or inclined arrays, with channels between each
card [5]. Natural convection flows adjacent to plate-like geometries
are of interest in a number of industrial applications such as the
heat treatment of materials travelling between a feed roll and a
wind-up roll or on conveyor belts, the hot extrusion of steel, the
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Nomenclature

Cp specific heat capacity (J/kg K)

Gry Grashof number defined as p2 gB(Ty — Too)L3 /12

Gry local Grashof number defined as p2 gf(T. — To.)x3/ 142

g acceleration due to gravity (m/s?)

hy local convective heat transfer coefficient (W/m?2K)

h average convective heat transfer coefficient (W/m?K)

k thermal conductivity (W/mK)

L length of plate (m)

Nuy local Nusselt number defined as hyx/k

Nu average Nusselt number defined as hL/k

Pr Prandtl number defined as uc,/k

p static pressure (Pa)

Poo ambient pressure (Pa)

Q total surface heat flux (W)

Qy local surface heat flux along the heated side of plate
(W/m2)

Ra; Rayleigh number defined as Gr;Pr

Ray local Rayleigh number defined as Gr,Pr

T fluid temperature (K)

Tw temperature of the heated surface (K)

Ty ambient temperature (K)

tp thickness of plate (m)

u component of velocity along the plate (m/s)

Vy component of velocity along Y-direction (m/s)

v component of velocity normal to the plate (m/s)

v velocity vector

X horizontal co-ordinate with origin at left (or trailing)
edge of the heated side of the plate

X co-ordinate along the plate with origin at right
(or leading) edge of the heated side of the plate

b4 non-dimensional x coordinate defined as x/L

Xifi_of ~ Non-dimensional lift-off distance

X, in non-dimensional minimum wall heat flux point
vertical co-ordinate with origin at left (or trailing) edge
of the heated side of the plate

y co-ordinate normal to the plate with origin at right
(or leading) edge of the heated side of the plate

y non-dimensional y coordinate defined as y/L

Greek symbols

B coefficient of thermal expansion (/K)
Y inclination angle (degree)

u dynamic viscosity (Pa-s)

0 density (kg/m3)

P density at temperature T,, (kg/m3)

lamination and melt-spinning processes in the extrusion of poly-
mers, etc. [6]. Therefore, the phenomenon of natural convection
adjacent to flat plates and other geometries has been extensively
studied considering different surface thermal conditions.

Similarity analysis of natural convection past a semi-infinite
isothermally heated vertical plate is now a standard element of
all books on convection [7-10]. Laminar natural convection on a
vertical plate has been studied by experiments [11-14], similarity
theory [15] and integral theories [16]. Recently, Guha and Nayek
[2] studied in great detail the thermo-fluid-dynamics of natural
convection past a finite vertical plate. The effect of implementing
the routinely used boundary condition u = 0 at x = 0 in the simi-
larity and integral theories is investigated in Ref. [2], and an impor-
tant discovery has been made. It is found that the streamline
pattern is drastically altered and the Nusselt number is signifi-
cantly affected by the usual boundary condition imposed at
x = 0. (The same boundary condition continues to be assumed in
related theoretical analyses, even in recent publications, without
any introspection.) As compared to the measured values, the sim-
ilarity theory underpredicts the Nusselt number for fluids having
low Prandtl number whereas it overpredicts the Nusselt number
for fluids having high Prandtl number. The CFD results, with proper
boundary conditions, bring the theoretical analysis closer to exper-
iments for both low and high values of the Prandtl number. If x and
y are respectively the co-ordinates along and perpendicular to the
plate, the boundary layer type theories (such as similarity and inte-
gral theories) for natural convection around a semi-infinite,
isothermally heated vertical plate assume that there is no pressure
gradient along the surface (9(p — p.,)/9x = 0) and perpendicular to
the plate (9p/dy = 0), where p is the local static pressure and p__ is
the ambient (quiescent) pressure. (Present computations show
that these two conditions are approximately true in the central
portion of a finite vertical plate.) The convective motion of fluid
is almost entirely caused directly by the buoyancy force.

The direct buoyancy force, however, has no component along
the surface of a horizontal plate. The buoyancy force, on the other
hand, generates a pressure gradient along the surface, which, in
turn, drives the natural convective flow above a heated horizontal
plate. Unlike the boundary layer that forms due to forced convec-

tion, the boundary layer on a horizontal plate due to natural con-
vection is such that dp/9y#0 and Op/Ox cannot be neglected
inside the boundary layer (even when dp_ /dx is zero). The mech-
anism of natural convection above a horizontal plate is thus quite
different from that around a vertical plate, and was termed as ‘indi-
rect natural convection’ by Schlichting and Gersten [10] due to the
nature of its generation. A quantitative mathematical theory of
‘indirect natural convection’ can be discerned from the work of
Guha and Pradhan [4]. Using the Boussinesq approximation, the
y-momentum equation in the boundary layer formulation may
be integrated from a given location y to the edge of boundary layer
(y=0) to give p—p, = —pocgﬁfi(T —T.)dy. This shows that the
static pressure on the surface of a heated horizontal plate is below
the ambient pressure and therefore dp/dy0. Moreover, differenti-
ation of the preceding equation with respect to x shows mathemat-
ically how the buoyancy gives rise to an induced non-zero pressure
gradient along the surface causing ‘indirect natural convection’:

—i % = g/ﬁ%fﬁ(T —T.)dy (for horizontal plate and quiescent
atmosphere 9p,. /0x = 0).

Natural convection over a heated horizontal surface has been
studied using similarity theory [17], integral theory [18] and
experiments [19]. According to Schlichting and Gersten [10], Ste-
wartson [20] was one of the pioneers to show the existence of this
type of boundary layer flow. Stewartson [20] considered an
isothermal semi-infinite flat plate and derived the self-similar
velocity and temperature profiles for the case of both hot and cold
surface facing upwards. Later on, Gill et al. [21] interpreted the
inconsistency of this solution and showed the existence of similar-
ity solution with either hot surface facing upwards or cold surface
facing downwards. A similarity analysis has been performed by
Rotem and Claassen [19] for natural convection over a heated
semi-infinite horizontal plate; the reference also includes experi-
mental data and coloured visualization pictures. Guha and Sen-
gupta [1] presented a comprehensive analysis of the effects of
the finiteness of a heated horizontal plate on the thermo-fluid-
dynamics of natural convection above it. The 3-D CFD simulations
there are coordinated to clearly reveal the separate and combined
effects of three important aspects of finiteness: the presence of
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leading edges, the presence of planform centre and the presence of
physical corners in the planform. The presence of physical corners
is related to several significant aspects of the solution - the conver-
sion of in-plane velocity to out-of-plane velocity near the diago-
nals, the star-like non-uniform distribution of surface heat flux
on heated planforms, the three-dimensionality of the temperature
field and the complex spatial structure of the velocity iso-surfaces.
A generic theoretical correlation for the Nusselt number is mathe-
matically deduced for the averaged surface heat flux for various
rectangular surfaces (with aspect ratio ¢ varying in the range
1 < ¢ < o) over a wide range of Grashof number. It is shown that
two parameters based on the length scales are required to ade-
quately represent the effects of finiteness of a rectangular planform
on the natural convection heat transfer: ® (ratio of surface area
and perimeter) and ¢ (aspect ratio) are used in the deduced corre-

lation [1], Nu* = Cs[¢/(¢ + 1)]"/'°Gr''/>, where the Nusselt number
Nu® and Grashof number Gr* are defined with the generic length
scale ©, and Cs is a function of Prandtl number and is derivable
from the similarity theory. Powerful numerical visualizations [1],
obtained by post-processing of the CFD solutions, capture and pre-
sent the quantitative details of the three-dimensionality of the
velocity and temperature fields in relation to the geometric fea-
tures of a finite planform; the completeness of this knowledge will
be difficult to achieve through any other line of investigation -
experimental or theoretical. Apart from these, several other studies
pertaining to natural convection of different types of fluids (non-
Newtonian fluid, nanofluid, etc.) above horizontal surfaces may
be found in Refs. [22-25].

Many engineering heat transfer applications involve cases of
natural convection where the surface heating conditions are non-
uniform [26]. Solutions for vertical plates with non-uniform sur-
face temperature are given in [8,26]. For horizontal plates, Chen
et al. [27] solved integro-differential equations by finite difference
method for two values of the Prandtl number - 0.7 and 7. In a
recent study [17], similarity theories have been developed for nat-
ural convection in fluids with arbitrary Prandtl number on horizon-
tal surfaces for generic power law variations in wall temperature or
wall heat flux. Another study [ 18] develops the corresponding inte-
gral theories giving explicit analytical expressions for the Nusselt
number as functions of Grashof number, Prandtl number and
indices of non-uniform heating. This reference also contains a good
discussion on the role of Prandtl number in natural convective
flow. Prandtl number determines the ratio of the thickness of
velocity boundary layer (éy) and that of thermal boundary layer
(61). In the case of forced convection heat transfer [7,10,28], it is

found that 6y /6 ~ Pr'/? for fluids with low Prandtl number and

dy/ér ~ Pr'/? for fluids with medium or high Prandtl number.
Therefore, for forced convection, éy < é; when Pr <1, éy ~ dr
when Pr ~ 1, 6y > 6r when Pr > 1. This behaviour is consistent
with the definition of Prandtl number which is defined as the ratio
of the momentum and thermal diffusivities. It may be construed
that this role of Prandtl number remains the same for the case of
natural convection also. A comment made in reference [7,p525]
(“dv =~ 6r only if Pr ~ 1), has drawn our attention to this possible
implication. Ghiaasiaan [29,p278] has also commented that the
relative thickness of the two boundary layers follows the same
trend in forced and natural convection. An opposite qualitative
argument could also be formed that, since the two boundary layers
are coupled in natural convection, they would be of similar thick-
ness at all Prandtl numbers (as may be implied in Fig. 10.16 in
Schlichting & Gersten [10,p281]). In order to settle this issue qual-
itatively and quantitatively, detailed calculations have been per-
formed in Ref. [18] with the help of the recently developed
similarity theory for natural convection on horizontal plates [17].
These calculations establish that, in natural convection, the two

boundary layers are of comparable thickness if Pr < 1 or Pr~ 1.
It is only when the Prandtl number is large (Pr > 1) that the veloc-
ity boundary layer is thicker than the thermal boundary layer. In
natural convection, the velocity boundary layer is never less thick
than the thermal boundary layer since the fluid is set into motion
due to thermal effects (buoyancy). The velocity boundary layer can,
however, become thicker than the thermal boundary layer, when
the Prandtl number is very large, because natural convective veloc-
ity may persist away from the wall due to shear force and inertia
(even when buoyancy is absent).

