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A B S T R A C T

The objectives of the present paper are to accurately determine the modifications to a three-dimensional flow
field caused by a bifurcation module, to study the downstream evolution of the generated flow field, and to
enhance understanding by establishing the individual and combined roles of five factors (viz. curvature of flow
path, flow division at the bifurcation ridge, possible change in flow area from mother to daughter branches,
complex shape changes in the bifurcation and inertia of the flow) in giving rise to such a flow field in the
bifurcation module. The effects of the aforementioned five factors on the loss production in a bifurcation module
and on the potential of further loss in downstream units are also studied, and new correlations are developed.
The detailed analysis is systematized here by establishing two novel methods of construction of a bifurcation,
viz. “co-joining of two bent pipes” and “splitter in a pipe”, and by formally deriving the equivalence condition for
the flow in a bifurcation and its constituent elements. Through this systematization an attempt is made to
understand comprehensively the complexity of the fluid dynamics occurring in a single bifurcation, which is
often masked in the usual studies of flow in large bifurcating networks. Several bifurcation geometries are
studied, and about 500 separate three-dimensional computations are performed to achieve a degree of gen-
eralization. Use of fine grid (with up to 20 million computational elements in some simulations), double-pre-
cision arithmetic and stringent convergence criteria (10 8 for each scaled residual) ensures high accuracy of the
computed solutions. Both primary and secondary flow fields are investigated. Flow path curvature is responsible
for the development of Dean-type secondary motion while flow division at the bifurcation ridge generates
secondary motion opposite to that induced by curvature. An increase of flow area from inlet to outlet results in
an increase of asymmetry in cross-sectional velocity distribution. Although the loss across a bifurcation may
sometimes be smaller than that across its constituent elements, it is shown here through the introduction of two
parameters that a greater potential for incurring losses in a following straight section is generated in the bi-
furcation.

1. Introduction

Fluid motion in branching networks has been the subject of ex-
tensive research since such networks are often encountered in biolo-
gical systems (Pedley, 1977) and are increasingly being contemplated
for engineering applications (Murray et al., 1997). As an example, the
development of targeted drug delivery techniques requires the knowl-
edge of particle transport in the human bronchial tree. This in turn
depends on the fluid flow field. A good account of the flow of fluid and
particles in the human respiratory tract is given by Guha (2008). Such
branching networks (like the human bronchial tree) are usually di-
chotomous in nature, i.e. one branch (the mother) divides to give two
new branches (the daughters). The junction region where the three
branches meet is referred to as the bifurcation module (Fig. 1) and the
geometry of that region is complex. Fig. 1 shows how the shape and

area of the cross-section changes within a bifurcation module. Due to
such complex changes in geometry, analytical determination of the
fluid dynamic features of a bifurcation module is difficult, unless some
simplifying assumptions are introduced.

In two recent publications (Guha et al., 2016; Guha and
Pradhan, 2017), the flow in three-dimensional branching networks
comprising six generations (involving 63 branches and 31 bifurcation
modules) is comprehensively analyzed, specifying and systematizing
the complex primary flow field, and quantifying the generation and
evolution of secondary motion. Guha et al. (2016) discusses the primary
flow field in three-dimensional planar and non-planar branching net-
works constructed by connecting branches of successive generations
through bifurcation modules, with emphasis on how flow asymmetry is
generated and propagated in a geometrically symmetric network. Guha
and Pradhan (2017) documents the generation and evolution of
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secondary motion including Dean and anti-Dean type vortical struc-
tures, with the introduction of new quantifying parameters that show
the increase of secondary motion intensity in the bifurcations and the
decrease of the same in the straight sections. Wells et al. (2017) per-
formed numerical simulations to determine the viscous resistance in a
network (consisting of 7 branches and 3 bifurcation modules) re-
presenting a simplified model of the human bronchial tree. The flow in
three-generation branching networks has been the subject of a number
of studies (Wilquem and Degrez, 1997; Comer et al., 2001; Liu et al.,
2002; Longest and Vinchurkar, 2007). The fluid dynamic aspects of
flow in four generations have been investigated by some researchers
(Zhang et al., 2001; Fresconi and Prasad, 2007). Nowak et al. (2003)
and Kleinstreuer and Zhang (2009) developed modular approaches to
study the fluid flow and particle deposition in major portions of a model
bronchial tree. There are recent studies (Luo and Liu, 2008;
Pourmehran et al., 2016; Banko et al., 2015) which use the geometry of
the bronchial tree obtained from CT-scan images. Although the geo-
metry then becomes realistic, the details of the fluid flow field would
apply to specific individuals, and these studies, in general, do not delve
into either a description of the details of the complex flow field or any
physical explanation. Most of the studies, which are aimed at doc-
umenting the fluid dynamic features, thus use generalized geometric
models. While the references mentioned so far consider steady flow
conditions, the periodically unsteady motion in a branching network
has also been considered in some recent papers (Das et al., 2018;
Bauer et al., 2017; Koullapis et al., 2016; Pradhan and Guha, 2019).
Among other things, Pradhan and Guha (2019) describes how the
symmetry of the solution with respect to both space and time - found in
the oscillating, fully-developed flow in a pipe - are destroyed in the
unsteady effects that occur in the oscillating flow in a branching net-
work.

Most of the intriguing fluid dynamic features observed in the flow in
branching networks may be attributed to the bifurcation modules
(Fig. 1) joining the branches. Although the modifications in the primary
and secondary flow field due to a bifurcation module are inherently
present in the overall fluid dynamics of a branching network, the de-
tailed role of a single bifurcation is often masked in such studies.

However, a detailed understanding of the flow in this important
building block would go a long way in comprehending the overall
complex flow field in the network. It is in this context that the particular
route is taken in this paper to focus attention on what happens in a
single bifurcation module rather than on the aggregated effect in a
branching network.

A search of the literature on studies of flow in isolated bifurcations
shows that experiments were performed to measure the velocity field in
symmetric bifurcations (Schroter and Sudlow, 1969; Chang and El
Masry, 1982), and models of pressure drop in branching systems were
proposed (Pedley et al., 1970a,b, 1971) based on such measurements.
In a series of papers, Smith (1976, 1970, 1977a,b) analyzed the flow in
a branching tube. Yung et al. (1990) numerically analyzed the steady
flow in a bifurcation. The experimental papers did not provide the
precise geometries that were used in the experiments while the analy-
tical and numerical studies assumed simple 'Y' type bifurcations with
sharp corners. Hence, the correspondence between these experiments
and theoretical results can be studied only qualitatively. Zhao and
Lieber (1994a,b), for the first time, performed detailed experiments to
study the primary and secondary flow field in a single bifurcation with
smoothed corners and precisely defined geometric parameters.
Zhao et al. (1997) performed numerical simulations for the same geo-
metry as used in their experiments, and demonstrated excellent
agreement of the computational and experimental (Zhao and Lieber
1994a) results. The flow in a circular pipe at a high Reynolds number
with a splitter plate placed along a diameter was studied by Blyth and
Mestel (1999). Tadjfar and Smith (2004) performed direct numerical
simulations (DNS) on a single bifurcation (where a mother tube of
circular cross section divides into daughters of semi-circular cross sec-
tion). An attempt was made to develop expressions for the loss coeffi-
cient for a bifurcation as a function of various geometrical parameters
by Kang et al. (2011). Recently, Stylianou et al. (2016) performed direct
numerical simulation (DNS) of inspiratory and expiratory flow in a
particular human airway bifurcation model.

The main aim of the present study is to understand thoroughly the
flow physics associated with the fluid motion in a bifurcation module
by invoking the power of computational fluid dynamics (CFD). When

Fig. 1. Schematic of a typical bifurcation module showing the changes in the cross-section that occur as the mother branch divides into two daughter branches.
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flow passes through a bifurcation, it changes direction, resulting in the
development of secondary currents, and may even separate in some
cases depending on the changes in cross-sectional shape and area along
the flow path. One uniqueness of the present study is that it does not
simply determine the final solution in a complex geometry by the ap-
plication of CFD as a black-box tool, instead it seeks to attribute the
final solution to more elemental aspects of the specified problem
thereby enhancing understanding. With this objective in mind, we have
identified that the flow in a bifurcation is primarily governed by five
factors, viz. flow division at the bifurcation ridge, flow path curvature
in the bifurcation module, possible change in cross-sectional area from
mother to daughter branches, complex shape changes in the bifurcation
module and inertia of the flow. Here, we aim to establish the roles of
each of these factors by studying the flow in different geometries (each
incorporating some of the factors while eliminating others). Both pri-
mary and secondary flow fields are investigated thoroughly and related
to mechanisms of loss production.

Several bifurcation geometries are studied, and about 500 separate
three-dimensional computations are performed to achieve a degree of
generalization. Use of fine grid (with up to 20 million computational
elements in some simulations), double-precision arithmetic and strin-
gent convergence criteria (10 8for each scaled residual) ensures high
accuracy of the computed solutions. The results section is divided into
several sub-sections to streamline the discussion. Sections 5.1 and 5.2
deal with the effects of various geometrical factors on the flow mod-
ifications that take place in a bifurcation module. The effects of various
inlet velocity profiles are elaborated in Section 5.3. Section 5.4 de-
scribes how the flow field evolves in the daughter branches (that are
located downstream of the bifurcation module under study). Finally,
Section 5.5 reflects on the loss in pressure and its relation with the fluid
dynamic features described in the previous sections.

The detailed analysis is systematized here by establishing two
methods of construction of a bifurcation by applying a series of geo-
metrical transformations or operations to its constituent elements, viz.
“co-joining of two bent pipes” and “splitter in a pipe”, and by formally
deriving the equivalence condition for the flow in a bifurcation and its
constituent elements. Through this systematization an attempt is made
to understand comprehensively the complexity of the fluid dynamics
occurring in a single bifurcation, which is often masked in the usual
studies of the flow in a large bifurcating network. The “splitter in a
pipe” method allows one to study the effects of flow division in isola-
tion, and the “co-joining of two bent pipes” method allows one to study
the effects of flow curvature in isolation. The two methods are

complementary to each other and cater for various combinations of the
five factors mentioned above. Not only the loss is determined here
across a bifurcation module, that is directly determinable experimen-
tally or computationally, but the power of CFD is utilized to develop
new methods of quantifying the potential for loss generation in sub-
sequent units that follow the bifurcation module under study. The study
provides fundamental physical insight into the mechanisms of loss
production and proposes correlations for loss that can be used in
practice either in engineering or biological applications.

2. Details of geometry

The fluid dynamics in a branching geometry (i.e. where a mother
branch branches/bifurcates into two daughter branches) is primarily
governed by the following geometrical factors, viz. flow division at a
bifurcation, flow path curvature in the bifurcation module, possible
change of cross-sectional area from mother to daughter branches, and
complex shape changes in the bifurcation module. The present study
considers symmetric bifurcations with rigid walls and a sharp carina
(Comer et al., 2001), the cross-sections in the straight sections of the
mother and daughter branches being circular. SolidWorks (2010) is
used to build the three-dimensional models for various geometries that
allow the determination of the contribution of the above-mentioned
factors in establishing the flow field in a bifurcation.

2.1. Geometrical parameters for a typical bifurcation

The general features of a bifurcation module have already been
described in Fig. 1. In this section, we define the geometric parameters
which govern the flow characteristics in a bifurcation. In any branching
network, the bifurcation module will be followed by the cylindrical
sections representing the daughter branches (Fig. 1). Fig. 2 shows a
typical “flow unit” comprising a bifurcation module along with the two
daughter branches. The geometrical parameters which affect the flow
field in the bifurcation module are the total flow length ( +L L1 2) from
the inlet of the bifurcation module to the outlet (which is the start-plane
of the daughter branch), the area ratio A.R. (≡Aoutlet/Ainlet), and the
bifurcation angle (θ).Except otherwise stated, the value of (Lstraight/
Ddaughter) which represents the total straight length of the daughter
branches is kept at 3.5 (a commonly observed value in many natural/
biological systems (Pedley et al., 1970a,b, 1971)).

2.2. Methods of construction of bifurcation from constituent elements

The bifurcation flow unit described in Fig. 2 may be thought to be
constructed in various ways by applying a series of geometrical trans-
formations or operations to its constituent elements. Fig. 3 depicts one
such method which is named the “co-joining of two bent pipes” wherein
two similar bent pipes of a given area ratio A.R. (≡ Aoutlet/Ainlet) are
merged together to form a bifurcation of the same A.R. (Aoutlet for the
bifurcation is the sum of the outlet areas of the two daughter branches)
as that of the pipes. The above-mentioned method essentially comprises
three major steps: (i) the bending of the straight pipe through an angle
equal to half of the bifurcation angle (θ) of the bifurcation that is to be
constructed, (ii) changing of the cross-sectional area in the bend de-
pending on the A.R. of the bifurcation to be constructed, and (iii) the
co-joining of two such bent pipes along the outer radius wall. It should
be noted that the second step is eliminated in case of the construction of
a bifurcation of A.R.= 1 from a straight pipe of A.R.= 1. During the
process of co-joining of the two bent pipes, the total cross-sectional
areas at the inlet and outlet are conserved, i.e., the cross-sectional area
at the inlet of the bifurcation is equal to the sum of that at the inlets of
the two component pipes while the cross-sectional area at the outlet of
one of the daughters of the bifurcation is equal to that at the outlet of
the constituent bent pipe. It is worth mentioning here that due to the
manner of co-joining of the bent pipes to form the bifurcation (Fig. 3),

Fig. 2. Schematic of a typical bifurcation “flow unit” comprising a bifurcation
module and its two daughter branches.
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the inner edges of the bifurcation (Fig. 1) correspond to the outer edges
in its constituent bent pipes and the outer edges of the bifurcation
correspond to the inner edges in the constituent bent pipes.

Fig. 4 shows another method of forming a bifurcation which is
named here as the “splitter in a pipe” method. Here, a straight pipe of
A.R. equal to that of the desired bifurcation is taken as the starting
point. Then, a splitter plate of negligible thickness (we have used a
splitter plate of thickness of 1% of the straight pipe diameter) as
compared to the diameter of the straight pipe is placed along the middle
so as to mimic the flow division caused by the bifurcation ridge. This
configuration of a straight pipe with a splitter plate may be viewed as a
bifurcation with zero bifurcation angle and semi-circular daughters. It
may be transformed into a bifurcation with a finite bifurcation angle
and circular daughters in either of the following ways: (i) bending of
the two parts on the two sides of the splitter plate by an angle equal to
half of the bifurcation angle to obtain a bifurcation with semi-circular
daughter branches, followed by a shape change of the cross-section to
give circular daughter branches, or (ii) change of the cross-sectional
shape on the two sides of the splitter plate from semi-circular to circular
(this change of shape, while maintaining A.R.= 1, requires bending by
a small angle which has been found to introduce negligible curvature
effects; in our case this angle is 5∘) followed by the bending of the two
parts in opposite directions to form the two daughter branches. It
should be noted that during this process of transformation of a straight
pipe to a bifurcation, the value of A.R. is maintained constant.