In contrast to the extensive literature that exists for natural con-
vection over horizontal or vertical surfaces, the literature available
for inclined surfaces is rather limited. Rich [30] performed experi-
ments for the natural convection of air adjacent to isothermal
inclined surfaces with inclination angles in the range
50° < y < 90°. Extensive experiments of natural convective flow of
air around heated inclined plates (15° < y < 90°) were performed
by Sang-Urai [31] to determine the temperature distribution and
convective heat transfer coefficient. Vliet [32] gave experimental
results for the natural convective flow of water past inclined surfaces
(30° < y < 85°) subjected to constant heat flux. Since natural con-
vection on inclined surfaces does not admit similarity solution, they
[30,32] tried to relate the heat transfer results on inclined surfaces to
the limiting cases of vertical and horizontal surfaces by using the
component of gravity along the inclined surface for calculating the
Grashof number in their analysis. A few studies have derived the
non-similar boundary layer equations for natural convection on an
inclined surface and solved those using elaborate numerical tech-
niques [27,33]. Saha et al. [34] performed scaling analysis of natural
convection adjacent to inclined plates subjected to sudden and ramp
heating boundary conditions. Corcione et al. [35] considered natural
convection oninclined plates where both sides of the plate are main-
tained at the same temperature. The finest grid structure in this
study was 100 x 400, and the physically interesting (and computa-
tionally challenging) range of near-horizontal configurations
(0° < y < 15°) were not considered.

While it has been possible to develop self-similarity theory for
vertical plate (y = 90°) and horizontal plate (y = 0°), the flow solu-
tions for all other inclination angles are found to be non-similar.
Similarity theories show that the Nusselt number varies as the
one-fourth power of Grashof number for natural convection on

an isothermal vertical surface (Nuy  Grl/*) while it varies as the

one-fifth power of Grashof number (Nu,  Grl/®) for isothermal
horizontal surfaces. Since the natural convection mechanisms for
both vertical and horizontal configurations are operative in case
of inclined surfaces, the development of a closed-form solution
for the Nusselt number, which will reduce to the known solutions
in the two limits of horizontal and vertical surfaces, is difficult.
Recently, Guha and Pradhan [4] applied the integral method to for-
mulate a set of simple generic equations that represents natural
convection on horizontal, inclined and vertical surfaces subjected
to arbitrary variation in wall temperature or surface heat flux for

a wide range of parameters (10° < Gr < 107, 0.01 < Pr < 100 and
0° <y < 90°). The paper also provides algebraic expressions for
Nusselt number as explicit functions of Grashof number, Prandtl
number and inclination angle for both uniform surface tempera-
ture and uniform surface heat flux. The relations are mathemati-
cally deduced for the special cases of vertical and horizontal
plates, with optimized profiles for velocity and temperature within
the boundary layer. Guha and Pradhan [4] quantified, for the first
time, the relative contribution of the horizontal and vertical mech-
anisms of natural convection on an inclined surface. By integrating
the x -momentum equation in the boundary layer within the limits
y =0 and y = 6, They showed that the momentum integral equa-
tion becomes
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The first term in the RHS of Eq. (1) represents the ‘induced’ or
‘indirect pressure gradient’ producing convective flow parallel

to the solid surface, in which the gradient of gauge
pressure A(p—p..)/ox is deduced as bl
—P~8Bcosy ((Tw -To) 755 (1 —(y—;)“]>, where y is the order of

the polynomial representing the temperature profile within the
boundary layer. The second term in the RHS of Eq. (1) is the com-
ponent of buoyancy force acting along the inclined surface. This is a
measure of the ‘direct buoyancy’ causing convective flow along the
surface. For a horizontal surface (y = 0°), the ‘direct buoyancy’ van-
ishes and the convective flow in the horizontal direction is driven
by the ‘indirect pressure difference’ alone. On the other hand, for a
vertical surface (y=90°), the ‘indirect pressure difference’
vanishes and the flow is driven along the surface only by the ‘direct
buoyancy’. For an inclined surface, both mechanisms are operative.

All integral and similarity analyses are restricted by some
assumptions: (i) the plate is semi-infinite, (ii) the boundary layer
equations are valid, (iii) there is no buoyant plume, (iv) the plate
thickness is negligible, and (v) the flow occurs on only one side
of the plate. In order to ensure self-similarity, sometimes, non-
physical boundary conditions may also be used [2]. Since a practi-
cal plate is of finite length and thickness, and natural convective
flow may be induced on both sides of the plate, with a deviation
from boundary-layer type of flow (such as formation of buoyant
plume), the above assumptions may lead to inability of the solu-
tion in capturing all the intricate features of the temperature and
velocity fields. In the present paper, the power of computational
fluid dynamics (CFD) is invoked to develop a thorough physical
understanding of the interaction of the horizontal and vertical
mechanisms in the natural convective flow adjacent to a finite
inclined plate, with an extensive experimental validation of the
computed heat transfer results. The goal of the present study, how-
ever, is not merely the calculation of the Nusselt number. It pro-
vides fundamental physical insight through a comprehensive
understanding of the behaviour of the contours of velocity, tem-
perature and pressure as a function of inclination angle over the
entire range from the vertical (y = 90°) to the horizontal (y = 0°).
In particular, the present study documents, for the first time, qual-
itative and quantitative behaviour of the lift-off point at which the
natural convective boundary layer converts into a free plume. The
subtle and complex fluid dynamics and heat transfer in the range
0° < y < 15° are revealed.

A systematic method is employed for all CFD simulations. The
actual quantitative dependence of the fluid dynamics and heat
transfer on the inclination angle has been determined here from
a large number of separate computational fluid dynamic (CFD)
simulations, each run to a high degree of convergence (the 'scaled’
residual for all conserved variables is set as 10~® which is consid-
erably smaller than what is normally set in much of the reported
CFD work). A large number of grid points (up to about 0.9 million)
and double precision arithmetic are used to obtain high precision
of the computed results. Great care is taken here to ensure grid
independence and domain independence of the presented solu-
tions. Moreover, second order accurate discretization schemes
are used. This comprehensiveness and precision have helped us
to formulate generic principles and identify subtle physical
mechanisms.

2. Mathematical formulation

The present study considers laminar natural convective flow
around a heated plate inclined at an angle y to the horizontal
(Fig. 1). The Navier-Stokes equations expressed in a Cartesian coor-
dinate system are the governing equations for the above-
mentioned flow system and are given below:

M e
S+ V07 =0 )

9T 5 (o) zﬁ(liﬁT) + @ )
ot Cp

~

In Eqgs. (2)-(4), © denotes the velocity vector, p is the static pres-
sure and T is the temperature of the fluid. p, u, ¢, and k are respec-
tively the density, dynamic viscosity, specific heat capacity at
constant pressure and thermal conductivity of the fluid. g is the
gravity vector. ® in Eq. (4) represents the viscous dissipation term
which is usually small [36] for natural convection and hence, is
neglected in the present study. The final steady-state is obtained
as the limiting converged solution of an unsteady process (i.e.
when the unsteady terms in Eqs. (2)-(4) tend to zero). All the
thermo-physical properties of the fluid like dynamic viscosity,
specific heat capacity and thermal conductivity, except the density
in the body force term (last term on right hand side of Eq. (3)), are
considered to be constant. The Boussinesq approximation, which
considers a linear variation of density with temperature rise, is
adopted here for the variation of density in the body force term.
According to the Boussinesq approximation,

p =P [l =BT —Tx)] )

where £ is the thermal expansion coefficient of the fluid, T, and p__
are respectively the temperature and density of the quiescent fluid
far away from the heated plate.

A two-dimensional analysis is performed here for which the
width of the plate perpendicular to the plane of the paper is
assumed infinite. The x -coordinate is taken along the plate and
the y-coordinate is measured normal to the plate (Fig. 1). The ori-
gin of the co-ordinate system is taken at point O which is the low-
est point on the heated surface (right-most point for horizontal
configuration). The velocity component along the x-direction
(along the plate) is u. The velocity component along the y-
direction (normal to the plate, pointing away from the plate on
the heated side of the plate) is ». It is to be noted that, with respect
to any globally fixed co-ordinate system, the co-ordinate axes x

IT=T,
vertical
1

inclined plate

(left edge)
. (right edge)
horizontal 0O

Fig. 1. A physical model and coordinate system for the analysis of natural
convection around an isothermally heated inclined plate.
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and y (and hence u and v) rotate with the plate as its inclination is
varied. Gravity g acts vertically downwards, which is in the nega-
tive y-direction for the horizontal plate orientation (y = 0°).

The heat transfer results in the study of natural convection adja-
cent to a flat plate are usually presented in terms of the Nusselt
number (Nu) or the convective heat transfer coefficient (h). The
local heat flux at any position (x) along the plate is computed using
the following expression:

g =k (g;)yzo (6)

The local convection heat transfer coefficient h, is given by:

Ay
hy = —2—— 7
X (TW _ Toc) ( )
The local Nusselt number (Nu,) is evaluated from the local con-
vective heat transfer coefficient (hy) according to the following
expression:
hyx
Nuy = % (8)
where x is the distance along the plate from the leading (right) edge
and k is the thermal conductivity of the fluid. The average Nusselt
number (Nu) is evaluated from the following expression:
— hL
Nu = T 9)
where L is the length of the plate and h is the average convective
heat transfer coefficient that is calculated from h, using the follow-
ing expression:

_ 1 L
h:—/hxdx (10)
L Jo

Taking cue from previous studies for natural convective flow,
we define the following dimensionless parameters:
Grashof number:

2 _ 3
Prandtl number:
Pr = % (12)

Rayleigh number:

P28B(Tw — To)cpl?

Ra; = GrPr = 1k

(13)

3. Computational fluid dynamic simulations

The governing equations for natural convective flow (Egs. (2)-
(4)) around an inclined plate are solved using a commercial
finite-volume based CFD solver Fluent [37]. Two-dimensional sim-
ulations are performed with the assumption that the dimension of
the plate in the direction perpendicular to the plane shown in Fig. 1
is infinitely large. A structured mesh is constructed for the chosen
computational domain using ANSYS Meshing and a systematic grid
independence study is performed.

3.1. Geometry, grid and boundary conditions

A flat plate of length L and thickness tp (= L/100) is considered
in the present study. It is assumed that one side of the plate is
maintained at a temperature T,, (> T.,) while the other three sides
are insulated (i.e. adiabatic condition is maintained there). In their

experiments, Rich [30], Sang-Urai [31] and Vliet [32] used an insu-
lated surface (q,, = 0) for the side of the inclined plate opposite to
the heated side. We have also used the adiabatic (q,, = 0) boundary
condition for that side of the plate. However, there is no explicit
mention of the condition on the two edges along the thickness
(tp) of the plate used in the experiments. We have used the adia-
batic condition there so that it does not affect the total heat trans-
fer from the plate (and hence the Nusselt number calculations).
The no-slip and no-penetration boundary conditions are applied
on all the four sides of the plate. Mathematically, the boundary
conditions for the four sides of the plate may be listed as follows:
Heated side of plate:

Aty=00<x<L:u=v=0,T=T,. (14)
Other three sides of plate:

Atx=0, -tp<y<0:u=v=0,q,=0. (15)

Atx=L, —-tp<y<0:u=v=0,q,=0. (16)

Aty=—-tp,0<x<L:u=v=0,q,=0. (17)

Our previous and present computational experience shows that
a boundary layer also develops along the adiabatic length of the
plate. There is also entrainment of comparable magnitude on the
two sides of the free plume. For these reasons, the plate is located
at the centre of the rectangular computational domain (Fig. 2). For
non-vertical orientations, the isothermal side of the plate is placed
upward.