We cite below three examples to amplify the utility of the “splitter
in a pipe” methodology: (i) a comparison of the flow in a straight pipe
and that in the straight pipe with a splitter plate establishes the isolated
effects of flow division, (ii) a comparison of the flow in a straight pipe
and that in a 70∘ bifurcation with semi-circular daughters establishes
the combined effects of two geometric factors viz. curvature in the
presence of flow division, (iii) a comparison of the flow in a straight
pipe and that in a 70∘ bifurcation with circular daughters establishes the
combined effects of flow division, curvature and change of shape of the

cross-section in the daughters from semi-circular to circular. On the
other hand, if one wants to determine the isolated effect of curvature
alone, then the “splitter in a pipe” methodology is not adequate because
the effect of flow division is inherently present in this method. The “co-
joining of two bent pipes” method can establish the effects of curvature
alone. Similarly, an intermediate geometry in the “co-joining of two
bent pipes” method can establish the combined effects of curvature and
change in flow area without flow division. Herein lies the utility of the
two methods. Thus, the two methods are not arbitrarily adopted, but
are carefully developed with a well-defined objective. The two methods
play complementary roles in enhancing physical understanding and
cater for various combinations of the five factors governing the flow in
a bifurcation. Although it may be possible to design other methods of
constructing bifurcations, it is found that these two methods provide
sufficient intermediate geometries during the transformation of a pipe
into a bifurcation for analyzing the individual and combined roles of
the geometrical factors viz. curvature in the flow path, flow division,
possible change in flow area from mother to daughter branches, and
complex shape changes in the bifurcation.

It should be clearly understood that although we have illustrated the
case of bifurcation angle (θ) equal to70∘ in Figs. 3 and 4, the methods
described are generic and may be used to develop bifurcation flow units
of any practically possible bifurcation angle (θ). It is to be noted that all
geometries shown in Figs. 3 and 4 correspond to the “flow units” (i.e.
the bifurcation module or its equivalent bent pipe is followed by a
straight section).

2.3. Equivalent flow in a bifurcation and its constituent elements

Computations of the flow in a bifurcation and its constituent ele-
ments at the same mass flow rate led to greatly differing values of the
losses across the bifurcation and its constituent elements, which could
not be attributed to the factors governing the flow in a bifurcation. The
concept of an “equivalent flow condition” is thus developed here for the

Fig. 3. Schematic showing the construction of bifurcations from a straight pipe by the method of “co-joining of two bent pipes”.
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flow in a bifurcation and its constituent elements. Suppose, the final
bifurcation has an inlet area Ainlet and outlet area Aoutlet in each
daughter. The flow rate at the inlet of the bifurcation is Qinlet and that at
the outlet of each daughter is Qinlet/2. The area ratio A.R. is defined as
the ratio of the total outlet area and the total inlet area. For the bi-
furcation, therefore, = A AA. R. 2 /outlet inlet . For geometric equivalence, the
A.R. of the constituent pipes in either “co-joining of two bent pipes” or
“splitter in a pipe” method is kept the same as that in the bifurcation.
Having obtained geometric equivalence, the “equivalent flow condi-
tion” requires that the total flow rate at the inlet (or outlet) of the final
bifurcation is equal to the total flow rate at the inlet (or outlet) of the
constituent pipes.

In the “co-joining of two bent pipes” method (Fig. 3), one starts with
two constituent pipes which are joined; each pipe, therefore, has an inlet
area Ainlet/2 and outlet area Aoutlet. The inlet diameter of each constituent
pipe is thus 1/ 2 times the inlet diameter of the bifurcation. (This is
illustrated in Fig. 5 which shows the dimensions for a bifurcation and its
constituent elements.) For maintaining “equivalent flow condition”, the
prescribed flow rate at the inlet of each constituent pipe is Qinlet/2; which
also represents the flow rate at the outlet of each constituent pipe. The
total flow rate at the inlet (or the outlet) of the two constituent pipes is
thus Qinlet, the same as that for the resulting bifurcation.

In the “splitter in a pipe” method (Fig. 4), one starts with one constituent
pipe which is split into two halves. There is thus a direct correspondence
between the constituent pipe with a splitter and the resulting bifurcation.
For geometric equivalence, the inlet area of the constituent pipe is therefore
kept as the same as that of the bifurcation, i.e. Ainlet. For maintaining
“equivalent flow condition”, the prescribed flow rate at the inlet of the
constituent pipe isQinlet, the same as that of the resulting bifurcation.

Table 1 gives the geometric details of three bifurcations formed by
the “co-joining of two bent pipes” method and their equivalent/con-
stituent bent and straight pipes that are used to determine the role of

individual geometric factors in setting up the flow field. The diameter of
the mother branch in the bifurcation is kept fixed at 10 mm and all
other diameters (in the bifurcations and pipes) are chosen accordingly
so as to attain desired value of the area ratio A.R. As shown in Fig. 5, the
inlet diameter of the constituent pipe is 1/ 2 times the inlet diameter of
the bifurcation. The values of A.R. have been chosen so as to cover all
three possibilities; increasing area of flow (A.R.= 2) from inlet to
outlet, uniform area of flow (A.R.= 1) and decreasing area of flow
(A.R.= 2/3) from inlet to outlet of the flow unit.

3. Mathematical formulation

The governing equations for steady, incompressible, laminar flow of
a Newtonian fluid are given as follows:

=v· 0 (1)

= +v v p µ v( . ) 2 (2)

In the above equations, v represents the fluid velocity vector, p is
the static pressure, ρand μ are respectively the density and dynamic
viscosity of the fluid. In the simulations reported here, air is taken as the
working fluid with ρ and μ equal to 1.225 kg/m3 and

×1.7894 10 Pa s5 respectively.
A uniform velocity distribution is assumed at the inlet of the flow

unit (pipe or bifurcation) unless otherwise mentioned in a specific
comparative study. The no-slip and no-penetration conditions are ap-
plied on the branch walls and the outlets are modeled using a pressure
boundary condition. Although the flow in geometries with curved
sections is found to be governed by the Dean number (Horlock, 1956;
Berger et al., 1983), the changes in local curvature within the bi-
furcation module makes the determination of the local Dean number
difficult. Hence, in previous studies (Guha et al., 2016; Guha and

Fig. 4. Schematic showing the construction of a bifurcation from a straight pipe by placing a splitter plate in the pipe.
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Pradhan, 2017) on branching networks, the parametric variation of the
inlet Reynolds number ( V D µRe /inlet inlet ) has been considered; Dinlet

and Vinlet are respectively the diameter and flow velocity at the inlet to
the bifurcation module. However, it is found that when the equivalence
flow condition is established, the inlet Reynolds number for the bi-
furcation is different from that in its constituent element. On the other
hand, the inlet velocity is the same in both flow units for the equiva-
lence flow condition. In the present study, since we intermittently re-
vert back to the flow in straight and bent pipes so as to establish the
effect of geometric factors on the flow, we consider the parametric
variation of the inlet velocity (Vinlet) instead of the inlet Reynolds
number.

3.1. Calculation of pressure drop

It is interesting to make an estimation of the pressure loss incurred

when the flow in a branching network passes through a flow unit. The
decrease in static pressure across the unit is defined as,

=p p pin out (3)

where pin and pout are the area-weighted average static pressures at the
inlet and outlet sections respectively. Similarly, the decrease in total
pressure across the unit is defined as,

=p p pin out0 0, 0, (4)

where p0,in and p0,out are the mass-flow-averaged (same as volume-flow-
averaged for incompressible flow where ρ is a constant) total pressures
at the inlet and outlet sections respectively. In the calculation of the loss
of total pressure across a bifurcation (Δp0, bifurcation), the outlet pressure
is calculated by taking the mass-flow average over both the outlets.
Eq. (4) can be written in an expanded form as follows:

Fig. 5. Schematic of a bifurcation module and its constituent elements. (a) bifurcation module, (b) constituent bent pipe, (c) constituent straight pipe.

Table 1
Geometric details of the bifurcations and their equivalent pipes used in the present study to determine the individual role of geometric factors.

Geometry Dinlet

(mm)
Doutlet

(mm)
Area Ratio (A.R.) Bifurcation/Bend Angle

Bifurcation 10 10 2 70°
Equivalent Bent Pipe 10/ 2 10 2 35°
Equivalent Straight Pipe 10/ 2 10 2 –
Bifurcation 10 10/ 2 1 70°
Equivalent Bent Pipe 10/ 2 10/ 2 1 35°
Equivalent Straight Pipe 10/ 2 10/ 2 1 –
Bifurcation 10 10/ 3 2/3 70°
Equivalent Bent Pipe 10/ 2 10/ 3 2/3 35°
Equivalent Straight Pipe 10/ 2 10/ 3 2/3 –

K. Pradhan and A. Guha International Journal of Heat and Fluid Flow 80 (2019) 108483
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In Eq. (5), dA represents an elemental area at a particular cross-
section. The term in the left hand side of Eq. (5) is the mass-flow-
averaged total pressure at the inlet section and the first term on the
right hand side of Eq. (5) is the mass-flow-averaged total pressure at the
outlet section. In the absence of heat transfer, shaft work transfer and
gravitational effects, the application of incompressible energy equation
for non-uniform flow shows that the drop in mass-flow-averaged total
pressure Δp0 is connected to the effects of viscous dissipation.

4. Numerical method

The three-dimensional models considered are built in
SolidWorks (2010), the meshing is done using ANSYS Mesh Modeller
(ANSYS 15.0, 2014), and numerical simulations are performed using
ANSYS Fluent. We have simulated the flow in each of the bifurcations
and their constituent elements for 7 different inlet velocities, thus re-
quiring a large number of simulation runs.

4.1. Grid generation

Here an unstructured mesh comprising tetrahedral elements is
generated for the geometries using ANSYS Meshing. Inflation layers
(boundary layer-type meshing) are used adjacent to the branch walls to
accurately capture the velocity and pressure gradients near the wall. It
is important to ensure that the inflation layers in the two halves of the
cross-section do not overlap (as it overlaps, for example, in Nowak et al.
(2003)) in the bifurcation region (Fig. 1). Here, the bifurcation geo-
metry is constructed in such a manner that the overlapping of the in-
flation layers is avoided.

4.2. Details of simulations

The pressure-based solver available in FLUENT is used for solving
the three-dimensional governing equations. The advection terms are
discretized using the second order upwind scheme so as to reduce the
numerical diffusion associated with an unstructured mesh (Barth and
Jespersen, 1989). A segregated implicit (Mei and Guha, 2005) solver is
used which uses a time-marching technique (Guha and Young, 1991;
Guha, 1994) to reach the steady state. The SIMPLE algorithm is em-
ployed in coupling the velocity and pressure. A convergence criterion is
set at 10 8 for all the results reported here. The 'Velocity Inlet' feature is
used to specify a flow velocity at the inlet to the flow unit. At the
outlets, the 'Pressure Outlet' feature is used to specify a static pressure
there. In the present work, the gage pressures at the outlet sections are
set to zero. It is to be realized that it is the change in static pressure
across the flow unit (Δp) that the CFD simulations determine, and for
incompressible flow, Δp may be assumed to be independent of the ab-
solute value of the static pressure specified at the outlet (Guha et al.,
2016; Guha and Pradhan, 2017). Thus, once the value of Δp is de-
termined from the simulations, the static pressure at any location
within the flow unit may be determined if the actual value of static
pressure is specified somewhere in the unit.

4.3. Grid independence study

Grid independence of the solution has been determined for all
geometries considered, following the method developed by
Roache (1997) for unstructured grids. In this method, a relative error ɛi

is calculated using the following expression:

=i
i coarse i fine

i fine

, ,

, (6)

where η represents a flow variable. Here, the magnitude of velocity is
considered for calculating the value of ɛi. The root-mean-square value of
this relative error (ɛrms) is a direct measure of grid convergence when

= =r N N( / ) 2grid fine coarse
1/3 . Since it is difficult to achieve true grid

halving for unstructured three-dimensional mesh, Roache (1997) in-
troduced a grid convergence index GCI for rgrid < 2. GCI for the refined
grid is defined as follows:

=GCI F
r 1

.fine s
rms

grid
q

(7)

Here, q is the order of discretization of all terms in space, Fs is a factor of
safety whose value is set to 3, so that the value of GCI becomes equal to
ɛrms for =r 2grid and =q 2 (the value of q being 2 for second order
discretization in space). Here, the value of ɛrms is calculated from a large
number of points (400 points are used along two mutually perpendi-
cular diameters at the end of the left daughter branch). In the course of
our present study, we found that for GCI≤5%, the changes in the flow
field are negligible for further grid refinements.

Celik et al. (2008) proposed a formulation for calculating an ap-
parent order (q) of discretization from values of ɛrms and rgrid. They
stated that a grid independent solution is indicated by an agreement of
the apparent order with the formal order of the used scheme. Accord-
ingly, here we have used their iterative method to find the value of q .

The details of the grids with results of the grid independence test for
the bifurcation with A.R.= 1 (Table 1) are tabulated in Table 2. We
find that the value of GCI for the medium mesh is 17.1%, that for the
fine mesh is 7.4% and that for the very fine mesh is 5%. Hence the
change in GCI between fine and very fine mesh is small. The value of q
is calculated to be 1.95 for the two sets of three meshes (coarse,
medium and fine; and medium, fine and very fine). The “fine” mesh
thus provides sufficiently accurate results. However, the “very fine”
mesh is used for all subsequent simulations pertaining to this bifurca-
tion for increased precision. Similar grid independence studies have
been performed for the other bifurcations as well; those details have not
been included in this paper for brevity.

We have taken great care in ensuring the accuracy of the values of
loss of total pressure reported here. The values of loss of total pressure
(Δp0) across a bifurcation and its constituent elements obtained by
using successively finer meshes are tabulated in Table 3. It is observed
that the results uniformly converge as the mesh is progressively refined,
and the values obtained by using the 'fine' and 'very fine' mesh are
identical up to five decimal places. We have reported values of loss of
total pressure up to four decimal places in the Tables included in this
paper. Moreover, we have used the very fine mesh for all results re-
ported here. This gives confidence in the results and the conclusions
drawn from them.

4.4. Validation of present method

Zhao and Lieber (1994a) measured steady inhalation airflow
through a symmetric single bifurcation with mother branch diameter of
3.81cm, mother to daughter diameter ratio of 2 (which corresponds to

=A.R. 1) and bifurcation angle of 70∘. Laser doppler anemometry (LDA)
measurements of the velocity in the meridional plane (defined as the
plane containing the centrelines of the mother and daughter braches by
Guha et al. (2016)) and transverse planes (normal to the meridional

Table 2
Details of the grid independence test for a 70∘ bifurcation flow unit of =A.R. 1
( =D 10 mminlet , =D 10/ 2 mmoutlet ) performed at =Re 1000 ( =V 1.46 m/sinlet ).

Number of elements in mesh rgrid ɛrms GCI

104,187 (coarse) - 255,723 (medium) 1.35 0.047 0.171
255,723 (medium) - 807,552 (fine) 1.47 0.029 0.074
807,552 (fine) - 2547,816 (very fine) 1.47 0.019 0.050
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plane) were carried out at three different values of inlet Reynolds
number (i.e., =Re 518, 1036 and 2089) and 17 different locations in the
complete geometry. The geometry of Zhao and Lieber (1994a) is

reproduced here, and the velocity profile is compared at a specified
location for =Re 1036 (Fig. 6). In the same figure, the numerical results
of Comer et al. (2001) are also included. All velocities shown in Fig. 6
are presented along a meridional diameter in the left daughter branch
at the junction of the bifurcation module and the cylindrical section of
the daughter branch. Since the numerical results are symmetric about
the centreline of the mother branch, the velocities in the right daughter
(which are exact mirror images of that in the left daughter) are not
shown here. It is found that the present CFD results agree well with the
experimental measurements (Zhao and Lieber, 1994a) at =Re 1036
(Fig. 6) as well as at other values of the inlet Reynolds number (not
shown here); at places the present CFD results compare better with the
experiments than the computational results of Comer et al. (2001).

5. Results and discussion

The flow physics in a bifurcation (comprising a mother branch di-
viding into two daughter branches) may be explained by attributing the
fluid dynamics to the following important geometrical factors - flow
division at the bifurcation ridge, curvature of the flow path, possible
changes in cross-sectional area from mother to daughter branches and
complex change in cross-sectional shape in the bifurcation module.
Here, we have tried to assess the separate contributions of each of these
effects and their final culmination into the overall features of the flow
field in a bifurcation by considering the flow in different geometries. All
results reported in this paper pertain to the flow of air through the
considered flow unit.

5.1. Determination of the role of geometrical factors in a bifurcation
constructed by “co-joining of two bent pipes”

Since this method of construction of a bifurcation, demonstrated in
Fig. 3, involves bending of the straight pipe through an angle equal to
half of the bifurcation angle (θ), followed by the changing of the cross-
sectional area in the bend depending on the A.R. of the bifurcation to be
constructed, and finally, the joining of two such bent pipes along their

Table 3
The mass-flow-averaged drop of total pressure across different geometries in-
volved in the construction of a 70∘ bifurcation ( =D 10 mminlet ) of A.R.= 1 from
its constituent elements (using the “co-joining of two bent pipes” method) for

=V 1.46 m/sinlet .

Mesh Number of elements Δp0, straight Δp0, bent Δp0, bifurcation

Coarse 104,187 0.524419 0.527891 0.445601
Medium 255,723 0.524501 0.528097 0.445856
Fine 807,552 0.524532 0.528135 0.445911
Very fine 2547,816 0.524534 0.528138 0.445914

Fig. 6. Profile of the axial velocity along the diameter lying on the meridional
plane at the outlet of the left daughter branch (line A-B) for =Re 1036.

Fig. 7. Contours of velocity magnitude at the outlet section of a straight pipe flow unit and at the outlets of three bent pipe units of different A.R. values (Table 1) for
an inlet velocity =V 1.46 m/sinlet . [The particular inlet flow rate is chosen since it corresponds to =Re 1000 in the bifurcations constructed from these bent pipes
(Table 1)].
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outer radius walls, we try to determine the effects of bending (or flow
path curvature), change of cross-sectional area and flow division in
sequence.

5.1.1. Effects of flow path curvature and cross-sectional area change
Fig. 7 shows the effect of bending of a straight pipe flow unit fol-

lowed by changes in the cross-sectional area of flow from inlet to outlet
(i.e. A.R.≠ 1) on the cross-sectional velocity distribution. A compar-
ison of Figs. 7(a) and 7(c) shows that the introduction of flow path
curvature (in the absence of cross-sectional area changes) leads to a
shift of the maximum of velocity towards the outer edge of bent pipe
and generates a crescent shaped zone of high velocity in the cross-
section. Development of this crescent shaped zone may be attributed to
the Dean-type secondary circulation typically occurring in curved pipes
which essentially pushes faster moving fluid towards the outer edge of
bent pipe along the horizontal centreline (Guha and Pradhan, 2017).
Another effect of the crescent shaped velocity contours is the devel-
opment of “M-shaped” velocity profiles (comprising two maxima) along
the vertical diameter in the diagram.

The effects of changes in the cross-sectional area (for the same bend
angle) on the velocity distribution may be ascertained by comparing the
velocity contours at the outlet of a bent pipe flow unit with A.R.= 1
(Fig. 7c) with those at the outlets of bent pipe units with A.R.≠ 1
(Fig. 7b and d). Fig. 7(b) shows a pronounced crescent shaped high
velocity zone in the cross-section for A.R.= 2 while the shape of that
zone gradually flattens as A.R. decreases to 1 (Fig. 7c) and 2/3 (Fig.7d).
This indicates that while the curvature of the flow path tends to in-
troduce asymmetry in the cross-sectional velocity distribution, a de-
crease of A.R. (i.e. a decrease of the outlet diameter when the inlet
diameter is kept unchanged) tends to reduce such asymmetries. Such a
trend may be attributed to the increase in the average velocity at the
outlet section (indicated by a larger zone of high velocity) due to a
reduction of the flow area at the outlet section with decreasing values of
A.R..

5.1.2. Effect of flow division at bifurcation ridge
In this section, we determine the effects of flow division in a bi-

furcation by simultaneously studying the velocity distribution in a bent
pipe flow unit and that in a bifurcation flow unit constructed by co-
joining two such bent pipe units (Fig. 3). The geometric symmetry of
such a bifurcation ensures that the flow field in the two daughters are
mirror images of one another. Hence, in all following discussions, the
velocity contours in the left daughter branch of the bifurcation are
shown. The contours of velocity magnitude are plotted at the end-plane
(plane A) of the module and at the end-plane (plane B) of the straight
section following it, for both bent pipe units and bifurcation units to
illustrate the fluid dynamic effects of the bifurcation ridge (which is
absent in the bent pipe unit). The secondary velocity vectors are also
superposed on the contours to show how flow division affects the sec-
ondary flow.

Fig. 8 shows the velocity contours and secondary flow pattern at
specified cross-sections in a 35∘ bent pipe flow unit with A.R.= 1 and in
a bifurcation constructed by co-joining two such units. The velocity
contours at plane A for the bent pipe are characterized by maximum
velocity near its outer edge (which corresponds to the inner edge of the
bifurcation) while the maximum of the velocity is shifted in the oppo-
site direction for the bifurcation. While the shift of maximum velocity
in the bent pipe occurs due to the effects of curvature, the opposite
trend in the bifurcation occurs due to the combined effects of uniform
inlet flow and the development of a low velocity region in proximity to
the bifurcation ridge. The secondary flow at plane A in both the bent
pipe and the bifurcation shows two counter-rotating Dean vortices
(Guha and Pradhan, 2017) in the two halves of the cross-section with
secondary fluid motion towards the inner edge of bifurcation in the
center and back towards the outer edge of bifurcation along the top and
bottom walls. The velocity contours and the secondary flow patterns at

plane B in Fig. 8 for the bent pipe (A.R.= 1) are found to be similar to
that for the bifurcation (A.R.= 1); the velocity contours are char-
acterized by a crescent shaped region of high velocity skewed towards
the inner edge of bifurcation and the secondary flow pattern shows
typical Dean-type circulation. Thus, the straight sections following the
bent pipe and the bifurcation module alter the flow field in such a way
that the differences observed at plane A are attenuated considerably.
This also shows that the differences at plane A occur primarily due to
the effects of flow division in the bifurcation which gradually decay
with distance from the bifurcation ridge.

Fig. 9 shows the velocity contours and secondary flow pattern at
planes A and B in a 70∘ bifurcation of A.R.= 2 and that in its con-
stituent bent pipe. At plane A, the bent pipe shows a maximum velocity
near its outer radius (Berger et al., 1983) whereas the maximum velo-
city occurs near the center of the cross-section in the bifurcation. This
may be attributed to the effects of the bifurcation ridge which creates a
low velocity region in its vicinity and hence pushes the maximum ve-
locity away from the inner edge. The secondary flow at plane A in both
the bent pipe and the bifurcation is characterized by typical Dean-type
circulation. As was observed in Fig. 8, the velocity contours as well as
the secondary pattern at plane B in Fig. 9 for the bent pipe and the
bifurcation are similar owing to the decaying flow division effects with
distance downstream of the bifurcation ridge. A comparison of the
velocity contours in Figs. 8 and 9 shows that the increase of A.R. from 1
to 2 results in an increase in the non-uniformity in the velocity dis-
tribution at a cross-section with the development of a low velocity re-
gion towards the outer edge and a crescent-shaped high velocity zone
near the inner edge. The enhanced non-uniformity in the cross-sectional
velocity distribution may be attributed to the diffuser-like (Massey and
Ward-Smith, 1998) flow path in the geometry with A.R.= 2.

Fig. 10 shows the contours of velocity and secondary flow pattern in
a 70∘ bifurcation of A.R.= 2/3 and its constituent bent pipe. Owing to
the reduction of cross-sectional area from the inlet to plane A, the
average velocity at plane A (for bent pipe and bifurcation) is con-
siderably greater than that at the inlet. Moreover, the asymmetry in the
velocity distribution at plane A for the bent pipe is found to be small as
compared to that found in Figs. 8 and 9). However, the velocity con-
tours at plane A for the bifurcation show a maximum near the outer
edge mainly due to the generation of the low velocity region around the
bifurcation ridge. Although some asymmetry is developed in the velo-
city distribution at plane B for the bent pipe as well as the bifurcation
(with A.R.= 2/3), it is significantly smaller than that observed in
Figs. 8 and 9. The secondary flow patterns in Fig. 10 appear similar in
the bent pipe and the bifurcation at both planes A and B (with char-
acteristic Dean-type circulation).

The following general conclusions may be drawn from the ob-
servations made in Figs. 7–10. (i) The curvature of the flow path is
responsible for the development of skewed velocity distributions and
Dean-type secondary motion at a cross-section. (ii) An increase in the
value of A.R. results in an increase in the non-uniformity in the velocity
distribution at a cross-section downstream of the curved section. (iii)
The bifurcation ridge creates a low velocity region in its vicinity, thus
leading to a shift of the velocity maximum towards the outer edges in
the daughter branches (this tendency is opposite to that caused by the
flow curvature effects). (iv) The straight sections following the bent
pipe or the bifurcation module in a flow unit (Pedley et al., 1971) have
the general tendency to attenuate the differences caused by the bi-
furcation ridge, and restore similarities in the flow field in the two flow
units.

5.1.3. Consideration of all geometrical factors together
Fig. 11 shows secondary velocity contours at the outlet sections of

the geometries (plane B in Figs. 8–10) involved in the transformation of
a straight pipe into a bifurcation by the method of “co-joining of two
bent pipes” (Fig. 3). The significantly greater magnitudes of secondary
velocity in the bent pipe (A.R.= 1) and the bifurcation (A.R.= 1) as
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compared to that in the straight pipe (A.R.= 1) is primarily due to the
effects of curvature of flow path. Fig. 11 also shows that the secondary
velocity contours in bent pipes and bifurcations are qualitatively si-
milar, the features thus being attributable to the effects of curvature

alone. The secondary velocity contour at the end-plane in a bent pipe or
bifurcation flow unit is characterized by two counter-rotating vortices
with maximum velocity v| |S max occurring near the top and bottom
walls. The small isolated (blue) regions of low v| |S occurring

Fig. 8. Vectors of secondary velocity superposed on velocity magnitude contours at the beginning and end of the straight section following a bent pipe and a
bifurcation module for =V 1.46 m/sinlet and =A.R. 1.

Fig. 9. Vectors of secondary velocity superposed on velocity magnitude contours at the beginning and end of the straight section following a bent pipe and a
bifurcation module for =V 1.46 m/sinlet and =A.R. 2.
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symmetrically in the upper and lower half of the cross-sections corre-
spond to the core region of the vortices (Guha and Pradhan, 2017).

The average secondary velocity at the outlet of a bifurcation flow
unit is found to increase as A.R. decreases from 2 to 2/3. However,

Fig. 11 does not show any definite trend in the average secondary ve-
locity at the end-plane of the straight section following the bent pipe.
Calculations show that for a given value of A.R., the average secondary
velocity at the end-plane of the straight section following the

Fig. 10. Vectors of secondary velocity superposed on velocity magnitude contours at the beginning and end of the straight section following a bent pipe and a
bifurcation module for =V 1.46 m/sinlet and =A.R. 2/3.

Fig. 11. Contours of secondary velocity magnitude at the outlet section of a straight pipe of =A.R. 1, at the outlet of bent pipes of different A.R. values, and at the exit-
plane of the left daughter branch in the bifurcations constructed from those bent pipes for =V 1.46 m/sinlet . (Outlet section refers to the end-plane of the “flow unit” for
pipes and bifurcations).
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bifurcation is greater than that at the corresponding plane following the
bent pipe (for the “equivalent flow condition”). It is interesting to note
that for the chosen bifurcation/bend angle in Fig. 11, a reduction of
total flow area from inlet to outlet (A.R.< 1) results in an increase of
average secondary flow velocity in both pipes and bifurcations whereas
an expansion of total flow area from inlet to outlet (A.R.> 1) results in
an increase of average secondary velocity in the bent pipe but a de-
crease of the same in the bifurcation. Such a qualitative difference
between bent pipes and bifurcations for A.R.> 1 may be attributed to
the tendency of the bifurcation ridge to cause secondary motion op-
posite to that caused by the flow curvature effects. For A.R.< 1, the
greater flow velocities result in the curvature effects dominating over
the effects of flow division, thus leading to greater magnitudes of sec-
ondary velocities for both bent pipes and bifurcations.

5.1.4. Effect of geometrical factors on the pressure losses
The decrease of total pressure across a pipe or a bifurcation is an

important parameter since it indicates the losses incurred by the flow
between the inlet and the outlet. In the present study, the decrease of
pressure across a given flow module is calculated from Eq. (3). We have
shown in Fig. 3 how a bifurcation may be constructed from a straight
pipe. Here, in Table 4, we list the decrease of static (Δp) and total (Δp0)
pressure across the different geometries (shown in Fig. 3) with an aim
to understand the pressure loss caused by individual factors governing
the flow in a bifurcation.

A comparison of the pressure drops across the straight pipe
(A.R.= 1) and the 35∘ bent pipe (A.R.= 1) in Table 4 shows that flow
path curvature results in an increase of both Δp and Δp0 (in the presence
or absence of the following straight section). However, the effect of the
presence of the bifurcation ridge, that may be ascertained by comparing
the values of Δp0 for the 35∘ bent pipe (A.R.= 1) and the 70∘ bifurcation
(A.R.= 1), is to cause a decrease ofΔp0. A contributory factor to this
finding may be visualized by the partial removal of the internal wall in
the formation of the bifurcation by the co-joining of two bent pipes.
While the value of Δp0 for the bifurcation module (i.e. without the
straight sections) is smaller than that for the equivalent bent pipe,
usually the opposite happens when straight sections are added to both.
The reasons for such an observation are discussed later in Section 5.5.

The effect of changing flow area on the loss of pressure can be as-
certained by comparing the pressure drops in the 35∘ bent pipes of area
ratios 1, 2 and 2/3 in Table 4. A change of A.R. from 1 to 2 causes a
large decrease in Δp (by about 90%) irrespective of the presence/ab-
sence of the straight portion following the curved pipe, and a decrease
in Δp0 by about 25% (again irrespective of the presence/absence of the
straight section following the curved section of the pipe). The sig-
nificant decrease of Δp may be attributed to the pressure recovery as-
sociated with increasing cross-sectional area in the bent pipe with
A.R.= 2. It was shown in Eq. (5) that Δp0 represents the losses asso-
ciated with the flow. It is expected that the losses associated with a
diverging bent pipe (A.R.= 2) would be greater than that in a bent pipe
of uniform cross-sectional area (A.R.= 1). However, the above

statement holds true only if the same flow rate in an equivalent uniform
diameter pipe is used for the comparison. (The equivalent diameter is
such that the uniform cross-sectional area would be equal to the ar-
ithmetic mean of the inlet and outlet areas of the diverging pipe.) On
the other hand, a decrease of A.R. from 1 to 2/3 results in a significant
increase in Δp (by 74% in the presence of a following straight section
and by about 100% in its absence) and an increase in Δp0 (by 65% in
the presence of a following straight section and by about 43% in its
absence). This trend may also be attributed to the fact that the flows in
the two above-mentioned bent pipes (which have the same inlet cross-
sectional area) are not equivalent. Similar observations are made for 70∘

bifurcation with increasing or decreasing cross-sectional areas from
inlet to outlet.

It is interesting to note that for both 35∘ bent pipes and 70∘ bi-
furcations, the static pressure drop Δp is greater than the drop in total
pressure when the value of A.R. is 1 or 2/3; however Δp0 exceeds Δp for
the case of A.R.= 2. This may be attributed to the decreasing flow
velocities from inlet to outlet in case of A.R.= 2. The negative value of
Δp for the bifurcation module (A.R.= 2) followed by straight sections
indicates that there occurs a rise of static pressure across the bifurcation
flow unit due to the increasing flow area.