Fig. 2 shows that the computational domain is notionally
divided into eight sub-domains, viz., S1, S2,..., S8, for having con-
trol over appropriate grid structure and for the ease of future refer-
ence. The “pressure outlet” boundary condition available in Fluent
is applied at the periphery of the overall computational domain. In
Fluent, when the gravitational acceleration is activated in the sim-
ulation of incompressible flow, the static pressure p at a point is re-
defined asp’ =p — p_g -7 [37], where p_ is the ambient density of
the fluid (which is assumed constant), g is the gravitational accel-
eration and 7 is the position vector. The “pressure outlet” boundary
condition feature requires the specification of the re-defined
(gauge) static pressure p’. Since the hydrostatic pressure is already
contained in the modified pressure p/, setting p’ =0 on all the
boundaries of the overall computational domain automatically sets
p =Dp.. there, p being the ambient pressure that varies in the
direction of gravity according to the hydrostatic equation.

Our experience shows that the computational domain must be
selected carefully for accurate simulations of natural convection.
The size of the computational domain is selected (through a
domain independence study described later) such that all flow
variables attain their quiescent values asymptotically. For high
level of precision, a very fine grid structure is adopted after a care-
ful grid independence study (described below). As an example of
the systematic method followed here, Fig. 3 shows the fine grid,
containing 882,616 computational cells, for a vertical plate
(y=90°) and the corresponding contours of the u -velocity at

Gr, = 10° and Pr = 0.7. The position and size of the plate are iden-
tified by a white line in Fig. 3; this also indicates relative size of the
computational domain. The contour plot is physically satisfying as
the above-mentioned criteria of a good flow solution are fulfilled.
For example, it is seen that the u-velocity has asymptotically
reduced to practically zero value long before the left and right
boundaries of the computational domain. Similarly, the u-
velocity is practically zero at the left and right portions of the
top and bottom boundaries. This indicates that the domain is suf-
ficiently large for the fluid to attain quiescent condition at the
domain boundaries. The velocity contour in Fig. 3 also shows that
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Fig. 2. The schematic details of the computational domain for y = 90° used in the present CFD analysis.
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Fig. 3. Fine grid structure and the corresponding velocity contours (for Gr, = 10° and Pr = 0.7) in the computational domain for y = 90°. (The position and size of the plate are
identified by a white line; right hand side is isothermal, other three sides are adiabatic.)

there is only upward entrainment (at comparatively low flux) In the present study, we have considered laminar flow. The fluid
through the bottom boundary. On the top boundary, there exists flow over an inclined plate due to natural convection becomes
both upward efflux (the plume) as well as downward entrainment unstable above a critical value of Ra;. In case of vertical flat plate
of fluid. The main natural convective boundary layer forms on the the critical value of Ra; is 9 x 10° [38,39]. Llyod et al. [40] con-
right side; however, Fig. 3 shows that there is a small movement of ducted experiments on variously shaped (rectangular, circular
the fluid on the left side of the plate as well, as a small fraction of and right-triangular) finite horizontal surfaces from which they
the entrained fluid at the leading edge of the plate spills over to the  concluded that transition from laminar to turbulent flow takes
lgft sid.e. The flow field and the temperature ﬁelFl on the left and place at about GrPr — 8 x 10°. The present theoretical study with
right sides of the plate are not the same (left-right asymmetry).  parametric variation in the inclination angle 7 is conducted at
As the buoyant plume leaves the trailing edge of the plate, it bends
over the plate due to the left-right asymmetry and due to the finite
thickness of the plate.

Gr; = 10° and Pr= 0.7 so that the flow remains laminar above
the plate. The following constant values of the parameters are used
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to obtain the above-mentioned values of the non-dimensional
parameters: Tw=325K, T,=300K p_=1.1614kg/m3,

B=000333K"', ©=332x10"Pa—s, k=0.04773 W/(mK),
¢, = 1007 J/(kgK) and L = 0.1 m. With increasing height from the
trailing (left) edge of the inclined plate, the local Reynolds number
Re, (= p_udé/u) of the buoyant plume created by the heated plate
increases due to fluid entrainment (6 is the local width of the

plume at any x). The value of Re, should not exceed 10* for the flow
in the jet to remain laminar [41]. This condition is well satisfied
here. Later, for experimental verification, several additional CFD
simulations are run at various values of Rayleigh number to match
corresponding experimental conditions available in the literature
(Section 4.4).

3.2. Numerical schemes

The governing Eqs. (2)-(4) are solved numerically using the
pressure-based solver available in FLUENT. All transport equations
are discretized to be second order accurate in space. The second
order upwind scheme provided in Fluent is used for the discretiza-
tion of the advection terms, while the central difference scheme is
used for discretizing the diffusion terms in the momentum and
energy equations. The second order scheme is employed for the
discretization of pressure. The SIMPLE algorithm is used for
pressure-velocity coupling. Under-relaxation factors are suitably
employed such that numerical instabilities are avoided but compu-
tational time does not increase excessively. A segregated implicit
[42] solver is used to solve the resulting system of discretized
equations. The solver uses a time-marching technique [43,44] to
obtain a steady-state solution as the limiting process of an
unsteady simulation. In all simulations, a solution is said to be con-
verged if the scaled residuals reach 107° for all the governing equa-
tions (which is considerably smaller than what is normally set in
much of the reported CFD work). A large number of grid points
and double precision arithmetic are used to obtain high precision
of the computed results.

3.3. Domain independence test

We have performed separate domain independence tests for the
various inclination angles considered in the present work. How-
ever, here we present the results at only y = 45° for brevity, as
an illustrative example of the adopted procedure. In order to per-
form a systematic domain independence test, we have used the
same grid structure for all the domains.

Table 1 shows that as the size of the computational domain (in
terms of I, and [,) is systematically increased, the values of the

Table 1
Results of the domain independence test for three computational domains at y = 45°
(Gr, =10°% Pr=0.7).

computed average Nusselt number Nu uniformly converge.
Between domains D2 and D3, there is no difference in Nu up to
the second decimal place and the relative change in the value is
less than 0.01%. Accordingly, domain D2 is considered adequate
for y = 45° and is used for all subsequent simulations at y = 45°.
Following a similar procedure, separate domain independence
tests are carried out at each angle of inclination, which specify
the particular values of I, and I, that are appropriate for the partic-
ular angle of inclination. The size of the computational domain
therefore varies according to the orientation of the plate.

3.4. Grid independence test

A systematic grid independence study is reported below for an
inclination angle of 45° and Pr = 0.7. Three grid structures are con-
structed—viz., “coarse”, “medium” and “fine” — as shown in
Table 2. The value of Ay, is progressively decreased as the grid is
progressively refined from “coarse” to “fine.” A non-uniform grid
distribution (with Ax; = Ay, and geometric progression ratio of
1.02) is used in both x and y-directions so that the natural convec-
tive boundary layer is appropriately resolved, and at the same
time, a large computational domain can be utilized so that the
boundary conditions for the natural convective flow can be applied
appropriately. The size of the grid is allowed to grow only up to set
limits. Corresponding to the fine grid, there are 1020 grid points on
the heated surface of the plate. Similarly, the flow fields around the
plate corners are finely resolved as the minimum size of a compu-
tational element there is Ay, x Ay;.

Table 2 shows that as the grid size is systematically refined (fol-
lowing the method described above) from “coarse” to “fine”, the
values of the computed average Nusselt number Nu uniformly con-
verge. Between the “medium” and “fine” grid structures for
Gr, = 10° (at which the parametric study for inclination angle is
conducted in the present paper), there is no difference in Nu up
to the second decimal place and the relative change in the value
is less than 0.03%. Since for experimental validation of the com-
puted results (given later in Section 4.4) the simulations need to
be run at various values of Grashof number other than Gr; = 10°,
we conducted additional grid independence tests at two other Gra-
shof numbers, the results of which are also included in Table 2. The
results demonstrate that the adopted computational methodology
is robust. Although the “medium” grid would have been consid-
ered adequate on the basis of the grid independence data alone
(Table 2), the “fine” grid with 799,784 computational elements is
used for all subsequent simulations for y = 45° for improved preci-
sion of computed results and quality of the flow visualization
diagrams.

4. Results and discussion

CFD simulations are run for various combinations of the Grashof

Name of the computational domain /L Iy/L Nu
o1 2 2 127999 number and Prandtl number at various values of the inclination
D2 4 4 14.8284 angle in the range 0° < y < 90° for a thorough understanding of
D3 8 8 14.8299 the thermo-fluid-dynamics of natural convection on a heated
inclined plate. Comparisons are made with existing experimental
Table 2
Results of the grid independence test for three grid distributions in domain D2 (y = 45°, Pr = 0.7).
Grid distribution First grid size adjacent to plate, Ay; (m) Number of computational elements Nu
Gry =10 Grp =10° Gry =10’
Coarse 0.0001 394,272 8.9144 14.7911 25.3070
Medium 0.000075 489,804 8.9248 14.8243 253747
Fine 0.00005 799,784 8.9290 14.8284 25.3888
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and theoretical results. For streamlining the discussion, the results
are divided into a few subsections.

4.1. The physics of the natural convective boundary layer

In this section, the contours of velocity, temperature and pres-
sure around an inclined plate obtained by the present simulations
are shown for different values of the inclination angle ranging from
the vertical (y = 90°) to the horizontal (y = 0°). It was shown in
Guha and Pradhan [4] that for Pr ~ 1, the natural convection mech-
anism for a vertical surface is the dominating factor for a large
range of inclination angles except for near-horizontal configura-
tions. With the above knowledge and due to representational con-
venience, here we have presented the results in two groups:
30° <7 < 90° and 0° < y < 15°.

The contours of velocity for 30° < y < 90° are shown in Fig. 4. A
boundary layer develops on the heated surface of the plate with
convective velocities that decrease as the angle of inclination
decreases from 90° to 30°. The finiteness of the size of the plate
results in the formation of a buoyant plume that is found at the
trailing edge of the plate for 30° < y < 90°. The plume-width at a
specified distance above the trailing edge is found to increase as
the inclination angle y decreases. Moreover, for all values of y
shown in Fig. 4, as the vertical distance above the trailing edge of
the plate increases, the plume-width increases due to entrainment
of fluid from both sides. Although the natural convective boundary
layer forms on the heated (right) side of the plate, a small move-
ment of the fluid can be observed on the insulated (left) side of
the plate as well. This may be attributed to the spilling over of a
small fraction of the entrained fluid at the leading edge of the plate
[2]. For y < 60°, a stagnation region starts developing on the

insulated side of the plate. This region (dark blue colour) is found
to expand considerably as the inclination decreases to 30°. Fig. 4
also shows that as the inclination angle decreases from 90° to
30°, the region around the inclined plate where the fluid is set into
motion expands. Another interesting observation that can be made
from Fig. 4 is that as the buoyant plume rises from the trailing edge
of the plate, it bends; the degree of bending increases as the incli-
nation angle decreases.

The contours of velocity for 0° < y < 15° are shown in Fig. 5.
Certain features of the velocity contour for this range of inclination
angles remain similar to those observed in Fig. 4: (i) a boundary
layer develops on the heated surface of the plate, (ii) a buoyant
plume forms due to finiteness of the plate, with the plume-width
increasing with vertical distance, and (iii) a stagnation region
develops on the insulated side of the plate which shifts from near
the leading (right) edge towards the centre of the plate as y
decreases from 15° to 0°. However, there are some mentionable
differences in the flow physics at small inclination angle shown
in Fig. 5. Firstly, the buoyant plume lifts off from the heated surface
before the (trailing) left edge is reached; the location of detach-
ment shifts toward the centre of the plate as the inclination angle
decreases from 15° to 0°. Secondly, the convective velocities in the
boundary layer near the plate decrease as the inclination angle
decreases. Thirdly, a second boundary layer starts to develop from
the left edge as the location of detachment of the buoyant plume
shifts toward the centre of the plate. The length of this second
boundary layer increases as ) decreases, to finally become equal
to that of the initial boundary layer (that originating from the right
edge) for y = 0°. Fourthly, the bending of the plume decreases as
the inclination angle decreases from 15° to 0°; the plume is exactly
vertical from the point of detachment for the horizontal case.
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Fig. 4. Velocity contours adjacent to isothermally heated inclined plates at various inclinations of the plate in the range 30° < y < 90°. (Predictions of the present CFD

simulations for Pr = 0.7 and Gr; = 10° with T, — T.. = 25K.)
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Fig. 5. Velocity contours adjacent to isothermally heated inclined plates at various inclinations of the plate in the range 0° < y < 15°. (Predictions of the present CFD

simulations for Pr = 0.7 and Gr; = 10° with T,, — T.. = 25K.)

Finally, although the stagnation region formed on the insulated
side was also observed for y > 15°, its expanse increases signifi-
cantly at the lower inclinations shown in Fig. 5.

The contours of the magnitude of the overall velocity at various
inclinations are shown in Figs. 4 and 5. However, velocity is a vec-
tor quantity and the aspect of direction is not represented in the
above-mentioned contour diagrams. Thus the components of
velocity are shown in Fig. 6 to reveal more details of the flow field,
at three inclination angles: vertical, horizontal and y = 45°. The
component of velocity along the x-direction (along the plate, see
Fig. 1) is u. The component along the y-direction (normal to the
plate, pointing away from the plate on the heated side of the plate)
is the velocity component ». The origin of x and y is situated at the
leading (right) edge of the heated side. It is to be noted that, with
respect to any globally fixed co-ordinate system, the co-ordinate
axes x and y (and hence u and ») rotate with the plate as its incli-
nation is varied. Different ranges for the colour bars are used for
the six sub-plots contained in Fig. 6 to bring out clearly the flow
details. One needs to keep in mind, while comprehending the
effects of plate inclination, the fact that the velocity in the plume
increases as the vertical distance from the plate increases.

Fig. 6 shows that at all inclination angles, the u component
dominates over the v component inside the boundary layer region.
The striking fact is that the previous statement is true even in the
case of y = 45°; the v component is generally two orders of magni-
tude lower than the u component inside the boundary layer on the
heated side of the plate. However, the variation in the relative
importance of the two components inside the plume is complex:
u is the dominant component for the vertical plate, » is the domi-
nant component for the horizontal plate, whereas both u and v are
of importance for the case of the plate inclined at 45°. Another
important point should be noted that the magnitude of the u-

velocity inside the boundary layer of the vertical plate is far greater
than that of the horizontal plate. The two different mechanisms -
direct buoyancy and indirect pressure difference - operative in
the two cases are responsible for this difference in the magnitude
of the u-velocity. The existence of both positive and negative u-
velocity of equal magnitude in the two halves above the horizontal
plate is consistent with the growth of two boundary layers toward
the centre of the plate in the two halves. The existence of both pos-
itive and negative v-velocity of nearly equal magnitude in the two
sides of the plume for the vertical plate indicates nearly similar
flow entrainment from the two sides into the plume.

Fig. 7 shows the temperature contours for inclination angles in
the range 30° < y < 90°. Unlike the contours of velocity, the tem-
perature is found to reach the ambient value relatively close to
the heated plate (in all regions except in the buoyant plume) for
all inclination angles shown. While it was found from the velocity
contours (Fig. 4) that the maximum velocity in the plume increases
as the vertical distance from the left edge increases, the maximum
value of the temperature inside the buoyant plume decreases as
the vertical distance above the plate increases. The temperature
contours for inclination angles in the range 0° < y < 15° are shown
in Fig. 8. The principal differences between the contours in Figs. 7
and 8 are the change in the location where the buoyant plume lifts
off from the heated plate, and the development of a second thermal
boundary layer from the left edge at the small inclination angles.

Figs. 9 and 10 show the contours of gauge static pressure
around the inclined plate for various inclination angles from verti-
cal to horizontal. As in case of the velocity and temperature con-
tours, we have shown the pressure contours in two separate
groups of inclination angles: (i) 30° <y < 90° in Fig. 9 and (ii)
0° < y < 15°in Fig. 10. It is observed in Fig. 9 that low gauge pres-
sure zones exist in the vicinity of the trailing edge as well as the
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Fig. 6. Contours of velocity components along and normal to the isothermally heated plate for three inclination angles. (Predictions of the present CFD simulations for
Pr=0.7 and Gr, = 10° with T,, — T.. = 25K.)
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Fig. 7. Temperature contours adjacent to isothermally heated inclined plates at various inclinations of the plate in the range 30° < y < 90°. (Predictions of the present CFD
simulations for Pr = 0.7 and Gr, = 10° with T,, — T, = 25K.)
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Fig. 8. Temperature contours adjacent to isothermally heated inclined plates at various inclinations of the plate in the range 0° < y < 15°. (Predictions of the present CFD
simulations for Pr = 0.7 and Gr; = 10° with T, — T.. = 25K.)
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Fig. 9. Pressure contours adjacent to isothermally heated inclined plates at various inclinations of the plate in the range 30° < y < 90°. (Predictions of the present CFD
simulations for Pr = 0.7 and Gr; = 10° with T,, — T = 25K.)
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Fig. 10. Pressure contours adjacent to isothermally heated inclined plates at various inclinations of the plate in the range 0° < y < 15°. (Predictions of the present CFD

simulations for Pr = 0.7 and Gr; = 10° with T, — T.. = 25K.)

leading edge on the heated side of the plate. For the vertical
orientation the gauge pressure (close to the surface) in the central
part of the heated surface is slightly positive, but for other angles a
region of relatively low negative gauge pressure develops there,
and the expanse of this region (perpendicular to the plate)
increases as the inclination angle decreases. The pressure contours
of Fig. 9 show that, although the level of low pressure in the central
region depends on the inclination angle, there is no appreciable
change in its magnitude along the plate for any particular inclina-
tion angle. This shows that the flow inside the boundary layer in
the range 30° < 9 < 90° is not primarily caused by indirect pres-
sure difference but arises by the direct effect of buoyancy. Fig. 9
further shows that the buoyant plume is characterized by a rela-
tively high gauge pressure whose magnitude decreases as the ver-
tical distance along the plume increases. The greater pressure in
the central region of the plume may be attributed to the meeting
of the two entrained fluid streams from the two sides of the plume.
Fig. 9 also shows the development of a region of positive gauge
pressure on the insulated (left) side of the plate, particularly close
to the leading edge. Thus, there exists a pressure differential across
the inclined plate with a low gauge pressure region on the heated
surface and a relatively high gauge pressure region on the insu-
lated surface opposite to it.

The contours of pressure around the inclined plate for
0° < y < 15° are shown in Fig. 10. Like Fig. 9, the pressure contours
in Fig. 10 are also characterized by the existence of a pressure dif-
ferential across the plate (with lower pressure on the heated side)
and positive gauge pressure inside the buoyant plume. However, it
is found that for the small inclination angles, there exists a gradient
of gauge pressure parallel to the plate (indicated by the shape of
the contour bands near the plate). The location of minimum gauge
pressure (on the heated side) shifts toward the centre of the plate
as 7y approaches 0°. It is also seen in Fig. 10 that, on the insulated
side of the plate, the region of relatively high gauge pressure is pre-
sent principally in the first half of the plate (x < L/2) starting from

the right edge at y = 15°, but it occupies the full extent from the
right edge to the left edge as y — 0°.

Fig. 11 shows a number of important differences between the
natural convection mechanisms for horizontal and vertical plates.
The region of lowest static pressure occurs around the centre of a
horizontal surface (Fig. 11a), whereas that occurs near the leading
and trailing edges of a vertical plate (Fig. 11b). Several contour
lines of static pressure meet the horizontal surface, indicating that
there is a pressure gradient along the horizontal surface that is pri-
marily responsible for fluid flow in the natural convective bound-
ary layer above a heated horizontal plate. The pressure gradient
acts from the two edges of the horizontal plate towards the centre
of the plate. The gauge static pressure is nearly constant in a region
of large vertical extent close to the isothermally heated surface
(right hand side) of the vertical plate, indicating that there is neg-
ligible pressure gradient along the surface and this makes negligi-
ble contribution to the fluid flow in the natural convective
boundary layer close to a heated vertical plate (here the fluid
motion takes place because of the direct buoyancy force). The
small changes in gauge static pressure around the leading and
trailing edges of a vertical plate are due to the effects of finiteness
of the plate. Another important difference lies in the magnitude of
the static pressure difference. Fig. 11 shows that the static pressure
difference for a horizontal plate is an order of magnitude greater
than that for a vertical plate. On the other hand, a study of Figs. 4
and 5 reveals that the magnitude of the velocity along the plate (u)
within the boundary layer is about an order of magnitude greater
for the vertical plate as compared to that for the horizontal plate.
The magnitude of velocity, however, reaches similar order in the
plume for both cases (being only slightly lower in the case of hor-
izontal plate).

Our aim is to present a clear exposition of the details of the flow
physics which occur at different scales. We have selected various
extents of the flow domain or the scales of axes in the figures given
in this paper - these choices are not arbitrary, but are based on
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Fig. 11. Magnified pressure contours adjacent to isothermally heated plates. (a) horizontal plate (y = 0°), (b) vertical plate (y = 90°). (Predictions of the present CFD
simulations for Pr = 0.7 and Gr, = 10° with T,, — T = 25 K. The axis perpendicular to the plate is greatly stretched to clarify the details of the pressure variation within the

boundary layer close to the plate.)

painstaking experimentation with these parameters. We have
finally adopted the figures that, we believe, explain the physics
best. For example, in Fig. 3 we have shown the flow solution in
the entire computational domain. While this figure shows the
quality of computational implementation in terms of the require-
ment for natural convection that the flow variables should
approach quiescent values asymptotically, this domain for the fig-
ure cannot reveal the fine details close to the solid surface or those
in the thermal plume. Hence it was necessary to select another
domain of interest for displaying the contours in Figs. 4-10. Yet
another domain needed to be selected for Fig. 11, because we
wanted to computationally demonstrate, for the first time, the “in-
duced” or “indirect pressure difference” whose principle has been
qualitatively mentioned previously but nobody has previously
demonstrated it quantitatively. To this effect, we had to signifi-
cantly stretch the axis perpendicular to the plate, otherwise a clear
quantitative demonstration would not be possible. Thus the differ-
ences in the sizes of the selected domains in various figures are
carefully designed.