Table 4 also shows that the losses (Δp0) associated with a bent pipe
or bifurcation is greater for A.R.= 2/3 than that for A.R.= 2. This is in
contradiction to our expectation that an increase of cross-sectional flow
area down the module results in greater losses than that for the case of
decreasing flow area. The reason for the contradiction may be ex-
plained as follows: The usually accepted notion of greater losses in a
diverging pipe as compared to a converging pipe (for the same flow
rate) is true if the comparison is made between a converging and a
diverging pipe whose average cross-sectional areas (i.e. the arithmetic
mean of the inlet and outlet areas) are the same. However, this con-
dition is not satisfied by the bent pipes and bifurcations considered here
in which the inlet area is kept constant, irrespective of whether A.R. is
greater than or less than 1.

5.2. Determination of the role of geometrical factors in a bifurcation
constructed by “splitter in a pipe” method

The construction of a bifurcation from a straight pipe by first pla-
cing a splitter along a diameter in the pipe and then introducing flow
path curvature and cross-sectional shape changes was discussed in
Fig. 4. Here, we determine the fluid dynamic changes associated with
the above-mentioned transformation for A.R.= 1. Then, we investigate
the effect of A.R. on those changes by considering a case where the
value of A.R. is equal to 2.

Fig. 12 show the secondary velocity vectors superposed on the
contours of velocity magnitude at the outlet section of the different flow
units involved in the transformation of a straight pipe of A.R.= 1 to a
bifurcation of A.R.= 1. The geometrical changes introduced at each
stage have been mentioned over the arrows in the figure. The fluid
dynamic effects of flow division is isolated here by considering the flow

Table 4
Decrease of the area-averaged static pressure and mass-flow-averaged total pressure across different flow units involved in the construction of a bifurcation flow unit
from its constituent elements (as shown in Fig. 3) for =V 1.46 m/sinlet .

Geometry Static pressure drop Δp (Pa) Total pressure drop Δp0 (Pa)

Across module only Across module followed by straight section Across module only Across module followed by straight section

70° bifurcation A.R.= 1 1.2119 1.7175 0.4459 0.9897
35° bent pipe A.R.= 1 1.1213 1.7137 0.5281 0.9930
70° bifurcation A.R.= 2 0.0129 −0.0606 0.2897 0.6259
35° bent pipe A.R.= 2 0.1639 0.0784 0.4061 0.7365
70° bifurcation A.R.= 2/3 3.2025 4.6311 0.5174 1.5641
35° bent pipe A.R.= 2/3 3.3528 4.6967 0.7559 1.6275
Straight pipe A.R.= 1 0.9971 1.6019 0.5245 0.9099
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in a straight pipe with a splitter plate in the middle, which may be
viewed as a bifurcation with zero bifurcation angle (thus eliminating
flow curvature effects) with semi-circular daughters (thus eliminating
the effects of change in cross-sectional area and shape). The leading
face of the splitter plate represents the bifurcation ridge in the 0∘ bi-
furcation.

The contours of primary velocity in the entrance region of a straight
pipe (Fig. 12) are characterized by concentric circles with the maximum
velocity in the center, and secondary fluid motion directed from the
periphery towards the cross-sectional center. Viscous effects are re-
sponsible for the transformation of the uniform inlet velocity to the
parabolic profile in the fully developed region, and the associated
secondary motion which drives fluid from the periphery towards the
center. The introduction of the splitter plate divides the flow in the pipe
into two separate streams with the formation of two additional
boundary layers on the two surfaces of the splitter. The contours of
primary velocity are found to follow the shape of the cross-section
(concentric semi-circles). Although the average velocity is equal in both
cases (due to equality of flow area), the maximum velocity is greater in
the pipe with splitter plate due to the additional boundary layers. In
each semi-circular daughter, the secondary circulation is similar to that
in the straight pipe with movement of fluid from the periphery towards
the center of the semi-circle. From the above discussion it is concluded
that flow division alone (i.e. in the absence of curvature) results in the
development of additional boundary layers along the edges of the di-
vider, and sets up secondary fluid motion directing fluid away from the
divider (which represents the inner edges of the bifurcation).

The effect of introducing curvature in the presence of flow division
is now ascertained by considering the flow field at the outlet section of
the 70∘ bifurcation (A.R.= 1) with semi-circular daughter branches in
Fig. 12. The curvature in the flow path in the bifurcation leads to a
change of shape of the velocity contour bands from semi-circles to
flattened bean-shaped structures. Typical Dean-type secondary circu-
lation is set up as shown by the secondary flow vectors in the semi-
circular daughter branches of the 70∘ bifurcation.

The effect of changing the shape of the daughter branches from

semi-circular to circular, in the presence of curvature and flow division
effects, is determined by comparing the velocity field at the outlet
section of the left daughter branch in the 70∘ bifurcation with semi-
circular daughters to that at the same location in the 70∘ bifurcation
with circular daughters in Fig. 12. The change of cross-section leads to a
change in the shape of the velocity contour bands from bean-shaped
structures following the semi-circular cross-sectional shape to crescent-
shaped structures. The shift of the velocity maximum towards the inner
edge that was also present in the case of semi-circular daughters is
found to be more prominent in case of circular daughter branches.
There appears to be no significant qualitative change in the secondary
flow pattern (Dean-type circulation) in the daughter branches due to
the change of cross-sectional shape from semi-circular to circular.

It was shown in Fig. 4 that instead of introducing the curvature in
the pipe with splitter plate configuration, the shape on the two sides of
the splitter plate may be changed first so as to form a bifurcation of very
small bifurcation angle (10∘ here) with circular daughters, followed by
its transformation into a large angle bifurcation by the introduction of
flow path curvature. Such a transformation would allow one to de-
termine the effect of cross-sectional shape change in the presence of
flow division but in the absence of curvature effects. It is observed in
Fig. 12 that the velocity contours at the end-plane of the straight section
following the bifurcation module in the 10∘ bifurcation with circular
daughters are different from that found in the straight pipe with splitter
plate (i.e. 0∘ bifurcation with semi-circular daughters). The contour
bands in the 10∘ bifurcation appear as concentric circles (instead of the
semi-circles found in the pipe with splitter plate) indicating that the
shape of the velocity contours follows the shape of the cross-section.
Moreover, the change of shape of the daughters from semi-circular to
circular results in a reduction of the non-uniformity of cross-sectional
velocity distribution. The change of cross-sectional shape from semi-
circular to circular induces secondary fluid motion along the top and
bottom edges towards the outer edge in addition to the secondary flow
induced by the flow division effects (which drives fluid away from the
bifurcation ridge).

A comparison of the velocity field in the daughter branch of the 10∘

Fig. 12. Vectors of secondary velocity superposed on velocity magnitude contours at the outlet sections of the various geometries involved in the construction of a
bifurcation from a straight pipe (as shown in Fig. 4) for =V 1.46 m/sinlet and =A.R. 1.
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bifurcation with that at the same location of the 70∘ bifurcation (both
having circular daughters) establishes the effect of bending of the flow
path in the presence of flow division and cross-sectional shape change.
Fig. 12 shows that curvature leads to the development of crescent-
shaped contour bands and typical Dean-type circulation in the cross-
section. Associated with the change of shape of the contour bands is an
increase of the maximum velocity in the cross-section and hence an
increase in the non-uniformity in the velocity distribution.

Having described the individual effects of successive geometrical
changes in the transformation of a straight pipe of A.R.= 1 to a 70∘

bifurcation of A.R.= 1, we now investigate the effect of the same
changes when A.R. is 2 (Fig. 13). Since the secondary flow pattern for
this case (A.R.= 2) is qualitatively similar to that shown in Fig. 12
(A.R.= 1), they have not been shown in Fig. 13. For the same inlet flow
rate, a comparison of Figs. 12 and 13 reveal that the maximum (and
average) velocities in the daughter branches are significantly reduced
as A.R. increases from 1 to 2. The contours for A.R.= 2 (Fig. 13) show
an enhanced non-uniformity in cross-sectional velocity distribution.
The reason for this enhancement may be explained as follows. Due to
the symmetry of flow with respect to the bifurcation ridge in a single
bifurcation, the flow in one half of the mother branch (i.e. flow in a
semi-circular area with the diameter aligned with the trace of the bi-
furcation ridge) is directed toward one of the daughter branches. For
A.R.= 2, the flow along this path not only experiences a change of
shape of the flow area (that is also present when A.R.= 1) but also an
increase in flow area (similar to that in a diffuser). It is well known
(Massey and Ward-Smith, 1998) that diffusers magnify any non-uni-
formity in the cross-sectional velocity distribution. The development of
the low velocity region of large extent in the left daughter branch for
the 10∘ bifurcation is associated with this enhanced non-uniformity due
to diffusion.

Fig. 14 shows secondary velocity contours at the same locations as
in Fig. 13. A comparison of the secondary velocities at the outlet sec-
tions of the straight pipe with splitter plate, at the outlets of the 70∘

bifurcation flow unit with semi-circular daughters, and at the outlet
section of the 10∘ bifurcation with circular daughter branches shows
that both curvature and cross-sectional shape change induce

considerable secondary motion (though the nature of the induced cir-
culation in different as explained in the context of Fig. 12). It is found in
Fig. 14 that the average secondary velocity at the outlet section of the
10∘ bifurcation with circular daughter branches is greater than that at
the outlet section of the 70∘ bifurcation flow unit with semi-circular
daughters. This may be attributed to the smaller length (such that the
total length of flow path remains constant) of the straight section
(which attenuates secondary motion (Guha and Pradhan, 2017)) fol-
lowing the bifurcation module in the 10∘ bifurcation flow unit.

The secondary velocity contours at the outlets of the 70∘ bifurcation
with circular or semi-circular daughters are qualitatively similar in-
dicating that flow path curvature itself establishes the qualitative fea-
tures of the secondary flow field in a bifurcation. A comparison of the
secondary velocity contours in the two above-mentioned flow units also
shows that the change of cross-sectional shape causes an increase in the
secondary flow strength while retaining the basic secondary flow pat-
tern (Dean-type circulation).

In Table 4, we listed the loss in static (Δp) and total (Δp0) pressures
across the different flow units (including straight sections following the
module) involved in the transformation of a straight pipe into a bi-
furcation by “co-joining of two bent pipes” (Fig. 3). Table 5 shows the
loss in pressures across the different geometries involved in the trans-
formation of the straight pipe into a bifurcation by the “splitter in a
pipe” method (Fig. 4).

The placement of a splitter plate along a diameter of a straight pipe,
so as to generate a 0∘ bifurcation with semi-circular daughter branches,
results in a significant increase in both Δp and Δp0. This may be at-
tributed to the development of the additional boundary layers on both
sides of the splitter plate. The introduction of flow path curvature into
the above geometry, leading to the formation of a bifurcation with
semi-circular daughter branches, results in a small increment in both Δp
and Δp0. This indicates that curvature in the presence of flow division
effects does not affect the pressure losses appreciably. The change of
cross-sectional shape in the daughter branches of the above geometry
from semi-circular to circular, resulting in the formation of a bifurca-
tion with circular daughter branches is found to cause a small decre-
ment in the pressure losses. If, on the other hand, the straight pipe with

Fig. 13. Contours of velocity magnitude at the outlet sections of the various geometries involved in the construction of a bifurcation from a straight pipe (as shown in
Fig. 4) for =V 1.46 m/sinlet and =A.R. 2.
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splitter plate first undergoes a change of shape to form a bifurcation of
(of small angle), both Δp and Δp0 are found to decrease appreciably.
The introduction of curvature at this stage results in a significant in-
crease of both Δp and Δp0. From the above discussion, it may be con-
cluded that the curvature of flow path affects the pressure loss sig-
nificantly provided the cross-section in the daughter branches is
circular, while the change of cross-sectional shape in the daughter
branches alters the pressure loss significantly in the absence of curva-
ture effects.

5.3. Effects of the inlet velocity profile on the flow in a bifurcation

Here, we investigate the detailed anatomy of the three-dimensional
modifications to the primary and secondary flow fields as the flow
progresses through the intricate internal passage of a bifurcation. While
many computations in this paper are performed with uniform inlet
flow, several other inlet velocity profiles are considered in this section
for comparative purposes. The case of paraboloidal inlet velocity is
considered first in this context. As a visual aid to the overall char-
acteristics of the flow, the primary velocity contours on the meridional
plane (the plane passing through the centreline of the mother and two
daughter branches) are constructed in Fig. 15. In order to represent the
two cases with the same velocity scale and to be able to reveal appre-
ciable flow details in both sets, the maximum velocity in the contour
coloring scheme has been adjusted. It is evident from Fig. 15 that the
velocity field in the daughter branches exhibit considerable asymmetry.

The paraboloidal inlet velocity results in much greater asymmetry of
velocity in the daughter branches as compared to a uniform inlet ve-
locity. It is observed in Fig. 15 that for a fixed inlet flow rate, a change
of the inlet velocity distribution from uniform to paraboloidal leads to a
visible thickening of the boundary layer along the outer edges, and a
thinning of the boundary layer formed along the inner edges. While the
maximum velocity on the meridional plane occurs along the centreline
of the mother branch for a paraboloidal inlet velocity, it is shifted to-
wards the walls for a uniform inlet flow. It is observed that the region of
low primary velocity created by the bifurcation ridge is much larger in
the case of uniform inlet flow as compared to that for the paraboloidal
inlet velocity.

Having studied the primary flow distribution on the meridional
plane of the bifurcation flow unit for a uniform or paraboloidal inlet
velocity distribution, we now investigate the evolution of the velocity
field on successive cross-sectional planes in the same unit. Fig. 16 show
how the variation of the cross-sectional shape (stations ‘a’ - ‘d’) in the
three-dimensional internal passages of a bifurcation (A.R.= 1 and

= 70 ) modify the flow field. This introduces additional complexities
that are not encountered in curved pipes.

In order to capture the secondary motion at a cross-sectional plane
properly, the planes have been constructed following the method that
was described by Guha and Pradhan (2017). The cross-section at the
inlet to the bifurcation module is circular. Station ‘a' (in Fig. 16) lies
midway between the inlet and the plane passing through the concurrent
point of the central axes of the three branches associated with module.

Fig. 14. Contours of secondary velocity magnitude at the outlet section of the various geometries involved in the construction of a bifurcation from a straight pipe (as
shown in Fig. 4) for =V 1.46 m/sinlet and =A.R. 1.

Table 5
Decrease of the area-averaged static pressure and mass-flow-averaged total pressure across different flow units involved in the construction of a bifurcation flow
unit from a straight pipe (as shown in Fig. 4) for =V 1.46 m/sinlet and A.R.= 1.