4.2. The nature of the buoyant plume

4.2.1. Consequence of the finiteness of the plate: Existence of a plume

The similarity theory, integral theories and other integro-
differential formulations for natural convection assume that the
plate is semi-infinite in the direction of growth of the convective
boundary layer. All practical plates are, however, necessarily finite
in size. It is interesting to note that the nature of CFD solutions is
also such that a finite size must be specified, for which the compu-
tational domain needs to be selected and an appropriate grid needs
to be constructed. The effects of this finiteness have been analysed
in two recent CFD studies of natural convection around a heated
horizontal plate [1] and that around a heated vertical plate [2].
The present study extends this analysis to plates at arbitrary
inclination.

A direct consequence of the finiteness of the size of the plate is
that the growth of the natural convective boundary layer does not
continue indefinitely but results into a buoyant plume. When the
heated plate is vertically oriented, upward, buoyancy-driven flow
takes place along the plate and the plume forms at the trailing edge

of the vertical plate. On the other hand, the flow conditions above a
heated finite plate, when it is placed horizontally, are identical at
the two ends of the plate. So natural convective boundary layers
form at both ends, and these grow toward the centre of the plate.
As the two boundary layers meet, at the centre, a plume forms.
Thus the plume forms at the centre of the top surface of heated
horizontal plate. The question then is how the transition of the
position of the plume takes place as the inclination of the plate is
progressively altered from the vertical to the horizontal.

4.2.2. The nature of the plume when the plate is vertical (y = 90°)

The thermo-fluid-dynamics of the plume and its space-wise
evolution is comprehensively described in Ref. [2]. Figs. 4 and 7
show respectively the velocity and temperature contours obtained
by the present CFD simulations for y = 90°. The right side of the
plate is at a raised but uniform temperature (isothermally heated).
The other three sides of the plate are insulated. The flow field and
the temperature field on the left and right sides of the plate are not
the same (left-right asymmetry). The main natural convective
boundary layer forms on the right side; however, Fig. 4 shows that
there is a small movement of the fluid on the left side of the plate
as well, as a small fraction of the entrained fluid at the leading edge
of the plate spills over to the left side. As the buoyant plume leaves
the trailing edge of the plate, it bends over the plate (see y = 90° in
Fig. 4) due to the left-right asymmetry and due to the finite thick-
ness of the plate.

As the plume leaves the plate, more and more fluid can be
entrained from the left side as well. Consequently, as the vertical
distance above the plate (denoted here by Y) increases there is a
tendency for the centreline of the plume to align with the mid-
plane of the plate, and, for the velocity of entrainment at the left
and that at the right to equilibrate.

From the temperature contour for y = 90° in Fig. 7, it can be
seen that the maximum temperature of the fluid occurs close to
the plate. The maximum value of temperature inside the free
plume occurs around the centreline of the plume but its magnitude
decreases as the vertical distance above the plate increases. The
velocity along the centreline of the buoyant plume, in contrast,
tends to increase as the vertical distance increases (see Fig. 4), as
a consequence of buoyancy and the continued entrainment of
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surrounding fluid. The asymmetry of the buoyant plume could be
visualized from the contour plots in Figs. 4 and 7. The asymmetry
arises for two reasons: (i) different boundary conditions being
applied on the two sides of the plate, and, (ii) a finite thickness
being assigned to the plate. The asymmetry is reflected in the pro-
files of u-velocity (representing the vertical velocity in the plume),
v-velocity (which determines the mass flow rate of entrainment
from the two sides of the plume) and the static temperature.

The physics of the evolution of the asymmetry was studied for
the first time in Ref. [2]; a summary of the qualitative and quanti-
tative findings is given below for ready reference.

(i) At Y/L = 0, i.e. even at a horizontal plane flush with the trail-
ing edge of the plate, there exists a distribution of vertical velocity
on the left (insulated) side of the plate. This is consistent with our
earlier description that there exists a small natural convective cur-
rent on the insulated side of the plate. (ii) As Y/L increases, i.e. as
the plume moves further above the plate, there is a tendency to
restore left-right symmetry in the u-velocity distribution. This hap-
pens mainly through adjustment in the velocity distribution on the
left side; the velocity distribution on the right side changes only a
little. (iii) The maximum value of the u-velocity increases with
increasing Y/L. (iv) The previous two behaviours occur over differ-
ent length scales. The restoration of the left-right symmetry hap-
pens rather quickly; the plume becomes reasonably symmetric
(the right side, though, still having slightly greater velocity) when
Y/L ~ 1. The maximum u-velocity, on the other hand, is seen to
increase considerably even as far as Y/L ~ 4. (v) At Y/L = 0, there
are two maxima in the u-velocity distribution, one on the left
and the other on the right side. At Y/L = 0.1, the profile has the
only maxima on the right. The transition from two-maxima to
one-maxima solution is interesting and is virtually accomplished
by Y/L ~ 0.05. (vi) As Y/L increases, the location of the maximum
u-velocity shifts toward the left, tending toward the vertical line
drawn through the middle of the plate. (vii) The equilibration of
temperature profile takes place in the following manner as Y/L
increases. At Y/L = 0, the temperature profile is most asymmetric
with a step change at y = 0. As Y/L increases, the location of the
maxima in temperature moves at first to the right (i.e. toward
the heated side of the plate) and then to the left. Like the profile
of streamwise velocity, the temperature profile also becomes
nearly symmetric at Y/L ~ 1, though the plume still remains buoy-
ant, and, the evolution of temperature and axial velocity continues
up to much larger value of Y/L.

It is shown that at large values of Y/L, the buoyant plume tends
to be symmetric with respect to an axis that seems to pass through
the vertical mid-plane of the plate. An interesting interpretation of
this phenomenon is that, sufficiently above the plate, the plume
tends to lose its history of origination.

4.2.3. The nature of the plume when the plate is horizontal (y = 0°)

The details of the two-dimensional and three-dimensional
structure of the buoyant plume are described in Ref. [1]. Here we
summarize a few important points. The centreline of the plume
is the plane of symmetry, i.e. the vertical line drawn at the middle
of the horizontal plate. At any distance above the plate, there is
left-right symmetry in the profiles of the velocity and temperature.
The magnitude of velocity inside the plume is large as compared to
the other regions of the domain. It can be shown that the direction
of velocity within the plume is almost normal to the hot surface;
and v is the major component. The plume-width broadens slowly
after a certain vertical distance from the heated surface (y = 0° in
Fig. 5). This occurs due to the horizontal diffusion which introduces
a non-zero u-velocity required for the entrainment within a
buoyant plume. Within the plume, the variation of temperature
in the y-direction is relatively small as compared to that in the
boundary layer regions (Fig. 8).

Fig. 5 also shows two wing-shaped boundary layers which are
developed above the heated surface. The major component of
velocity within the boundary layers is u (which is parallel to the
hot surface). Near the leading edges of the plate (i.e. at x = 0 and
x = L), the velocity boundary layers are distorted due to the edge
effect. In case of thermal boundary layers (see y = 0° in Fig. 8), such
distortion near the edges is comparatively small. From the leading
edges towards the plume, the thickness of boundary layers
increases. In the y-direction within the boundary layers, with
increasing distance from the heated surface, the temperature
decreases (Fig. 8); whereas, velocity first increases to attain a max-
imum value and then onward decreases (Fig. 5).

Another region shown in Fig. 5 is the junction between bound-
ary layer regions and the plume. To describe an axisymmetric
plume above a planar boundary, Whittaker and Lister [45] called
the junction as ‘turn-round region’. According to them, the flow
within boundary layers feeds the plume through the turn-round
region; and, in the turn-round region, the effect of advection pre-
dominates over the effect of diffusion. Fluid streams, from two
opposite ends of the plate, move towards the plane of symmetry.
However, prior to vis-a-vis collision, flow separation takes place.
It is already mentioned that within the boundary layers, the major
component of velocity is u, whereas within the plume, the major
component of velocity is v.

4.2.4. The nature of the plume when the plate is at arbitrary
inclination

Figs. 4-10 show the contours of velocity, temperature and pres-
sure as the inclination angle y is varied from 90° (vertical) to 0°
(horizontal). The following observations may be made. (i) At
y = 0°, the plume axis is vertical. At all other angles, the plume
eventually tries to rise vertically, i.e. tends to align itself with the
line of action of gravity. The plume thus tends to lose its history
of origination. (ii) At y = 0°, there is left-right symmetry in the pro-
files of the velocity and temperature, at any distance above the
plate. At all other values of ), the profiles of velocity and tempera-
ture are asymmetric at the base of the plume, but the profiles
evolve to become more and more symmetric as one moves upward
along the plume. The details of the equilibration process for the
vertical plate are given in Section 4.2.2. (iii) The predominant
direction of motion inside the plume is upward along the centre-
line of the plume. For the horizontal plate, the flow in the boundary
layer is predominantly parallel to the plate surface and toward the
centre (moving in from two ends of the plate); when these fluid
streams approach each other near the centre of the plate, they
combine to move the fluid in the perpendicular direction which
is the predominant direction of fluid motion inside the plume.
For the vertical plate, the predominant direction of motion in the
boundary layer is also upward, and this upward motion is
enhanced in the buoyant plume because of entrainment. The two
streams of entrained fluid from the left and right converge towards
each other, with the consequent change of direction by 90°. At
intermediate values of ), both horizontal and vertical mechanisms
are operative. (iv) The value of maximum temperature at a cross-
section of the plume decreases as one moves away from the plate;
this tendency is opposite to that in the variation of the maximum
velocity in the plume which increases with distance from the plate.

In order to obtain a quantitative summary of the spatial evolu-
tion of the plume for an inclined heated plate, we define two new
axes X and Y with the origin situated at the trailing (left) edge on
the heated surface. The axis X represents the horizontal and the
axis Y represents the vertical direction. X is positive rightward
and Y is positive upward (gravity acts in the negative Y direction).
The directions of X and Y remain invariant with any value of incli-
nation angle 7. Fig. 12 shows the inter-relations of the new axes
X — Y and the axes x — y that were introduced in Fig. 1. It is recalled
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Fig. 12. Inter-relationship of two co-ordinate systems X — Y and x — y. (a) Plate at a general inclination angle 7, (b) plate is vertical (y = 90°), (c) plate is horizontal (y = 0°).

that the co-ordinate x is along the plate, y is perpendicular to the
plate and, the origin lies at the leading (or right) edge of the heated
side of the plate. Through trigonometric manipulations, the new
co-ordinates X and Y may be related to the co-ordinates x and y,
by the following relations: X = (L—x)cosy+ysiny and
Y = (x—L)siny +ycosy, where L is the length of the plate. For a
vertical plate y =90°, and therefore, X =y, Y =x — L (Fig. 12b).
For a horizontal plate y =0°, and therefore, X=L—-x, Y=y
(Fig. 12c).

The component of velocity along the Y— axis is denoted by Vy.
Through simple trigonometry it may be established that
Vy =usiny + vcosy, where u is the velocity parallel to the heated
plate and v is the velocity perpendicular to the plate. Vy is used in
this work as the characteristic velocity in the plume for a general-
ized description of the plume. Since the plume centreline bends as
the plume rises, and the bending depends on the inclination angle
7, we felt that the best universal choice for the characteristic veloc-
ity in the plume, that would remain invariant irrespective of
changing values of y, is Vy. This is supported by the physical fea-
ture that eventually all plumes, for whatever value of ), tends to
align with the Y— axis. The adopted definition of Vy behaves
appropriately in the two limits. When y = 90°, Vy = u: this makes
physical sense since the velocity along a vertical plate is in the
same direction as the predominant velocity in the plume. When
y = 0°, Vy = v: this also makes physical sense since the predomi-
nant velocity in the plume is normal to a horizontal plate.

As a quantitative example of the spatial evolution of the plume
for an inclined plate, the profiles of characteristic velocity Vy and
static temperature T for y = 75° are shown respectively in Figs. 13
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Fig. 13. Progressive development of the vertical velocity Vy profile in the buoyant
plume at different heights above the top edge of an inclined plate. (Predictions of
the present CFD simulations for y = 75°, Pr = 0.7 and Gr, = 10°. As Y/L increases,
the profile becomes progressively more symmetric, the maximum increases and the
location of the maximum shifts to the left. Note that new axes X and Y are defined
for the study of spatial evolution of the plume.)

and 14. The co-ordinate axes X and Y are shown inside Figs. 13 and
14 for clarity. Certain features of the spatial evolution of Vy and T
for inclined plates remain broadly similar as was discussed in the
case of vertical plate (Section 4.2.2). For example, as Y/L increases:
(i) profiles of both Vy and T tend to be more symmetric about a ver-
tical line, (ii) the maximum value in the profile of Vy increases
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Fig. 14. Progressive development of the temperature profile in the buoyant plume
at different heights above the top edge of an inclined plate. (Predictions of the
present CFD simulations for 7 = 75°, Pr = 0.7 and Gr; = 10° with T, = 325 K. As Y/L
increases, the profile becomes progressively more symmetric, the maximum
decreases and the location of the maximum shifts to the left. Note that new axes
X and Y are defined for the study of spatial evolution of the plume.)

because of buoyancy and entrainment, (iii) the maximum value in
the profile of T, on the other hand, decreases and tends toward T,
because of transport of heat.

There are, however, two mentionable differences between the
nature of the plume over an inclined plate and that over a vertical
plate: one subtle and the other substantial. The subtle difference
lies in the profiles of Vy and T at Y/L = 0. For the vertical plate
the solid edge of thickness tp is aligned with the horizontal line
Y/L = 0. The profile in velocity Vy therefore contains a span tp at
zero velocity because of the no penetration boundary condition.
Similarly, the profile in static temperature T contains a span tp rep-
resenting the temperature of the adiabatic solid edge. For the
inclined plate, however, only the corner point at the trailing (left)
edge forms part of the line Y/L = 0, all other points of the solid
edge lie below the line Y/L = 0. All points of the profiles in Vy
and T, except the origin of the axes X,Y therefore represent the
velocity and temperature in the interior of the fluid.

Now we discuss the substantial difference between the nature
of the plume over an inclined plate and that over a vertical plate.
The locations of the maxima in both Vy and T profiles shift as
Y/L changes; the extents of the loci of the two maxima were shown
to be finite but quite small for the vertical plate [2]. The corre-
sponding extents in the excursion of maxima for inclined plates
can, however, be large. Since the predominant direction of motion
in the convective boundary layer is along the plate surface, as the
plate is tilted further from the vertical there remains a greater
component of this convective velocity in the negative X direction.
This pushes the maxima in the Vy and T profiles toward the left
of the trailing (left) edge. In order to obtain a quantitative under-
standing of this behaviour as a function of the inclination angle
7, the profiles of Vy at a fixed value of Y/L are constructed for var-
ious values of ). The results for Y/L = 1 are shown in Fig. 15. It is
found that, in line with the physical explanation just given, the
maximum value decreases and its location shifts toward the left
(i.e. occurs at greater value of negative X/L) as the inclination angle
decreases. This trend, however, must reverse at a certain value of ),
because we know from the discussion in Section 4.2.3 for the
horizontal plate that the maximum occurs above the middle of
the plate (i.e. at X/L = 0.5), which is situated to the right side of
the corner of the trailing (left) edge. When the full data like what
is shown in Fig. 15 are analysed, it is found that the reversal
happens at a value of inclination angle such that y,, ... ~ 30°
(for the chosen Y location, Y/L = 1). As 7 is progressively decreased

X/L

Fig. 15. Variation of the vertical velocity Vy profile in the buoyant plume at a
particular height (Y/L = 1) above the top edge of an inclined plate with changing
values of inclination angle ). (Predictions of the present CFD simulations for
Pr=0.7 and Gr, = 10°. Note that new axes X and Y are defined for the study of
spatial evolution of the plume.)

below 7, yerr UP to y = 0°, the value of maximum Vy decreases
slightly and the location of the maximum moves to the right. This
rightward movement of the location of the maximum is a strong
function of y. Fig. 15 shows that the location of the maximum is
at X/L = —0.15 for y = 15° and at X/L = +0.5 for y = 0°.

4.3. The lift-off point: definition, quantification and significance

Figs. 4-10 show that the location of the rise of plume from the
plate shifts from the trailing edge of the plate for y = 90° (vertical
plate) to the centre of the plate for y = 0° (horizontal plate). The
figures visually demonstrate that almost the entire transition of
this important character in the origination of the plume takes place
over a rather small range of inclination angle, viz. 0° < y < 15°. To
perform a quantitative analysis, the location of the formation of the
plume needs to be pinpointed, which is achieved here by defining
the lift-off point. It is believed that this is the first qualitative and
quantitative study of the behaviour of the lift-off point.

Fig. 16 shows a qualitative sketch of the structure of the conflu-
ence of convective boundary layers and the evolution of the plume

Plume

Heated
Inclined Plate

Xlif—of

Fig. 16. A schematic diagram representing the lift-off point at small angles of
inclination.
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for an arbitrary inclination of the heated plate. We explained pre-
viously how the plume forms as two opposite streams moving pre-
dominantly parallel to the solid surface transform, at the point of
confluence, into a stream moving at right angle to the original
streams. In Fig. 17, we have plotted the ratio of (z/u) for y = 5°,
since this ratio gives the orientation of the overall velocity vector
relative to the plate. This ratio is plotted at three grid lines which
run parallel to the plate and are close to the plate. It is found that
all three curves make a sharp transition at a particular value of x,
which we define as the lift-off distance from the leading (right)
edge of the plate. Table 3 gives the values of non-dimensional
lift-off distance X;z_oy at various values of inclination angle 7. It
is found that X, oy is a strong function of y in the range
0° <y<15.

The physical mechanism of natural convection on a vertical sur-
face is very different from that over a horizontal surface. For a ver-
tical surface, buoyancy is generated because of the temperature
difference between the surface and the fluid. The buoyancy force
is parallel to the surface and creates fluid motion along the vertical
surface; the fluid motion carries away heat from the surface (when
the surface is hotter than the surrounding fluid) or supplies heat to
the surface (when the surface is colder than the surrounding fluid).
On a horizontal surface, the buoyancy force is perpendicular to the
surface. The natural convective motion along the horizontal surface
is set up by an indirectly generated pressure difference. This pres-
sure difference has been quantified in the computations of the pre-
sent work, numerical visualizations being shown in Figs. 10 and 11.

The governing equation derived in the paper by Guha and Prad-
han (Eq. (18) in Ref. [4]) beautifully captures this stark difference in
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Fig. 17. Determination of the location of the lift-off point X, oy for plate inclination
of 5° (at Gr, = 10°, Pr = 0.7).

Table 3

Distance (in non-dimensional form) of lift-off point of the plume from the leading
(right) edge of the plate (at Gr, = 10°, Pr = 0.7) and the corresponding distance of the
minimum heat flux point.

y (in degree) Riipe_off = "2 g = Xaximn
25 1 0.9668
22,5 0.9991 0.9640
20 0.9977 0.9611
17.5 0.9938 0.9550
15 0.9816 0.9466
1255 0.9612 0.9328
10 0.9289 0.9074
7.5 0.8722 0.8572
5 0.7805 0.7709
25 0.6514 0.6468
0 0.5 0.5

the mechanisms of natural convection. For a vertical surface (i.e.
y = 90°), the Term Il in Eq. (18) of Ref. [4], representing the indirect
pressure difference, drops out and the sole cause for the generation
of natural convection on a vertical surface becomes the Term III, i.e.
the direct buoyancy force. For a horizontal surface (i.e. y = 0°), on
the other hand, the Term III in the same equation, representing
the direct buoyancy force, drops out and the sole cause for the gen-
eration of natural convection on a horizontal surface becomes the
Term II, i.e. the indirect pressure difference. For surfaces at inter-
mediate angles, both source terms (i.e. Term Il and Term III) are
operative, but through a comprehensive analysis the authors were
able to establish the generic trend in the relative magnitudes of the
two source terms as a function of Grashof number, Prandtl number
and inclination angle. These calculations are repeated here for the
specific combination of parameters Gr, = 10°, Pr=0.7, and the
variations of the relative force components are plotted as a func-
tion of the inclination angle in Fig. 18. The value of the special incli-
nation angle y.os_oer at Which buoyancy and force due to indirect
pressure difference become equal decreases with increasing Gra-
shof number, and, for Pr > 0.7, is within 10° in the range
10° < Gr< 10°. At Gr, =10% Pr=0.7, the cross-over point is
numerically determined to be at ) . o,er = 5.86°.