Geometry Static pressure drop Δp (Pa) Total pressure drop Δp0 (Pa)

Straight pipe (inlet diameter equal to that of bifurcation) 1.0942 0.5779
Straight pipe with splitter 1.6746 0.9333
70° bifurcation with semi-circular daughters 1.7253 0.9966
10° bifurcation with circular daughters 1.2416 0.6659
70° bifurcation with circular daughters 1.7175 0.9897
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Although the cross-sectional area at station ‘a' is equal to that at the
inlet, the shape is oval instead of circular (as was described in Fig. 1). At
station ‘b', two planes (subtending an angle of 170∘ on the upstream
side) are present whose area normals subtend an angle of 10∘ with the
area normal at station ‘a'. Station ‘d' corresponds to the end of the
curved path of the bifurcation, and the area normal there makes an
angle of 35∘ with the area normal at station ‘a'. Station ‘c' is defined
midway between ‘a' and ‘d' such that its area normal makes an angle of
17.5∘ with respect to the centreline of the mother branch. The cross-
section at station ‘c' also consists of two planes (which subtend an angle
of 145∘ on the upstream side). Station ‘g' corresponds to the end-plane
of the left daughter branch, and stations ‘e' and ‘f' are located at uniform

intervals of centreline distance between stations ‘d' and ‘g'. The traces of
the bifurcation ridge shown in Figs. 16–19 are the projection of the
bifurcation ridge on the respective cross-sectional planes, the actual
bifurcation ridge exists further downstream. In order to represent the
two cases (of uniform and paraboloidal inlet velocities) with the same
velocity scale and to be able to reveal appreciable flow details in both
sets, the maximum velocity in the contour coloring scheme has been
adjusted. Figs. 16 and 18 use the same velocity scale, the same is true
for Figs. 17 and 19.

Fig. 16 shows the secondary velocity vectors superposed on the
contours of primary velocity for a prescribed uniform inlet velocity.
Owing to the uniform inlet velocity and the bifurcation ridge, the

Fig. 15. Contours of primary velocity on the meridional plane of the bifurcation flow unit ( =A.R. 1) for two inlet velocity distributions. (a) uniform velocity
=V 1.46 m/sinlet , (b) paraboloidal velocity =V 1.46 m/savg .

Fig. 16. Primary velocity contours with superposed secondary velocity vectors at intermediate cross-sections in a bifurcation flow unit ( =A.R. 1) for uniform inlet
flow ( =V 1.46 m/sinlet ). (The length of the vectors on any cross-sectional plane indicates the secondary velocity scaled by the respective maximum secondary velocity
on that plane).
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maximum velocity at station ‘a' occurs in the peripheral regions of the
cross-section instead of the usual central maximum observed in Poi-
seuille flow. The secondary flow at station ‘a' shows inward motion of
fluid from the peripheral regions mainly caused by the change of shape
from circular to oval. While the primary velocity contours at station ‘b'
are qualitatively similar to those at station ‘a', the secondary flow pat-
tern is different. The changing cross-sectional shape from station ‘a' to
station ‘b' results in the motion of fluid from near the upper and lower
edges towards the center of the cross-section at station ‘b'. At the central
regions, two opposite tendencies are superposed: there is a tendency of

setting up a secondary flow due to curvature effects from the outer
edges towards the inner edges, whereas an opposite tendency exists
because of the presence of the bifurcation ridge (with a region of low
primary velocity in its vicinity). As a result of the above-mentioned up-
down and sideways motion, a saddle-point type pattern is observed in
the secondary motion at station ‘b' for uniform inlet flow (Fig. 16). The
primary velocity contours at station ‘c' are qualitatively similar to those
at the station ‘b' while the secondary flow pattern shows distinct fluid
motion from the outer edges towards the inner edges, i.e. towards the
center of the cross-section at station ‘c'. The curvature effects dominate

Fig. 17. Secondary velocity magnitude contours at intermediate cross-sections in a bifurcation flow unit ( =A.R. 1) for uniform inlet flow ( =V 1.46 m/sinlet ).

Fig. 18. Primary velocity contours with superposed secondary velocity vectors at intermediate cross-sections in a bifurcation flow unit ( =A.R. 1) for a paraboloidal
velocity distribution at inlet with =V 1.46 m/savg .
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over the effects of flow division here, resulting in the secondary motion
driving fluid towards the inner edge.

The primary velocity contours at station ‘d' (which marks the start-
plane of the left daughter branch) are characterized by a maxima near
the outer edge of the bifurcation with typical Dean-type secondary flow.
While the location of the maximum primary velocity (different to that
observed in curved pipes) occurs due to the generation of a low velocity
region around the bifurcation ridge and the velocity distribution just
upstream of the ridge, the Dean type secondary motion occurs mainly
due to curvature effects. The contours of primary velocity at stations ‘e',
‘f' and ‘g' show a gradual transformation of the velocity distribution
resulting in the shift of the maximum from near the outer edge (at
station ‘d') towards the inner edge (at station ‘g'). The contour at station
‘g' is similar to that reported in studies of flow in curved pipes, in-
dicating that the straight section (between stations ‘d' and ‘g') following
the bifurcation module tends to attenuate the effects introduced by flow
division in a bifurcation. The secondary flow pattern at stations ‘e', ‘f'
and ‘g' are qualitatively similar to that at station ‘d' with typical Dean
type circulation, though with a significant shift in the position of the
vortices towards the center (slightly towards the outer edge of the bi-
furcation) at station ‘g'.

Fig. 17 shows the secondary velocity contours for a prescribed
uniform inlet velocity. v| |S at station ‘a' is small, with the maximum
occurring near the upper and lower walls due to the changing cross-
sectional shape from circular to oval. The secondary velocity contours
at station ‘b' are also characterized by maxima near the top and bottom
walls and low v| |S zones near the horizontal centreline. While the oc-
currence of the maxima is due to the change of cross-sectional shape,
the regions of low v| |S (stagnation regions of secondary flow) develop as
a result of the mutual interaction of curvature effects with the effects of
the bifurcation ridge (as explained in the context of Fig. 16). At station
‘c', v| |S is much greater than that at the previous stations due to the
significantly greater effect of flow path curvature at this station as
compared to previous stations. Although flow division effects tend to
generate secondary motion in a direction opposite to that induced by
the curvature effects, the strength of the secondary flow induced by
flow division effects is much smaller than that induced by curvature

effects. Therefore, a significant increase in v| |S takes place when cur-
vature effects become dominant. The maximum secondary velocity
occurs near the center at station ‘c' and this maximum shifts towards the
outer edge (in both daughters) at station ‘d'. While the occurrence of the
maxima near the cross-sectional center at station ‘c' may be attributed
to curvature effects, the outward shift of the maxima at station ‘d' is due
to the basic nature of Dean type circulation (existence of maximum
secondary velocity near the cross-sectional center in the daughters in a
bifurcation (Guha and Pradhan, 2017; Comer et al., 2001)) which de-
velops there.

As the fluid traverses the straight cylindrical section following the
bifurcation module (stations ‘e' - ‘g'), the v| |S decreases considerably
with a shift of its maximum value towards the upper and lower walls. It
was shown by Guha and Pradhan (2017) that a region of small v| |S in
the interior of the cross-section (which usually appears in pairs) maps to
vortex cores. In the present study, the λ2-method (Jeong and
Hussain, 1995) has been used for locating the vortex cores, and verify
the above-mentioned statement. The methodology is described in Guha
and Pradhan (2017), and the cores of the vortices thus identified are
shown in Fig. 17. The dark blue regions (labeled in the figure with solid
circles) occurring in pairs at stations ‘e' - ‘g' correspond to the cores of
the Dean vortices found at the same locations in Fig. 16. Thus, the
contours in Fig. 17 show that the cores of the Dean vortices tend to shift
towards the horizontal centreline as the fluid traverses the straight
section following the bifurcation module.

Fig. 18 shows the secondary velocity vectors superposed on the
primary velocity contours for a prescribed paraboloidal inlet velocity.
The same inlet flow rate has been kept as in the case of uniform inlet
velocity to make direct comparisons possible. Owing to the prescribed
paraboloidal velocity at the inlet the maximum velocity at station ‘a'
occurs at the center. The secondary flow pattern at station ‘a' is similar
to that observed for the uniform inlet flow. While the contours of pri-
mary velocity at station ‘b' are qualitatively similar to those at station
‘a', the secondary flow pattern shows fluid movement towards the inner
edge of bifurcation. Unlike in the case of uniform inlet velocity (Fig. 16)
where there was an interplay between the curvature and flow division
effects, the curvature effects seem to mask the other effects in case of

Fig. 19. Secondary velocity magnitude contours at intermediate cross-sections in a bifurcation flow unit ( =A.R. 1) for a paraboloidal velocity distribution at inlet
with =V 1.46 m/savg .
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the paraboloidal inlet velocity (Fig. 18). Hence, no saddle-point type
pattern is observed in the secondary motion at station ‘b' for para-
boloidal inlet flow. The changes in the primary velocity contours as well
as the secondary flow pattern between stations ‘b' and ‘c' are found to be
small.

Unlike the case of uniform inlet velocity, Fig. 18 shows that the
contours of primary velocity at station ‘d' are characterized by a high
velocity region near the inner edge of the bifurcation. This may be at-
tributed to the non-uniform (paraboloidal) inlet velocity distribution
and the enhanced curvature effects under such a condition. The sec-
ondary flow pattern at station ‘d' shows typical Dean type circulation.
As the fluid traverses the straight section between stations ‘d' and ‘g',
the primary velocity contours show the development of a crescent
shaped region of high magnitude near the inner edge of the bifurcation
and a shift of the Dean vortices towards the horizontal centreline.
Comparing the features revealed in Figs. 16 and 18, it may be con-
cluded that a change of the inlet velocity distribution from uniform to
paraboloidal results in an increase of asymmetry in the velocity dis-
tribution at a cross-section, and a shift of the Dean vortices in the
daughter branches (stations ‘e' - ‘g') from near the top and bottom walls
on the outer edge side of the cross-section towards the horizontal
centreline at the center of the cross-section.

Fig. 19 shows the secondary velocity contours for a paraboloidal
inlet velocity. The strength of the secondary flow at stations ‘a' and ‘b'
are smaller for the paraboloidal inlet velocity (Fig. 19) as compared to
that for the uniform inlet velocity (Fig. 17). The stagnation regions that
were observed in Fig. 17 at station ‘b' appear shifted towards the walls
in Fig. 19 and are less prominent due to the smaller values of v| |S there.
The average secondary velocity at station ‘c' in Fig. 19 is considerably
greater than that at the same location for the uniform inlet velocity
case.

The secondary velocity at station ‘d' for the paraboloidal inlet ve-
locity is characterized by a region of high magnitude at the center of the
cross-section (basic nature of Dean type circulation) and two other

regions of considerable magnitude near the top and bottom walls.
Fig. 19 also shows that the secondary flow strength at stations ‘e' - ‘g' are
significantly greater for the paraboloidal inlet velocity as compared to
the uniform inlet velocity (Fig. 17). Moreover, the paraboloidal inlet
velocity results in the persistence of considerable secondary fluid mo-
tion even at station ‘g'. The cores of the vortices shown in Fig. 19
(stations ‘d' - ‘g') are identified by using the λ2-criterion, as stated
previously in connection with Fig. 17. From the above discussion it may
be concluded that non-uniformity in the inlet velocity distribution leads
to the generation of greater secondary velocities in the bifurcation
module, and the persistence of such motion up to further distances in
the straight section following the bifurcation module.

Having discussed the evolution of the flow field in a bifurcation
module when the velocity distribution at its inlet is uniform or para-
boloidal (both being axisymmetric in nature), we explore an additional
axisymmetric and two more skewed (i.e. non-axisymmetric) inlet ve-
locity profiles that are relevant in the context of a branching network.
The additional axisymmetric profile would arise at the inlet of the bi-
furcation module if the uniform velocity condition is applied at the inlet
of a straight pipe of length 3.5 times the diameter of the mother branch
that precedes the bifurcation module (resembling the straight section of
a branch of the preceding generation in a network (Guha et al., 2016)).
The two skewed profiles are named as profile I and profile II for a
streamlined discussion. The skewed profile I consists of a non-uniform
skewed velocity distribution with secondary motion that may arise at
the inlet of the bifurcation module under consideration if a uniform
velocity condition is applied at the overall inlet of an extended network
in which two additional bifurcation modules exist upstream of the bi-
furcation module under consideration. The skewed profile II consists of
a non-uniform skewed velocity distribution with secondary motion that
would arise at the inlet of the bifurcation module under consideration if
a paraboloidal velocity condition is applied at the overall inlet of an
extended network in which an additional bifurcation module exists
upstream of the bifurcation module under consideration. The adoption

Fig. 20. Modification to the three-dimensional flow field caused by a bifurcation flow unit for an axisymmetric velocity distribution ( =V 1.46 m/savg ) at inlet that may
be generated due to the presence of an upstream straight pipe: Vectors of secondary velocity superposed on the contours of primary velocity at selected cross-
sectional planes in a bifurcation flow unit ( =A.R. 1). [The lengths of the secondary vectors indicate the magnitude of secondary velocity at a cross-section].
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of the two skewed profiles is an attempt, in a generic study like the
present one, to capture the essence of the behavior of a bifurcation
module when it is not isolated but operates within a branching network.

Fig. 20 shows the vectors of secondary velocity superposed on the
contours of primary velocity at selected cross-sectional planes in a bi-
furcation flow unit of =A.R. 1, for the case where an additional unit of
length 3.5 times the diameter of the mother branch is introduced up-
stream of the bifurcation. In this case the velocity distribution at the
inlet plane of the bifurcation unit is neither uniform nor paraboloidal,
but approximately corresponds to the velocity distribution that would
exist within the developing length in a pipe at 3.5D from the inlet
(where a uniform velocity is specified). Since the bifurcation is geo-
metrically symmetric and the velocity field at the inlet plane of the
bifurcation module is symmetric about the bifurcation ridge, the flow
field in the two daughter branches are mirror images of one another
(this feature was also present in the case of uniform and paraboloidal
inlet velocity profiles described above). Fig. 20 may be considered in
conjunction with Figs. 16 and 18 to comprehend the effects of various
axisymmetric inlet velocity profiles on the flow structure in a bifurca-
tion module.

The primary velocity contours at plane A1 (which marks the start-
plane of the left daughter branch and corresponds to station ‘d' in
Figs. 16 and 18) are characterized by a crescent shaped high velocity
region near the center of the cross-section with typical Dean-type sec-
ondary flow. While the maximum velocity was located near the outer
edge of the bifurcation for the uniform inlet velocity, and near the inner
edge of the bifurcation for the paraboloidal inlet velocity, in this case,
the maximum velocity is found to occur near the center of the cross-
section. The primary velocity contours at plane B1 (which is a cross-
sectional plane 3.5 diameters downstream of plane A1 and corresponds
to station ‘g' in Figs. 16 and 18) show the characteristic skewed nature,
with the degree of cross-sectional non-uniformity lying between that
observed for the uniform inlet velocity and paraboloidal inlet velocity
cases. The secondary flow pattern at plane B1 is qualitatively similar to
that at the same plane for the uniform and paraboloidal inlet velocity
cases.

Fig. 21 shows the vectors of secondary velocity superposed on the
contours of primary velocity at selected cross-sectional planes in a bi-
furcation flow unit of =A.R. 1, when the skewed profile I is specified at
the inlet to the bifurcation. The inlet velocity distribution, given in
Fig. 21, thus shows a skewed nature with Dean-type secondary circu-
lation. Owing to the asymmetry in the velocity distribution at the inlet
with respect to the bifurcation ridge, the flow fields in the two
daughters develop differently (even though the two daughters are
geometrically identical). The maximum (and average) velocity in the
left daughter branch is significantly greater than that in the right
daughter branch due to the particular skewed nature of the inlet flow.
Although the velocity contours at plane A1 appear to be qualitatively
similar to that observed in the previous case (Fig. 20), the contours at
plane B1 appear different. The velocity contours and the secondary flow
pattern in the right daughter branch (planes A2 and B2) appear quite
different from those in the left daughter branch (planes A1 and B1).
While the two dominating vortices in planes A1 and B1 are of the Dean
type, two anti-Dean type vortices mark the dominating feature in planes
A2 and B2. The two anti-Dean vortices form near the horizontal cen-
treline of the cross-section at plane A2, whose strength significantly
diminishes at plane B2.