In order to explore the mechanisms of natural convection for an
inclined plate, the computed values of the Nusselt number Nu,
were compared with a particular scaling of the result for vertical
plate in Ref. [4]. This study revealed that, at Gr, =10° and
Pr=0.7, Nu, 1is almost identical with the value of
NLlX.Z,er,,-ca,(siny)l/4 up to y ~ 15°, and significant departures from
the scaling were observed only in the region 15°>y > 0° (The

departure is about 1% at y = 17°, whereas it is 41% at y = 1°). The
present computations show that the lift-off point shifts from the
middle of the plate to nearly the trailing (left) edge as y is changed
from 0° to 15° (Xp_of = 0.9816 at y = 15°, from Table 3), and the
physical picture of natural convection in the range 15° <y < 90°
- revealed in Figs. 4, 7 and 9 - remain essentially the same as that
around a vertical plate. The coincidence of the approximate range
(15° > y > 0°) mentioned in the above two studies is intriguing, at
least at the first sight, because in the unified integral theory of
Guha and Pradhan [4] the convective boundary layer is assumed
to grow from one edge of a semi-infinite plate and there is no
provision for the existence of a plume. In order to shed further light
on this, magnified views of the static pressure distribution close to
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Fig. 18. Variation of the relative force components for natural convection on
inclined isothermal surfaces at Gr, = 10°, Pr = 0.7 according to the unified integral
theory of Ref. [4].
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Fig. 19. Magnified pressure contours adjacent to isothermally heated plates which are horizontal or slightly inclined to the horizontal. (Predictions of the present CFD
simulations for Pr = 0.7 and Gr; = 10° with T,, — T.. = 25 K. The axis perpendicular to the plate is greatly stretched to clarify the details of the pressure variation within the

boundary layer close to the plate.)

the plate in the aforementioned range of inclination angles are
drawn in Fig. 19. It is found that the minimum pressure zone on
the plate surface occurs approximately beneath the plume and
the pressure distribution on the two sides of the lift-off point are
asymmetric for all angles except for y = 0° (when the lift-off point
is in the middle of the plate and the flow in two-halves are identi-
cal). Looking at the contour lines, it is also evident that in the
asymmetric flow pattern, the magnitude of the indirect pressure
gradient along the surface (i.e. 9p/dx) is greater in the region
between the trailing (left) edge and the lift-off point than that
between the lift-off point and the leading (right) edge. It may be
further observed that, out of the four plots in Fig. 19, the extent
of the lowest pressure region is the smallest at y = 15° and the
plume is almost at the trailing edge. This indicates that the magni-
tude of indirect pressure difference would further diminish for
7 > 15°. It seems that the unified integral theory, even though una-
ware of the presence of the plume, reasonably correctly predicts
the inclination angles for which the indirect pressure difference
becomes appreciable and eventually dominates over the direct
buoyancy. The CFD solutions for the finite plates also capture the
details of the relative magnitudes of indirect pressure difference
and buoyancy as a function of the inclination angle. The CFD solu-
tions, in addition, can capture the details of asymmetric flow from
the two edges of a finite plate and the formation of the plume.

4.4. Computation of heat transfer rate

Both local and average heat transfer coefficients are computed,
which lead to local and average values of the Nusselt number. Egs.
(6)-(10) show that caution is needed in the computation of the
average Nusselt number Nu, since the integration is performed
over the heat transfer rate (and not over the local value of Nusselt
number): Nu = hL/k = (1/k) [} hydx.

Most experimental studies mention local values of Nusselt
number Nu,, though a few also give values of Nu. Gryzagoridis

[13] performed experiments for natural convection from a vertical
plate and reported average heat transfer rates. Rich [30] performed
experiments for an aluminium plate of dimensions
40.64cm x 10.16cm x 0.3175cm. Measurements were made at four
points on the plate for five inclination angles, viz. 90° (vertical),
80°, 70°, 60° and 50°. The plate was tested for a range of Grashof

numbers from 10° to 10°. Nu was reported for the vertical case only
while Nu, was reported at all the inclination angles considered. The
data for the 50° inclined plate began to show the effects of the
velocity component in the third dimension, and hence lower angles
were not studied as the interferometer was limited to two-
dimensional problems. An aluminium alloy plate of dimensions
68.18 cm x 17.78 cm x 0.87 cm was used by Sang-Urai [31] in his
investigations of natural convection from heated inclined plates.
Experiments were performed for several inclination angles ranging
from 90° (vertical) to 0° (horizontal), and the temperature distribu-
tions in the boundary layer were measured at several positions
along the plate. The Nusselt numbers were subsequently calcu-
lated from these temperature distributions.

We have collated experimental values of Nusselt number from
Refs. [13,30,31] in Table 4 in which the corresponding values
obtained from the present CFD simulations are also included so
that a direct comparison is possible. Many new CFD simulations,
additional to what are reported in Sections 4.1-4.3, had to be run
at the operating conditions of the available experimental results.
The agreement between the experiments and present computa-
tions over the range of Rayleigh number and plate inclination angle
is good, giving confidence in the physical conclusions made in the
present study. As per our knowledge, the present work represents
the most comprehensive theoretical work on natural convection
above heated plates at arbitrary inclination, and Table 4 provides
the most extensive experimental validation.

Table 5 shows the present results for Nu vis-a-vis the values of
Nu that can be computed by integrating the results for Nu, given in
two previous theoretical studies [4,33]. Yu and Lin [33] had
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Comparison of Nusselt number obtained by present CFD simulations with experimental results.

Rayleigh number

Inclination angle

Reference no. for

Experimental average Nusselt number

Average Nusselt number from present CFD

(Rayr) 6)) experiment Nu Nu
7 x10° 90° [13] 16.00 15.75
7 x 10° 90° [30] 28.00 27.28
Rayleigh number Experimental local Nusselt number Local Nusselt number from Present CFD
(Ray) (Nuy) (Nuy)
6 x 10* 90° [31] 6.04 6.07
5x10° 90° [31] 10.22 10.31
3% 10° 90° [30] 17.06 17.54
6 x 10* 75° [31] 5.77 5.95
5% 10° 75° [31] 9.92 9.99
3 x 108 70° [30] 16.79 17.27
6 x 10* 60° [31] 5.72 5.85
5% 10° 60° [31] 9.62 9.69
3 % 106 60° [30] 16.46 16.92
6 x 10* 45° [31] 5.46 5.60
5x10° 45° [31] 9.00 9.14
6 x 10 30° [31] 4.95 5.14
5x10° 30° [31] 8.00 8.19
6 x 10* 15° [31] 4.27 4,53
Table 5

Comparison of Nusselt number obtained by present CFD simulations, numerical
analysis and integral analysis for Gr, = 10° and Pr = 0.7.

7 (in Nu (for semi-infinite Nu (for semi-infinite  Nu (for finite

degree) plate -numerical plate - integral plate - CFD,
solution) [33] analysis) [4] present study)
0 9.2685 9.6573 12.4953
2.5 9.7210 9.9830 12.4610
5 10.2099 10.4284 12.4237
7.5 10.6315 10.8451 12.3759
10 11.0013 11.2317 12.3858
12.5 11.3310 11.5890 12.4963
15 11.6286 11.9189 12.6704
17.5 11.9460 12.2239 12.8774
20 12.1958 12.5062 13.0883
225 12.4261 12.7681 13.2951
25 12.6391 13.0119 13.5117
30 12.9686 13.4483 13.8999
45 13.8256 14.4420 14.8284
60 14.3612 15.0691 15.4232
75 14.6456 15.4014 15.7248
90 14.875 15.5714 15.7503

numerically solved, by finite-difference method, the boundary
layer equations for natural convection around a semi-infinite
heated inclined plate, using a complex co-ordinate transformation.
Guha and Pradhan [4] formulated a unified integral theory for arbi-
trary inclination, in which the orders of polynomial representing
the velocity and temperature profiles could be optimized. Table 5
shows that in the range of angles 15° < y < 90° the results from
the previous two methods are indicative of that from the present
computations though the magnitudes of Nu obtained from the pre-
vious theoretical methods were slightly lower than the values
obtained from the present computations. Table 5, however, shows
that the values of Nu determined by the approach of Yu and Lin
[33] and that determined by the unified integral method of Guha
and Pradhan [4] are significantly different from the values of Nu
determined in the present study in the range 0° < y < 15°. There
are two reasons for this difference. The first reason (which is actu-
ally valid over the entire range from 0° to 90°) is that the present
method solves the full Navier-Stokes equations in a carefully con-
structed computational domain and grid, the solutions being car-
ried to high level of precision. The semi-analytical formulations

use approximate equations. There is a second, more subtle reason
for the greater deviations in the range 0° < y < 15°. In the present
unified CFD approach, the length scale used in the analysis (for
example in defining the Grashof number Gr) is taken to be the
plate length L at all values of inclination angle ). The same
approach is also taken for the values shown in Table 5 for the
entries corresponding to Refs. [4,33]. Egs. (6)-(10) establish that
the average Nusselt number, Nu, computed through the present
CFD solutions is directly indicative of the dependence of the overall
heat transfer on the inclination angle. This may not be the case for
the values of Nu computed through the approaches of Refs. [4,33].
We provide the following physical explanation. Ref. [1] established
that, for a study of natural convection specifically on a horizontal
plate, the most relevant length scale is L/2 (since convective
boundary layers form on two halves of the plate with a plume in
the middle, analytical theories based on semi-infinite assumption
can be compared with CFD results up to a maximum limit of
L/2). Since there is left-right symmetry in the fluid flow field and
heat transfer characteristics in the CFD solution for the case of a
horizontal plate, the average heat transfer coefficient h calculated

over any one-half is the same as the arithmetic mean of the h val-
ues calculated over the left and right halves of the plate. This is not
the case for the solutions given by similarity or integral theories
which adopt the semi-infinite description. Suppose, these theories
predict a total heat transfer rate of Q; semi_insinire (defined as [ éqxdx)
over a plate of length L (where the value of L is fixed by the same
value of Gr; used either in the theories or in the CFD simulation),
then the actual total heat transfer rate should be calculated from
QL‘corrected = 2QL/2.semi—inﬁnite (Where QL/Z‘semi—inﬁnire is the total heat
transfer rate through half of the plate starting from the leading
edge, given by | é/ 2q,(dx). Using the similarity theory [17], integral
theories [18,4] or a more realistic theoretical treatment [1] for a
horizontal plate, it can be shown that for the isothermal case g,
is given by g, = C/x?/>, where C is a function of Pr, (T, — T,)
and other properties, but C does not depend on x. Integration of
this relation shows that Qpsmi_iminice = (5/3)CL*® = k(Tw —T..)
Nusemi_infinice- Therefore, for a horizontal isothermal plate, the rela-
tion between the actual average Nusselt number and the average
Nusselt number determined from similarity or integral theories
may be established as follows:
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N 2QL/Z semi—infinite 1 33 QL semi—infinite
Nucurrected =T =2

k(T —T.) 2) k(Tw—T.)
= 22/5msemi—inﬁnite (18)

The correction incorporated in Eq. (18) accounts for the fact that
boundary layers grow from both edges of a finite plate. Two further
corrections are needed to the boundary layer approach [1]: edge-
effect and the alteration of the thermo-fluid-dynamics due to the
presence of lift-off point and the plume. Ref. [1] gives the details
that heat transfer from the wall increases at the edges but
decreases underneath the plume. So the combined effect of these
two corrections produces a rather small change in the overall heat
transfer rate. Applying the transformation derived above (i.e. Eq.
(18)) to the CFD result for horizontal plate (Table 5), we obtain

12.4953/2%° = 9.4697; then the present CFD result comes closer
to the previous theoretical values [4,33]. For non-zero values of y
in the range 0° < y < 15°, however, the exact transformation is
not known, and the correspondence between the previous theoret-
ical values and present CFD results cannot be directly established.