Fig. 22 shows the changes in the flow field across a bifurcation flow
unit when the skewed profile II is specified at its inlet. Owing to the
asymmetry in the velocity distribution at the inlet with respect to the
bifurcation ridge, the flow fields in the two daughters develop differ-
ently with the maximum (and average) velocity in the left daughter
branch being significantly greater than that in the right daughter
branch. The primary velocity at plane A1 shows a skewed nature with
the maximum velocity shifted towards the outer edge of the bifurcation
(as was found for the uniform inlet velocity case in Fig. 20). Fig. 22

shows that the velocity contours at plane B1 are different from those
found at the same locations for the other inlet velocity profiles con-
sidered in this study; the primary velocity has two distinct maxima near
the top and bottom edges. The primary velocity contours at planes A2
and B2 in Fig. 22, on the other hand, appear similar to that at the same
location in Fig. 21 (i.e. for the skewed profile I).

The secondary flow patterns shown in Fig. 22 show the existence of
two pairs of counter-rotating vortices (two Dean and two anti-Dean
type) at planes A1 and A2. The secondary flow field at plane B1 shows a
single pair of vortex (anti-Dean type) whereas the strength of the vor-
tices in the right daughter branch diminishes to such an extent that no
vortical structures are discernible at plane B2. This is in contrast to the
observation made for the skewed profile I in Fig. 21 where plane B1
showed the presence of a Dean vortex pair and an anti-Dean pair was
clearly visible at plane B2.

A comparison of Figs. 16, 18, 20, 21 and 22 shows that the inlet
velocity distribution has a significant impact on the flow field in the
bifurcation module. As an example, asymmetry in the inlet profile of
primary velocity with respect to the bifurcation ridge (as are the cases
shown in Figs. 21 and 22) results in unequal flow distribution among
the daughter branches (although they are geometrically identical). Si-
milarly it is found that, when a helical motion (i.e. secondary motion
along with the primary flow) is prescribed at the inlet (as are the cases
shown in Figs. 21 and 22), the anti-Dean type secondary motion may be
produced just in a single bifurcation (Fig. 21) which is usually reported
only in a large branching network (Guha and Pradhan, 2017) and did
not appear in all other studies of a single bifurcation module where
various profiles of primary velocity are prescribed at the inlet without
any secondary motion there.

5.4. Determination of the fluid dynamic changes as the flow recovers in the
daughter branches

In order to keep a study like the present one, where there are a large
number of variables, tractable we have so far kept the length of the
straight portion following the daughter branches such that the value of
Lstraight/Ddaughter is 3.5 (a commonly observed value in many natural/
biological systems (Pedley et al., 1970a,b, 1971)). In this section, we
allow much greater length of the straight portion and study how the
flow field evolves to the Poiseuille-type configuration. The evolution of
the contours of primary velocity are plotted at various locations
downstream of the bifurcation (denoted by nD indicating the distance
from the end-plane of the bifurcation in terms of the daughter branch
diameter) with the vectors of secondary velocity superposed on the
contours. In the next two diagrams, the lengths of the secondary velo-
city vectors are proportional to the strength of secondary motion.
Owing to the symmetry of the flow field (the flow field in the two
daughters are mirror images of one another), the flow structure in only
the left daughter branch is discussed here.

Fig. 23 shows the flow field in the left daughter branch for a uniform
velocity ( =V 1.46 m/savg ) at the inlet of the bifurcation module. It is
found that the Poiseuille-type paraboloidal velocity distribution is re-
covered at about 30 diameters downstream of the bifurcation. It is
found that the primary velocity at the end-plane of the bifurcation
module (i.e. at =n 0 in Fig. 23) is characterized by a high velocity
region near the outer edge of the bifurcation due to the development of
a low velocity region around the bifurcation ridge. The location of this
high velocity region shifts towards the inner edge of the bifurcation as
the flow proceeds downstream (owing to curvature effects), and finally
returns to a central location as the secondary flow decreases in strength.
Thus, the region of high velocity shifts from the outer toward the inner
edge (crossing the center of the cross-section in this journey) and then
moves back to the center. It is also interesting to note how the shape of
this high velocity region changes as the flow proceeds downstream,
from being almost semi-circular at =n 1 to a distinct crescent shape at
about =n 6, to circular at n≥20. Fig. 23 shows that the secondary
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flow is characterized by typical Dean-type circulation (Guha and
Pradhan, 2017). The two counter-rotating Dean vortices are visible up
to =n 6, beyond which no distinct pattern of the secondary flow can be
discerned. The strength of secondary circulation decreases rapidly, and

becomes quite insignificant at about 10 diameters downstream of the
bifurcation ( =n 10), although the vortex patterns may still be visua-
lized afterwards by appreciably magnifying the lengths of the vectors.

Fig. 24 shows the flow field in the left daughter branch for a

Fig. 21. Modification to the three-dimensional flow field caused by a bifurcation flow unit for the skewed velocity profile I ( =V 1.46 m/savg ) at the inlet: Vectors of
secondary velocity superposed on the contours of primary velocity at selected cross-sectional planes in a bifurcation flow unit ( =A.R. 1). [The lengths of the
secondary vectors indicate the magnitude of secondary velocity at a cross-section].

Fig. 22. Modification to the three-dimensional flow field caused by a bifurcation flow unit for the skewed velocity profile II ( =V 1.46 m/savg ) at the inlet: Vectors of
secondary velocity superposed on the contours of primary velocity at selected cross-sectional planes in a bifurcation flow unit ( =A.R. 1). [The lengths of the
secondary vectors indicate the magnitude of secondary velocity at a cross-section].
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paraboloidal velocity ( =V 1.46 m/savg ) at the inlet of the bifurcation
module. It is found that the Poiseuille-type velocity distribution is re-
covered at about 50 diameters downstream of the bifurcation. In con-
trast to the case of uniform inlet velocity (Fig. 23), it is found that, for

the paraboloidal inlet velocity, the primary velocity contours at the
end-plane of the bifurcation module (i.e. at =n 0 in Fig. 24) display a
high velocity region near the inner edge of the bifurcation. The shape of
this high velocity region in the cross-section changes from being

Fig. 23. Physics of the process of equilibration of the flow field created by a bifurcation module: Vectors of secondary velocity superposed on the contours of primary
velocity at selected cross-sectional planes in the straight section following a bifurcation module ( =A.R. 1) for a uniform velocity distribution ( =V 1.46 m/sinlet ) at inlet.
[The lengths of the secondary vectors indicate the magnitude of secondary velocity at a cross-section].

Fig. 24. Physics of the process of equilibration of the flow field created by a bifurcation module: Vectors of secondary velocity superposed on the contours of primary
velocity at selected cross-sectional planes in the straight section following a bifurcation module ( =A.R. 1) for a paraboloidal velocity distribution ( =V 1.46 m/savg ) at
inlet. [The lengths of the secondary vectors indicate the magnitude of secondary velocity at a cross-section].
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crescent shaped at =n 1 to nearly circular (but not at the center of the
cross-section) at =n 20. Then, the location of this circular high velocity
region shifts towards the center of the cross-section as the flow proceeds
downstream. While this journey of the location of the high velocity
region is more straightforward here (as compared to the case of uniform
velocity profile), the evolution of maximum velocity is more complex as
it initially decreases up to about =n 10 and then increases again until
the Poiseuille-type velocity distribution is regained. It is observed that
the velocity field is skewed towards the inner edge of the bifurcation to
a much greater extent in this case as compared to that for the uniform
inlet velocity case. Calculations also show that the secondary flow
strength at a given cross-section is greater for this case as compared to
that for the uniform inlet velocity case. The vortical structures are seen
to last for greater length in Fig. 24 as compared to that in Fig. 23. From
the above discussion it may be concluded that the paraboloidal inlet
velocity fosters greater degree of cross-sectional non-uniformity in the
velocity distribution as well as aids in the persistence of secondary
motion up to greater lengths downstream of the bifurcation. Conse-
quently the length required to attain Poiseuille-type velocity distribu-
tion in the downstream branch is greater when the velocity at the inlet
of the bifurcation module is paraboloidal. It may appear surprising at
first sight that the three-dimensional flow modifications made by a
bifurcation module are such that a transformation of paraboloidal at
inlet to paraboloidal velocity distribution in a daughter branch takes
longer distance than a transformation of uniform to paraboloidal ve-
locity distribution.

5.5. Pressure losses associated with a bifurcation

Experimental determination of the pressure drop across a bifurca-
tion is difficult because the variation of pressure across a cross-section is
comparable to the overall downstream decrease in pressure. Following
the work of Pedley et al. (1970a,b, 1971), a “flow unit' is defined as a
bifurcation module followed by straight sections along the two
daughter branches (Fig. 2). In the present work, equivalent flow units
are constructed for the constituent elements (e.g. bent or straight pipes)
also. Pedley et al. (1970a,b, 1971) calculated the viscous dissipation
occurring between two locations from velocity measurements along two
perpendicular lines at each location. Their dissipation model had an
implicit assumption that disturbances in the flow (which generate
secondary motion) are created in a non-viscous manner in the bi-
furcation module and are dissipated in the following daughter tubes by
the action of viscosity (Pedley et al., 1970a). We invoke the power of
CFD to accurately determine the decrease of total pressure across a
bifurcation module (Fig. 1) as well as that across a bifurcation flow unit
(Fig. 2).

The loss of total pressure Eq. (4) across a flow module is denoted by
Δp0, geometry while the loss of total pressure across straight sections fol-
lowing the module is denoted by Δp0L, geometry, where the subscript
‘geometry' may be bifurcation, bent or straight depending on whether
the straight section follows a bifurcation module, a bent pipe or a
straight pipe respectively. Then, the overall loss of total pressure across
the flow unit Δp0t, geometry (comprising the module followed by straight
section/s) is given by

= +p p pt geometry geometry L geometry0 , 0, 0 , (8)

Three different geometries of bifurcation module (Table 1) were
considered in Section 5.1. In order to make the study on pressure loss
more comprehensive, several more geometries are added to this list,
covering practically reasonable ranges of values for three geometric
parameters, viz. +L L D( )/ inlet1 2 , A.R. and θ. The complete list is given in
Table 6 for ready reference. The three geometries of Table 1 are named
by letters A, B and C in Table 6, whereas the new geometries are named
by numerals 1–11. It was found that in order to ensure that the shape of
the bifurcation is realistic, the value of +L L D( )/ inlet1 2 must be close to

or greater than unity, while the values of A.R. are chosen based on the
usual practices of various modeling techniques (Murray, 1926;
Kitaoka et al., 1999). Bifurcation 1 represents a geometry that obeys
Murray's law (Murray, 1926) of minimum losses while Bifurcation 3
represents a case when the A.R. is the inverse of that stipulated by
Murray's law. Bifurcation 2 is based on the dimensions of generations
G1-G2 of Weibel's model (Weibel, 1963) of the human bronchial tree. In
Bifurcation 5, the diameter of the daughter branches is the same as that
in Bifurcation 1 while the area ratio is equal to unity. Bifurcations 4 and
6 are constructed so as to cover a range of values of the geometric
parameters +L L D( )/ inlet1 2 and A.R. In order to study the effect of the
bifurcation angle (θ) on the fluid dynamics, θ is varied from 60∘ to 100∘

in Bifurcations 7 - 11. It was found that the variation of the bifurcation
angle in the range 60∘≤ θ≤100∘ results in small changes of the ve-
locity field as well as the pressure drops across the bifurcation.

A “flow unit” (Fig. 2) consists of a bifurcation module followed by
two daughter branches. Except otherwise stated, the value of (Lstraight/
Ddaughter) which represents the total straight length of the daughter
branches is kept at 3.5 (a commonly observed value in many natural/
biological systems (Pedley et al., 1970a,b, 1971)).

Since we have considered the flow in generic bifurcations (Table 6)
and the inlet Reynolds number is varied in the range 400 - 2000, the
characteristics of pressure loss obtained here would be applicable to
laminar flow in biological networks as well as in future engineered
branching networks (based on fractal or other such algorithms). As an
example, considering that turbulent effects are negligible in all gen-
erations downstream of G0 in human bronchial network at resting
conditions and downstream of G5 for most breathing conditions, the
present fluid dynamic results and conclusion would be relevant there.

Table 7 shows the loss in total pressure (Δp0, bifurcation) across
Bifurcation 5 and that across its equivalent straight (Δp0, straight)
and bent (Δp0, bent) pipes for different inlet velocities in the range
0.58 m/s < Vinlet < 2.32 m/s. It is found that Δp0, bent > Δp0, straight

Table 6
Geometric details of the different bifurcation modules considered in the present
study.

Geometry Dinlet(mm) +L L D( )/ inlet1 2 Area Ratio (A.R.) θ(∘)

Bifurcation A 10.00 1.45 2.00 70
Bifurcation B 10.00 1.35 1.00 70
Bifurcation C 10.00 1.25 0.67 (= 2/3) 70
Bifurcation 1 10.00 1.30 =1.26 ( 2 )3 70
Bifurcation 2 12.20 1.33 0.93 70
Bifurcation 3 10.00 1.30 =0.79 ( 1/ 2 )3 70
Bifurcation 4 12.60 1.11 1.14 70
Bifurcation 5 11.23 1.16 1.00 70
Bifurcation 6 12.60 1.03 =0.79( 1/ 2 )3 70
Bifurcation 7 10.00 1.30 1.00 60
Bifurcation 8 10.00 1.30 1.00 70
Bifurcation 9 10.00 1.30 1.00 80
Bifurcation 10 10.00 1.30 1.00 90
Bifurcation 11 10.00 1.30 1.00 100

Table 7
Variation of the loss of total pressure (Δp0) with uniform inlet velocity across a
bifurcation module (Bifurcation 5: =D 11.23 mminlet , A.R.= 1), an equivalent
straight pipe and an equivalent bent pipe.

Vinlet(m/s) Δp0, straight(Pa) Δp0, bent(Pa) Δp0, bifurcation(Pa)

0.58 0.1384 0.1385 0.1045
0.87 0.2285 0.2295 0.1745
1.16 0.3286 0.3301 0.2522
1.46 0.4356 0.4392 0.3360
1.74 0.5494 0.5549 0.4249
2.03 0.6695 0.6769 0.5184
2.32 0.7958 0.8049 0.6161
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for the range of flow rates considered, the difference between the two
increasing as Vinlet increases. The curvature of flow path is thus re-
sponsible for an increase of the loss of total pressure across the pipe. For
the entrance flow in a straight pipe, the incurred loss is greater than
that in the case of Poiseuille flow, and in the course of this work, we
found that the loss incurred in the entrance region of a straight pipe
may even be greater than that in the entrance region of a bent pipe
when A.R.< 1. Such a feature may be attributed to the thinning of the
boundary layer (where most of the loss occurs) on the inner edge in the
entrance region of the bent pipe (Singh, 1974). Even more interesting is
the fact that the loss in total pressure across the bifurcation module
formed by joining two bent pipes (Fig. 3) is significantly smaller than
that in the bent pipe alone. A contributory factor to this finding may be
visualized by the partial removal of the internal wall in the formation of
the bifurcation from the co-joining of two bent pipes.

The above discussion gives the impression that the losses associated
with a symmetric bifurcation are lower than that in its equivalent
straight and bent pipes. However, as mentioned previously, such a bi-
furcation in a branching network is usually followed by a pair of
straight sections representing the daughter branches (Fig. 2). Further
insight into the fluid dynamics of loss may thus be obtained by con-
sidering the loss of total pressure across the flow units (formed by
adding straight sections after the bent pipe as well as the daughter
branches of a bifurcation).