Table 5 shows that the value of Nu determined by CFD is weakly
dependent on inclination angle y in the range 0° < y < 15°. How-
ever, Figs. 5, 8, 10 and 19 show that the flow field is a strong func-
tion of the inclination angle y in the range 0° < 7y < 15°. In order to
resolve this apparent paradox, the variation in local heat transfer
rate q, is plotted in Fig. 20 for various small values of }. The curves
have a distinctive shape; the physical reasons for such a shape can
be explained as follows. The heat transfer rate is extremely high at
the two edges because of the presence of the physical corners. As
one moves inside from either of the two edges, the boundary layer
thickness increases and the heat transfer rate gradually decreases
in that direction. Each curve passes through a minimum point
(qxmin) Where the heat transfer rate is significantly lower than what
could be expected from the general trend due to the growth of the
boundary layer. The principal reason for the existence of the min-
imum heat flux point for near-horizontal orientations (where the
buoyant plume forms within the heated side of the plate) is the
reduced heat transfer underneath the plume (due to uplifting of
the fluid as a result of confluence of two oppositely moving
streams). The location (x,, . ) of the minimum point (qy ;) shifts
from the centre of the plate for the horizontal position (y = 0°) to
near the trailing edge as the inclination angle y increases by a small
amount. This sheds light on the difference in the local heat transfer
characteristics over the plate length, in line with the difference in
the fluid dynamics. However, the variation in g, in the two sides
of the minimum heat flux point is such that the area under the
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Fig. 20. Variation of non-dimensional local wall heat flux along the plate at various
angles of inclination in the range 0° < y < 15° (at Gr, = 10°, Pr = 0.7).

curve does not change significantly, thus making the overall heat
transfer rather insensitive to the variation in ) in the range
0° <y<15°.

Table 3 shows that even in the range 15° < y < 25° the lift-off
point occurs within the length of the plate (X;; o5 < 1), though

there is a significant change in Nu over this range of inclination
angle. This is so because direct buoyancy has already established
itself as the dominant mechanism (see Fig. 18).

Fig. 20 reveals another important feature of the local heat trans-
fer characteristics. Each curve passes through a minimum point
(gxmin) Whose location (Xq . ) approximately coincides with that
of the respective lift-off points; the correspondence may be studied
from the data given in Table 3. Thus the lift-off phenomenon and
the formation of the plume correspond to reduced heat transfer
rate. This provides another qualitative consequence of the lift-off
as well as another quantitative method of determining X;yz_og intro-
duced in this paper. Except for the case of horizontal plate, the data
in Table 3 show that the location of the minimum heat flux occurs
a little ahead of the location of lift-off point determined from the
velocity ratio »/u, as one travels from the mid-point of the plate
toward its trailing (left) edge, i.e. X, .. < Xiz_of in the interval
0° < y < 25°. Another subtle point is that the minimum heat flux
point never quite reaches the trailing edge (X, =0.9668 at
7 = 25°) of the plate, even when the lift-off point does so. This is
because of the finiteness of a real plate; the fluid flow field is such
that the heat transfer rate is high both at the leading and the trail-
ing edges of a finite plate. The variation of X;;_o; and X, . with
may be visualized from Fig. 21.

The values of the average Nusselt number determined from the
present computations are plotted in Fig. 22 as a function of the
inclination angle. It is found that as the inclination angle is
increased gradually from the horizontal position, the value of Nu
initially decreases slightly, passes through a minimum point and
then onward increases continuously up to the vertical position of
the plate. The rate of increase in Nu is large in the range
15° <y < 60°.

At fixed values of Gr, (local Grashof number) and Pr, the unified
integral theory [4] and the numerical results of Ref. [33] show a
monotonic increase in the local Nusselt number Nu, as inclination
angle y is progressively increased from 0° to 90°. Nu, = f(y) were
constructed from the present CFD simulations at two fixed
x-locations on the plate surface between the leading (right) edge
and mid-point of the plate (i.e. at two different values of Gry),

1.0 A O ® O
J ® o
° R A A A A
® A
0.9 ] A Plume forms at the trailing
o ° edge of a vertical plate
4 Cip—og =D
0.8 1
] 2
x/L J ® Lift-off point (J_Clgﬁ—oﬂ)
0.7 4 A Minimum wall heat flux point (fq )
o X Imn
]
0.6 ] Plume forms at the centre
1 of a horizontal plate
(flgﬁ—oﬁ" =0.5)
(O I e e o e e e e e L T S e e e e e e e
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Fig. 21. Variation of locations of lift-off point and minimum wall heat flux point as
a function of inclination angle (at Gr, = 10°, Pr = 0.7).
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Fig. 22. Variation with angles of inclination of average Nusselt number determined
from the present computations (at Gr, = 10°, Pr = 0.7).
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and the same monotonicity is observed. The explanation for the
existence of the minimum point in the Nu — y curve (Fig. 22) thus
seems to be the alteration of the thermo-fluid-dynamics due to the
existence of the lift-off point (and the plume) arising from the
finiteness of the plate. Between the leading (right) edge of the plate
and the lift-off point, both indirect pressure difference and the
direct buoyancy (which cause fluid motion parallel to the surface)
act in the positive x-direction, and are thus additive in nature.
Between the lift-off point and the trailing (left) edge of the plate,
the direction of the direct buoyancy remains in the positive x-
direction but the direction of the indirect pressure difference
reverses over most of this region; the two forces thus largely
oppose each other in this region (the discussion regarding Fig. 19
showed that the magnitude of dp/dx can be relatively high in this
region). Moreover, as ) increases, the lift-off point shifts towards
the trailing (left) edge and the direct buoyancy term definitely
increases because of the siny contribution. As a result of complex,
non-linear interaction of the above effects, one obtains the local
heat flux curves as shown in Fig. 20. It is found that the value of
minimum heat flux (q,m,y,) increases as y increases. Moreover,
the curves on the two-sides of the lift-off point are asymmetric
for non-zero values of ). If we consider point A where the curves
for y = 0° and y = 5° cross, it is found that the area between the
two curves to the left of A is less than that to the right (i.e.
Nu(y = 5°) < Nu(y = 0°)). The reverse is true for point B where
the curves for (=10 and y=15> cross (i.e.
Nu(y = 15°) > Nu(y = 10°)). This implies the existence of a mini-
mum in the Nu — y curve.

At the specific values of the Grashof number and Prandtl num-
ber, the minimum of Nu is found to occur (in Fig. 22) at y = 8.5°.
This is reasonably close to the cross-over point depicted in
Fig. 18, Yeross_over = 5.86° being determined numerically in the pre-
sent work. It is to be remembered that the magnitude of the force
due to indirect pressure difference is equal to that due to direct
buoyancy at V.., - Thus another important new conclusion is
established in the present work that an increase in the inclination

angle y tends to decrease Nu when the major mechanism of natural
convection is indirect pressure difference and the same tends to
increase Nu when the major mechanism of natural convection is
direct buoyancy.

5. Conclusion

The present study aims to develop, by invoking the power of
computational fluid dynamics, a thorough understanding of the
thermo-fluid-dynamics of natural convective flows adjacent to
isothermally heated plates at arbitrary inclination. The agreement
between the experiments and present computations (Table 4), in
the values of both local Nusselt number Nu, and average Nusselt
number Nu, over the range of Rayleigh number and plate inclina-
tion angle () is excellent, giving confidence in the physical conclu-
sions made here. As a result of the insight gained from the present
CFD solutions for finite plates, it has been possible to put in per-
spective (see the discussion regarding Table 5) the Nusselt num-
bers determined from previous theoretical approaches which use
several assumptions and approximations such as semi-infinite
plate, boundary layer equations, non-physical boundary conditions
and absence of any plume.

The goal of this work, however, is not merely the calculation of
the Nusselt number. It provides fundamental physical insight
through a comprehensive analysis of the behaviour of the contours
of velocity, temperature and pressure as a function of inclination
angle over the entire range from the vertical (y = 90°) to the hori-
zontal (y = 0°). In particular, this paper documents, for the first
time, qualitative and quantitative behaviour of the lift-off point
at which the natural convective boundary layer converts into a free
plume. The fluid dynamics and heat transfer in the neighbourhood
of the lift-off point are analysed in detail (Sections 4.3 and 4.4).
Similarly, the details of the spatial evolution of the velocity profile
and temperature profile in the plume as a function of the inclina-
tion angle of the plate are determined for the first time (Sec-
tion 4.2). The role of indirect pressure difference is quantified
(Figs 10, 11, 18 and 19), and it is shown how the relative impor-
tance of indirect pressure difference and direct buoyancy, as mech-
anisms of natural convection, changes as the inclination angle is
gradually altered from the horizontal to the vertical. Through
detailed computation (and representation, Section 4.1) of the
velocity, temperature and pressure fields at small intervals of the
inclination angle in the range 0° < 7y < 15° the subtle and complex
thermo-fluid-dynamics for near-horizontal orientations is
revealed.

The plume forms above the trailing edge for the vertical config-
uration, whereas it forms above the middle of the plate for the hor-
izontal. For all inclination angles, the plume eventually aligns with
the negative g direction. Fig. 15 shows that the maximum value in
Vy decreases and its location shifts toward the left (i.e. occurs at a
greater value of negative X/L) as the inclination angle decreases.
This trend, however, must reverse at a certain value of inclination
angle 7,, ... because we know from the discussion in Section 4.2.3
for the horizontal plate that the maximum occurs above the middle
of the plate (i.e. at X/L = 0.5), which is situated to the right side of
the adopted origin. As y is progressively decreased below y,,,0rsa UP
to y = 0°, the value of maximum Vy decreases slightly and the loca-
tion of the maximum moves to the right. This rightward movement
of the location of the maximum is a strong function of ) in the
range 0° < y < 15°.

Although Figs. 5, 8, 10 and 19 show that the flow field is a strong
function of the inclination angle y in the range 0° < y < 15°, Table 5
shows that the value of Nu determined by CFD is weakly depen-
dent on inclination angle y in the same range. This apparent para-
dox is resolved here by analysing the variations in local heat
transfer rate g, (Fig. 20) for various small values of ). The strong
dependence of the lift-off distance X,z o on y, and the correspon-
dence between X;_o7 and Xq . (the location of the minimum heat
transfer point) are depicted in Fig. 21.
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It is established that as the inclination angle is increased grad-
ually from the horizontal position, the value of Nu initially
decreases slightly, passes through a minimum point and then
onward increases continuously up to the vertical position of the
plate (Fig. 22). The information is of fundamental as well as of engi-
neering importance since Nu is a measure of the overall heat trans-
fer (Nu = [1/k(Ty — T)] fé q,dx) for a plate of given length (and
given temperature difference). The rate of increase in Nu is large
in the range 15° < y < 60°. It is further shown that the angle at
which the minimum Nu occurs is related to the angle o5 over At
which the magnitude of the force due to indirect pressure differ-
ence is equal to that due to direct buoyancy. Thus another impor-
tant new conclusion is established in the present work that an
increase in the inclination angle y tends to decrease Nu when the
major mechanism of natural convection is indirect pressure differ-

ence and the same tends to increase Nu when the major mecha-
nism of natural convection is direct buoyancy.
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