Table 8 shows the loss in total pressure across a flow unit
(Δp0t, bifurcation) constructed by adding straight sections at the end-planes
of Bifurcation 5, and that across its constituent straight (Δp0t, straight) and
bent pipe (Δp0t, bent) flow units for various inlet velocities. Use of
Eq. (8), and the data given in Tables 7 and 8 show consistently that
Δp0L, bifurcation > Δp0L, bent, while it was shown in Table 7 that
Δp0, bifurcation < Δp0, bent in the range of inlet flow rates considered here.
In fact, Δp0L, bifurcation is sufficiently greater than Δp0L, bent such that
Δp0t, bifurcation turns out to be greater than Δp0t, bent for most of the flow
rates (except for =V 0.58m/sinlet ) considered here. This means that al-
though the loss in total pressure across the bifurcation module is
smaller than that across its constituent/equivalent pipes, the bifurca-
tion has a greater potential for incurring losses in the following straight
section as compared to that in the equivalent straight or bent pipes.
Such a feature of the losses incurred by the flow in a bifurcation is
attributable to the combined effects of asymmetry in the velocity field
(which occurs as a result of flow path curvature and change of cross-
sectional shape and area) and the generation of additional boundary
layers along the inner edges of the bifurcation (which occurs due to
flow division). Although Δp0L, bifurcation > Δp0L, bent for all flow rates
considered here, if the loss in just the bifurcation itself (Δp0, bifurcation) is
significantly smaller than that in the bent pipe itself (Δp0, bent), then
the overall loss of total pressure across the bifurcation flow unit
(Δp0t, bifurcation) may be smaller than the overall loss across the bent pipe
flow unit (Δp0t, bent). The smaller value of Δp0t, bifurcation as compared to
Δp0t, bent at =V 0.58m/sinlet (Table 8) may thus be attributed to the
significantly smaller value of Δp0, bifurcation as compared to Δp0, bent

(Table 7).

In Section 5.3, we studied the effect of inlet velocity distribution on
the flow field generated in a bifurcation module. Five inlet velocity
profiles were considered for the above purpose, of which three were
axisymmetric profiles and the remaining two were skewed profiles. The
axisymmetric profiles included the commonly used uniform and para-
boloidal profiles, and a profile that would arise at the inlet of the bi-
furcation module if the uniform velocity condition is applied at the inlet
of a straight pipe of length 3.5 times the diameter of the mother branch
that precedes the bifurcation module. The two skewed profiles (I and II)
consist of non-uniform primary velocity distribution with secondary
motion at the inlet plane of the bifurcation, a situation that may arise in
a branching network. Here, we determine the effect of the same inlet
velocity profiles on the pressure loss in the bifurcation module and
across straight sections following the module.

Table 9 shows the effects of the three axisymmetric inlet velocity
profiles on the loss of total pressure across a bifurcation module and
that across straight sections ( =L D/ 3.5straight daughter ) following it. It is
found that while Δp0, bifurcation for the paraboloidal inlet velocity is
smaller than that for the uniform inlet velocity, Δp0L, bifurcation is sig-
nificantly greater for the paraboloidal inlet velocity. This indicates that
although the loss incurred within the bifurcation module is smaller for
the paraboloidal case, a much greater potential for loss generation is
developed there. This may be attributed to the greater degree of non-
uniformity in the cross-sectional velocity distribution generated by the
paraboloidal inlet velocity (compare Fig. 18d with Fig. 16d). Therefore,
the loss of total pressure across the flow unit (comprising the bifurca-
tion module as well as the straight sections of =L D/ 3.5straight daughter )
turns out to be greater for the case of paraboloidal inlet velocity.
Table 9 also shows the values of pressure losses for the inlet velocity
profile that is generated due to the presence of an additional upstream
pipe of =L D/ 3.5. It is found that the values of Δp0, bifurcation for this case
are closer to those for the paraboloidal inlet velocity whereas the values
of Δp0L, bifurcation for the same case are closer to those for the uniform
inlet velocity.

Table 10 shows the values of Δp0, bifurcation and Δp0L, bifurcation for the
two skewed inlet velocity profiles for a range of magnitudes of the
average velocity. For =V 1.46 m/savg , the skewed velocity profile I at
inlet plane is displayed in Fig. 21 and the skewed velocity profile II at
inlet plane is displayed in Fig. 22. The values of Δp0, bifurcation for these
cases are found to be closer to the uniform inlet velocity case. While
Δp0, bifurcation for skewed profile I are smaller that those for the uniform
velocity, the same for skewed profile II exceeds those for the uniform
case for Vavg≥0.87m/s. Since the skewed velocity profile at the inlet
results in unequal flow distribution among the two daughter branches,
two values of Δp0L, bifurcation are quoted (one for each daughter) for this
case. For skewed profile I, the value of Δp0L, bifurcation for the left
daughter branch (which receives the major share of the flow from the
mother branch) are found to lie approximately midway between the
corresponding values for the uniform and paraboloidal cases; for
skewed profile II, it is close to that for the paraboloidal case. For both
skewed inlet velocity profiles, the value of Δp0L, bifurcation for the right
daughter branch seem to be close to that for the third type axisym-
metric inlet profile (with additional unit of 3.5D upstream) shown in
Table 9.

Based on extensive computations for 9 different bifurcations
(Bifurcations A-C and Bifurcations 1–6 in Table 6) at various flow rates
(Tables 7–10) considering two types of inlet velocity profiles (uniform
and paraboloidal), new correlations are proposed in the Appendix for
estimating the loss across a bifurcation and the loss across a straight
section following a bifurcation as functions of +L L D( )/ inlet1 2 , A.R. and
Re.

Now, we attempt to quantify the potential of the flow for incurring
losses in the straight sections following the module. We define a loss
potential ϕ for a given geometry as follows:

= p pL geometry L straight0 , 0 , (9)

Table 8
Variation of the loss of total pressure (Δp0) with uniform inlet velocity across a
bifurcation flow unit (Bifurcation 5: =D 11.23 mminlet , A.R.= 1), an equivalent
straight pipe unit and an equivalent bent pipe unit.

Vinlet(m/s) Δp0t, straight(Pa) Δp0t, bent(Pa) Δp0t, bifurcation(Pa)

0.58 0.2662 0.2802 0.2766
0.87 0.4335 0.4630 0.4687
1.16 0.6176 0.6665 0.6899
1.46 0.8143 0.8882 0.9383
1.74 1.0220 1.1266 1.2127
2.03 1.2401 1.3804 1.5125
2.32 1.4679 1.6492 1.8340

K. Pradhan and A. Guha International Journal of Heat and Fluid Flow 80 (2019) 108483

24



where the subscript ‘geometry' may be bifurcation, bent or straight de-
pending on whether the straight section follows a bifurcation module, a
bent pipe or a straight pipe, and Δp0L, straight is the loss of total pressure
in the straight section following an equivalent straight pipe module.
The loss potential is so defined that it is equal to zero for a straight pipe.
This allows us to determine the losses incurred in the straight section
due to flow division, flow path curvature and cross-sectional shape
changes.

Fig. 25 shows the variation with inlet velocity of the loss potential ϕ
for three bifurcations ( =A.R. 2 , 1 and 1/ 23 3 ) and their equivalent
bent pipes (denoted by the same number as the corresponding bi-
furcation in Table 6). The loss potential is found to increase with Vinlet

for the bent pipes as well as the bifurcations. Fig. 25 shows that ϕ for all
three bifurcations and their equivalent bent pipes are positive in the
range of inlet velocities considered here. This quantitatively establishes
our qualitative finding from Tables 7 and 8 that Δp0L, bifurcation and
Δp0L, bent are greater than Δp0L, straight. For any value of A.R. (shown in
Fig. 15), ϕbifurcation is always greater than ϕbent in the range of
inlet velocities considered here. This, combined with the fact that
Δp0, bifurcation is smaller than Δp0, bent (Table 7), indicates that although
the loss of total pressure in the bifurcation module alone is smaller than
that in the bent pipe alone (i.e. without the following cylindrical sec-
tions), the combined effects of flow division, flow path curvature, and
cross-sectional shape and area changes in the bifurcation induces
greater potential to incur energy losses in the following straight section.

It is also found in Fig. 25 that the difference between the loss
potential for the bifurcation and its equivalent bent pipe increases as
Vinlet increases. This indicates that probably the inertial effects
associated with the flow play a major role in inducing greater energy
losses in the bifurcation as compared to that in the equivalent bent pipe.
Another interesting observation that can be made from the figure is
that as A.R. decreases from 23 to 1/ 23 , the difference between
ϕbifurcation and ϕbent increases.

An increase of inlet diameter and a decrease of area ratio
in the bent pipes lead to a reduction in the loss potential

(Dinlet, Bent pipe 1 < Dinlet, Bent pipe5 and A.R.Bent pipe1 > A.R.Bent pipe5 leads
to ϕBent pipe,1 > ϕBent pipe, 5). On the other hand, an increase of inlet
diameter and a decrease of area ratio in the bifurcations lead to an
increase in the loss potential (Dinlet, Bifurcation1 < Dinlet, Bifurcation5 and
A.R.Bifurcation1 > A.R.Bifurcation5). An important observation that can be
made from Fig. 25 is that the loss potential for Bifurcations 5 and 6 are
nearly the same in the shown range of inlet velocities. For a fixed inlet
velocity Vinlet (which is used as the x axis in Fig. 20), an increase of
Dinlet indicates an increase in the flow rate through the bifurcation. The
loss potential for a bifurcation increases with an increase of flow rate.
An increase of the area ratio (A.R.) is found to result in an increase in

Table 9
Variation of the loss of total pressure (Δp0) with flow rate across a bifurcation module (Bifurcation 5: =D 11.23 mminlet , A.R.= 1) and across a straight section
( =L D/ 3.5straight daughter ) following the bifurcation module for three axisymmetric inlet velocity distributions.

Vavg (m/s) at
inlet

Δp0, bifurcation (Pa) Δp0L, bifurcation (Pa)

Uniform inlet
velocity

Additional unit of 3.5D
upstream

Paraboloidal inlet velocity Uniform inlet
velocity

Additional unit of 3.5D
upstream

Paraboloidal inlet velocity

0.58 0.1045 0.0555 0.0502 0.1721 0.2360 0.3038
0.87 0.1745 0.0926 0.0779 0.2942 0.3966 0.5705
1.16 0.2522 0.1349 0.1065 0.4377 0.5743 0.8928
1.46 0.3360 0.1837 0.1366 0.6023 0.7747 1.2759
1.74 0.4249 0.2335 0.1652 0.7878 0.9762 1.6755
2.03 0.5184 0.2890 0.1952 0.9941 1.1980 2.1309
2.32 0.6161 0.3481 0.2252 1.2179 1.4320 2.6272

Table 10
Variation of the loss of total pressure (Δp0) with flow rate across a bifurcation module (Bifurcation 5: =D 11.23 mminlet , A.R.= 1) and across a straight section
( =L D/ 3.5straight daughter ) following the bifurcation module for two skewed inlet velocity distributions.

Vavg(m/s) at inlet Δp0, bifurcation (Pa) Δp0L, bifurcation (Pa)

Skewed inlet velocity I Skewed inlet velocity II Skewed inlet velocity I Skewed inlet velocity II

Left daughter Right daughter Left daughter Right daughter

0.58 0.0773 0.0915 0.2730 0.2010 0.2548 0.1910
0.87 0.1363 0.1751 0.4872 0.3425 0.4924 0.3151
1.16 0.2019 0.2771 0.7367 0.5125 0.7946 0.4791
1.46 0.2723 0.4018 1.0208 0.7178 1.1721 0.7016
1.74 0.3445 0.5344 1.3063 0.9351 1.5854 0.9451
2.03 0.4239 0.6866 1.6201 1.1878 2.0794 1.2288
2.32 0.5057 0.8529 1.9436 1.463 2.6453 1.5444

Fig. 25. Variation of the loss potential ϕ with Vinlet (uniform distribution) for
three 70∘ bifurcations (with =L D/ 3.5straight daughter ) and their constituent 35∘ bent
pipes. (Bent pipe n refers to the equivalent bent pipe of Bifurcation n in
Table 6).
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the loss potential due to enhanced asymmetry in the cross-sectional
velocity distribution (compare the velocity contours for the bifurcation
in Figs. 8–10). The inlet diameter for Bifurcation 5 is 11.23mm while
that for Bifurcation 6 in 12.60mm. The value of A.R. for Bifurcation 5 is
1.00 whereas that for Bifurcation 6 is 0.79. The combined effect of the
above-mentioned relations is that the loss potentials for the two bi-
furcations turn out to be of nearly the same magnitude.

In Section 5.4, we discussed how the flow field evolves in the
straight section following the bifurcation module. It is found that, for
uniform inlet velocity and for the range of inlet velocity considered, a
length of Lstraight/Ddaughter∼30 is sufficient to obtain paraboloidal
velocity in the daughter branch. From the definition of loss potential it
may easily be deduced that the loss potential would be maximum
(ϕmax) for this length (Lstraight/Ddaughter∼30) of the daughter and would
remain constant at this value if the length of the straight portion is
increased any further. The usually observed length of the daughter
branch in natural/biological systems is however =L D/ 3.5straight daughter
(Pedley et al., 1970a,b, 1971). Fig. 26 shows the loss potential for the
usually observed daughter branch length ( =L D/ 3.5straight daughter ) and
the maximum value (ϕmax) obtained when the daughter branch length
is taken sufficiently long so that the flow fully recovers. Three
bifurcation flow units are considered here (the same as in Fig. 25). It is
found that the difference between the two values of ϕ at a given value
of Vinlet increases as Vinlet increases. This may be attributed to the fact
that the recovery length increases with Vinlet, which results in a greater
length of the daughter branch where the loss in the straight section
following the bifurcation exceeds that in the straight pipe. However, it
is to be remembered that the full recovery length would rarely be
present in practical branching networks, and hence the values of ϕmax
would seldom assume importance in the estimation of losses in elabo-
rate branching networks. However, the loss potential values for
daughter branch lengths of 3.5D may be used along with the Poiseuille
loss expression to approximately calculate the loss of total pressure in
the straight sections in branching networks.

While the loss potential ϕ for a bifurcation flow unit quantifies the
increase in loss of total pressure occurring in the straight section fol-
lowing a bifurcation module as compared to that in a similar straight
section following an equivalent straight pipe, it does not give any in-
formation regarding the relative importance of that increase when

compared to the drop of total pressure across that bifurcation module
itself. For this purpose, a relative loss potential ξ is defined as follows:

=
p

bifurcation

bifurcation0, (10)

Here, Δp0, bifurcation is the loss of total pressure across a given bifurcation
module and ϕbifurcation is the loss potential for that bifurcation flow unit.
It may be seen in Eq. (10) that the relative loss potential depends on the
loss incurred in the bifurcation itself (Δp0, bifurcation) in addition to the
inlet diameter and area ratio (on which ϕbifurcation depends).

Fig. 27 shows the variation of the relative loss potential ξ
with Vinlet for six different bifurcation flow units (refer to Table 6), each
with daughter branches of =L D/ 3.5straight daughter . For a given
bifurcation, ξ increases monotonically with Vinlet. The loss potential
was found to increase with an increase in inlet diameter or area
ratio (Fig. 25). Since Dinlet, Bifurcation 1 < Dinlet, Bifurcation2 and
A.R.Bifurcation1 > A.R.Bifurcation 2, ϕbifurcation is almost the same for
Bifurcations 1 and 2. Moreover, since Δp0, bifurcation is almost the same
for these two bifurcations, the relative loss potential
( = p/bifurcation bifurcation0, ) turns out to be nearly equal for Bifurcations 1
and 2. The near-coincidence of the ξ values for Bifurcations 2 and 4 cannot
be attributed to such relations because Dinlet, Bifurcation2 < Dinlet, Bifurcation4

and A.R.Bifurcation2 < A.R.Bifurcation4 (which would indicate that
ϕBifurcation2 < ϕBifurcation 4). The reason for the nearly equal ξ values for
Bifurcations 2 and 4 for a given inlet velocity is the lower values of
Δp0, bifurcation for Bifurcation 4 that may be attributed to the shorter length
of the flow path ( +L L D( )/ inlet1 2 ) in it.

It is found that, within the ranges of parameters tested, the value of
ξ can become of the order 1, which indicates that the additional loss of
total pressure in the straight section following the bifurcation, over and
above that in a similar straight section following an equivalent straight
pipe is of the order of the loss in the bifurcation module itself. Thus, it is
inferred from the order of values of ξ that the various geometric factors
governing the bifurcation flow induce at the end-plane of the bifurca-
tion module significant potential for additional loss of total pressure in
the following straight section. Comparing Tables 7 and 8, and using
Eq. (8), it is seen that the loss in total pressure across the bifurcation
module itself (Δp0, bifurcation) lies in the range 30–40% of that occurring
across the flow unit (Δp0t, bifurcation) consisting of the bifurcation module
with straight sections added to its end-planes (Fig. 2). This shows that
the assumption made in several previous references that the loss in the
bifurcation module itself is negligible was not appropriate.

Fig. 26. Variation of the loss potential ϕ with Vinlet (uniform velocity dis-
tribution) for three bifurcation flow units with the straight length to diameter
ratio (L/D) of the daughter branches equal to (a) the practically observed value
of 3.5 and, (b) the value required to fully regain the paraboloidal profile
( =L D/ 30). Here, we refer to Lstraight/Ddaughter as (L/D)daughter for ease of re-
presentation.

Fig. 27. Variation of the relative loss potential ξ with Vinlet (uniform distribu-
tion) for 6 different 70∘ bifurcation geometries (Table 6) with

=L D/ 3.5straight daughter .

K. Pradhan and A. Guha International Journal of Heat and Fluid Flow 80 (2019) 108483

26



6. Conclusion

A systematic computational investigation is performed to accurately
determine the modifications to a three-dimensional flow field caused by
a bifurcation module and to study the downstream evolution of the
generated flow field. One uniqueness of the present study is that it does
not simply determine the final solution in a complex geometry by the
application of CFD as a black-box tool, instead it seeks to attribute the
final solution to more elemental aspects of the specified problem
thereby enhancing understanding. Thus it is identified how the complex
flow solutions arise due to five factors, viz. flow division at the bi-
furcation ridge, flow path curvature in the bifurcation module, possible
change in cross-sectional area from mother to daughter branches,
complex shape changes in the bifurcation module and inertia of the
flow. This simultaneously provides physical insight into the mechan-
isms of loss in a bifurcation and its constituent elements. The detailed
analysis is systematized here by establishing two novel methods of
construction of a bifurcation, viz. “co-joining of two bent pipes” and
“splitter in a pipe”, and by formally deriving the equivalence condition
for the flow in a bifurcation and its constituent elements. Through this
systematization an attempt is made to understand comprehensively the
complexity of the fluid dynamics occurring in a single bifurcation,
which is often masked in the usual studies of flow in large bifurcating
networks. Altogether 14 different bifurcation geometries, a large range
of inlet Reynolds number in the laminar regime (400–2000), five dif-
ferent inlet velocity profiles (of which three are axisymmetric and the
remaining two consists of skewed primary velocity distribution coupled
with secondary motion at the inlet plane), multiple geometries of the
downstream branch and about 500 separate three-dimensional com-
putations used in this study provide a degree of generalization that is
not available elsewhere.

The fluid dynamic effects of flow division is isolated here by con-
sidering the flow in a straight pipe with a splitter plate in the middle
(Fig. 12), which may be viewed as a bifurcation with zero bifurcation
angle (thus eliminating flow curvature effects) with semi-circular
daughters (thus eliminating the effects of change in cross-sectional area
and shape). The presence of the splitter plate results in the formation of
additional boundary layers on its two sides (or equivalently along the
inner edges of the bifurcation in this case), and induces secondary
motion that pushes fluid away from it. For a uniform inlet flow, the
developed boundary layers on the splitter and the induced secondary
motion pushes the location of maximum velocity towards the outer
edges of the cross-sections of the daughter branches (this tendency is
opposite to that caused by the flow curvature effects described in the
next paragraph). The decrease of static (Δp) and total (Δp0) pressure
across the flow unit is significantly increased due to the placement of a
splitter plate in a straight pipe (Table 5), indicating that flow division
alone results in additional losses in the bifurcation as compared to that
in pipe flow.

Flow path curvature is primarily responsible for the development of
skewed velocity distributions with the maximum velocity shifted from
the center of the cross-section towards the outer edge in the bent pipe
(Fig. 7), and, associated Dean-type secondary fluid motion (Fig. 11).
The fluid dynamic effects of the curved nature of the flow path in a
bifurcation is determined by comparing the flow in a straight pipe with
a splitter plate along the middle to that in a bifurcation (70∘ used here)
with semi-circular daughters (thus eliminating the effects of change in
cross-sectional area and shape). There is a tendency of setting up a
secondary flow due to curvature effects from the outer edges of the
bifurcation towards the inner edges along the diameter of the cross-
section. This fluid motion forms a part of the Dean-type secondary
circulation in the semi-circular daughters of the 70∘ bifurcation, and is
attributable to curvature effects alone (Figs. 12–14). Comparison of the
pressure losses (Δp and Δp0) for a straight pipe and a bent pipe
(Table 4), or that for 0∘ and 70∘ bifurcations with semi-circular
daughters (Table 5) shows that flow path curvature results in an

increase in the values of both Δp and Δp0.
The effects of change of cross-sectional shape alone (i.e. cross-sec-

tional area remaining the same) are exemplified here (Fig. 12 and
Table 5) by comparing the flow in a straight pipe having a splitter plate
to that in a bifurcation having very small bifurcation angle and circular
daughter branches. Both the maximum velocity at a cross-section in the
daughter branches and the pressure losses across the flow unit are
found to decrease due to the change of cross-sectional shape from semi-
circular to circular. However, since the effect of flow path curvature
may affect the pressure losses in the opposite sense, there may some-
times be a small increase of Δp and Δp0 when the change of cross-sec-
tional shape of the daughter branches from semi-circular to circular
takes place in the presence of large flow path curvature (compare va-
lues of Δp0 in bifurcations with circular and semi-circular daughters in
Table 5).

The fluid dynamic effects of the change of cross-sectional area
(keeping the shape same) in a bifurcation are determined here by
comparing the flows in 70∘ bifurcations (with circular daughter bran-
ches) with area ratio (A.R.) values of 2, 1 and 2/3. Figs. 8–11 show the
effects of area ratio when a bifurcation is constructed by the method of
“co-joining of two bent pipes”, and Figs. 12 and 13 show the same when
a bifurcation is formed by the method of “splitter in a pipe”. An increase
in the value of A.R. results in an increase in the non-uniformity in ve-
locity distribution and a decrease in the average secondary (and pri-
mary) velocity at a cross-section in the daughter branches.

The change of cross-sectional shape from circular to oval (Fig. 1) in
the initial portion of the bifurcation generates a secondary motion from
near the upper and lower walls towards the central axis of the mother
branch. As a result of the above-mentioned up-down motion and two
opposite sideways motion (from the outer edges of the bifurcation to-
wards the inner edges due to curvature and from the inner edges to-
wards the outer edges due to flow division effects respectively) at a
cross-section, a saddle-point type pattern is observed in the secondary
motion in the bifurcation module for uniform inlet flow (Fig. 16).
[However, such a pattern is not found for a paraboloidal inlet velocity
where the curvature effects are stronger due to the non-uniformity in
the inlet flow (Fig. 18).]

A comparison of Figs. 16, 18, 20, 21 and 22 shows that the inlet
velocity distribution has a significant impact on the flow field in the
bifurcation module. As an example, asymmetry in the inlet profile of
primary velocity with respect to the bifurcation ridge (as are the cases
shown in Figs. 21 and 22) results in unequal flow distribution among
the daughter branches (although they are geometrically identical). Si-
milarly it is found that, when a helical motion (i.e. secondary motion
along with the primary flow) is prescribed at the inlet (as are the cases
shown in Figs. 21 and 22), the anti-Dean type secondary motion may be
produced just in a single bifurcation which is usually reported only in a
large branching network (Guha and Pradhan, 2017) and did not appear
in all other studies of a single bifurcation module where various profiles
of primary velocity are prescribed at the inlet without any secondary
motion there. The impact of inlet velocity profiles on the pressure loss
quantities is summarized in Tables 9 and 10.

The complex physical processes of equilibration through which the
flow field created by a bifurcation module relaxes to the paraboloidal
velocity profile (if sufficient length is provided in the downstream
branches) are graphically illustrated in Figs. 23 and 24. It may appear
surprising at first sight that the three-dimensional flow modifications
made by a bifurcation module are such that a transformation of para-
boloidal at inlet to paraboloidal velocity distribution in a daughter
branch takes longer distance than a transformation of uniform to
paraboloidal velocity distribution. However, it is unlikely that such
recovery lengths (of the order 30–50 times Ddaughter) would be available
in a practical (natural or engineered) branching network, and a value of

=L D/ 3.5straight daughter is adopted here for generic computations, which is
found in many natural/biological systems.

Not only the loss is determined across a bifurcation module, that is
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directly determinable experimentally or computationally, but the
power of CFD is utilized to develop new methods of quantifying the
potential for loss generation in subsequent units that follow the bi-
furcation module under study (quantified here by introducing two new
parameters - the loss potential ϕ defined by Eq. (9) and the relative loss
potential ξ defined by Eq. (10)). Calculations show that the loss of total
pressure (Δp0) across a bifurcation is smaller than that across the bent
pipe itself, for the equivalent flow condition established here (Table 7).
A contributory factor to this finding may be visualized by the partial
removal of the internal wall in the formation of the bifurcation from the
co-joining of two bent pipes. Use of Eq. (8) and the data given in
Tables 7 and 8 show consistently that Δp0L, bifurcation > Δp0L, bent where
Δp0L is the loss of total pressure in the following straight pipe. This
provides a new insight in the loss mechanism introduced by the three
identified major aspects of a bifurcation module, viz. the flow division
at the bifurcation ridge, flow path curvature in the module, and var-
iations of area and shape of the cross-section. Present computations
establish that the difference between the loss potentials of a bifurcation
and its constituent bent pipes ( bifurcation bent) increases with an in-
crease in Vinlet and with a decrease in the area ratio (A.R.), being par-
ticularly significant when the A.R. goes below 1.

Based on extensive computations for 9 different bifurcations at
various flow rates, new correlations are proposed here (see Appendix)
for estimating the loss across a bifurcation and the loss across a straight

section following a bifurcation as functions of +L L D( )/ inlet1 2 , A.R. and
Re. From a study of Tables 7–10, it is apparent that the loss depends on
many factors. However, a suggestion for a generic methodology also
emanates from these extensive computations that, in the absence of
three-dimensional computations like the present ones, the use of
Eq. (A2) (for uniform inlet flow) for the estimation of loss across a bi-
furcation module (Δp0, bifurcation) situated in a branching network and
the use of Eq. (A5) (for paraboloidal inlet velocity) for the estimation of
loss in the straight section following a bifurcation module (Δp0L, bi-

furcation) may produce approximate but realistic answers in system stu-
dies in the Reynolds number range 400–2000 (although no simple loss
model can capture the flow asymmetry between the two geometrically
similar daughter branches of a bifurcation).

Computed values of ξ for bifurcations indicate that the loss potential
may be of the same order of magnitude as the loss of total pressure
across the bifurcation itself (Fig. 27). A complementary interpretation
can be formed from a comparison of Table 7 and Table 8 that, within
the ranges of the parameters tested, the loss in total pressure across just
the bifurcation module itself may lie in the range 30–40% of that taking
place across a bifurcation flow unit (Fig. 2), showing that the as-
sumption made in several previous references that the loss in the bi-
furcation module itself is negligible was not appropriate.

Appendix. Correlation for pressure loss in bifurcations

Measured inspiratory velocity profiles in symmetric bifurcation geometries were used by Pedley et al. (1970a,b, 1971) to calculate the viscous
dissipation occurring in a daughter branch downstream of a bifurcation. They assumed that all viscous dissipation occurs in the straight section of the
daughter branch following a bifurcation, and that no dissipation occurs in the bifurcation itself. They presented their findings through a variable Z
which specifies the ratio of the actual energy dissipation in the branch to the Poisseuille dissipation. Mathematically, it takes the following form:

=Z C d
L4 2

Re
1/2

(A1)

Here, d and L are respectively the diameter and length of the daughter branch,Re is the Reynolds number and C is a constant whose value depends on
the bifurcation angle and value of A.R. They found that the value of Z downstream of a bifurcation is always greater than unity.

It was found in the course of the present work that the effect of bifurcation angle on the value of Δp0 is small. Accordingly, we have concentrated
our efforts on a particular value of θ, viz. = 70 . Based on extensive computations covering nine different bifurcations (Table 6) and seven values of
inlet Reynolds number Re for each bifurcation, a correlation is developed to determine the loss of total pressure for flow of air across a bifurcation
module in the range 400 Re 2000 for a uniform inlet velocity distribution:

= +p
V

L L
D

15.97 (A.R .) Rebifurcation

inlet inlet

0,
2

1 2 0.7 0.7
(A2)

In Eq. (A2), Dinlet refers to the diameter at the inlet to the bifurcation module and L1 and L2 refer to the centreline lengths of the portions of the
mother and daughter branches respectively which form the bifurcation module (Fig. 2). A.R. refers to the ratio of the total cross-sectional area at the
outlet (i.e. sum of the area of flow in the two daughters) to the cross-sectional area at the inlet of the bifurcation. Eq. (A2) is able to predict the value
of Δp0, bifurcation to within ± 8% of the CFD results.

We also performed computations for the flow of air in the above-mentioned nine bifurcations when they are followed by straight sections (Fig. 2)
such that =L D/ 3.5straight daughter (Pedley et al., 1970a,b, 1971). The loss of total pressure across the straight section following the bifurcation module
in the range 400 Re 2000 for a uniform velocity distribution at the inlet to the bifurcation may be determined by the following expression:

= +p
V

L L
D

16.85 (A.R .) ReL bifurcation

inlet inlet

0 ,
2

1 2
0.7

1.3 0.6
(A3)

The loss of total pressure determined by Eq. (A3) is found to lie within ± 10% of the CFD results. The loss of total pressure across a “flow unit”
comprising a bifurcation module and following straight sections can be approximately ascertained by summing the energy losses given by Eqs. (A2)
and (A3).

Similarly, the loss of total pressure for flow of air across a bifurcation module in the range 400 Re 2000 for a paraboloidal inlet velocity
distribution may be predicted from the following expression:

= +p
V

c L L
D

23.91 (A.R .) Rebifurcation

inlet inlet

c0,
2 1

1 2 1 2
(A4)

where =c 11 , =c 0.92 forA.R.≥ 1, and =c 0.51 , =c 0.752 forA.R. < 1. The loss of total pressure across the straight section ( =L D/ 3.5straight daughter )
following the bifurcation module in the range 400 Re 2000 for a paraboloidal inlet velocity distribution may be predicted by the following
expression:
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= +p
V

L L
D

12.52 (A.R .) ReL bifurcation

inlet inlet

0 ,
2

1 2
0.07

0.25 0.46
(A5)

The loss of total pressure determined by Eqs. (A4) and (A5) are found to lie within ± 10% of the CFD results.
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